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Arterial compliance (AC) plays a crucial role in vascular aging and cardiovascular
disease. The ability to continuously estimate aortic AC or its surrogate, pulse pressure
(PP), through wearable devices is highly desirable, given its strong association with
daily activities. While the single-site photoplethysmography (PPG)-derived arterial
stiffness indices show reasonable correlations with AC, they are susceptible to noise
interference, limiting their practical use. To overcome this challenge, our study
introduces a noise-resistant indicator of AC: Katz’s fractal dimension (KFD) of PPG
signals. We showed that KFD integrated the signal complexity arising from
compliance changes across a cardiac cycle and vascular structural complexity,
thereby decreasing its dependence on individual characteristic points. To assess
its capability inmeasuring AC,we conducted a comprehensive evaluation using both
in silico studies with 4374 virtual human data and real-world measurements. In the
virtual human studies, KFD demonstrated a strong correlation with AC (r = 0.75),
which only experienced a slight decrease to 0.66 at a signal-to-noise ratio of 15dB,
surpassing the best PPG-morphology-derived ACmeasure (r=0.41) under the same
noise condition. In addition, we observed that KFD’s sensitivity to AC varied based on
the individual’s hemodynamic status, whichmay further enhance the accuracy of AC
estimations. These in silico findings were supported by real-world measurements
encompassing diverse health conditions. In conclusion, our study suggests that PPG-
derived KFD has the potential to continuously and reliably monitor arterial
compliance, enablingunobtrusive andwearable assessment of cardiovascular health.
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1 Introduction

Arterial compliance (AC) has significant value when managing cardiovascular
disease, as it is closely linked to cardiovascular events and all-cause mortality
(Vlachopoulos et al., 2010). Clinical guidelines often recommend the use of carotid-
femoral pulse wave velocity (cfPWV) measured by applanation tonometer as a reliable
measure of overall vascular compliance for cardiovascular risk stratification (Laurent
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et al., 2006; Mancia et al., 2013; Pereira et al., 2013; Pereira et al.,
2015). Aortic pulse wave velocity (aoPWV) measured through
magnetic resonance imaging (MRI) is also utilized as an
independent predictor (Voges et al., 2012). However, these
measurements require skilled operators, limiting their
widespread application. Pulse pressure (PP), on the other hand,
is a relatively easy measurement that reflects AC. It serves as a
robust indicator for calcified atherosclerosis in various vascular
beds (Bortel et al., 2001; Niiranen et al., 2019). Nevertheless, PP
measured using the oscillometric method provides only
intermittent evaluation of the vascular condition and does not
capture the dynamic changes that occur throughout the day due to
factors like temperature, physical activity, and stress.

Photoplethysmography (PPG) offers the advantage of
continuity, allowing for long-term study and correlation with
health outcomes. However, the performance of PPG-derived
surrogate AC indices, such as the stiffness index (SIppg), aging
index (AGI), and reflection index (RI), heavily rely on the quality
of PPG morphology and characteristic points, which are susceptible
to degradation with added noise (Pannier et al., 2002; Charlton et al.,
2021; Hong et al., 2023). On the other hand, PPG-derived AC
measures by machine learning techniques, such as convolutional
neural networks and long-short-term memory networks, often
utilize the complete waveform, temporal correlation or chaotic
features to predict cardiovascular functions (Radha et al., 2019;
Khalid et al., 2020; Schlesinger et al., 2020; Mejía-Mejía et al., 2021;
Khodabakhshi et al., 2022; Wang et al., 2022). While these methods
demonstrate good performance in specific datasets, their internal
mechanisms remain unknown, which may limit their ability to
generalize to populations with different hemodynamic statuses.
Nevertheless, these algorithms and relevant studies identified the
temporal fluctuation or complexity of PPG as a promising candidate
for AC assessment (Sviridova et al., 2018; Xing et al., 2023a; Xing
et al., 2023b).

In recent years, the concept of fractal dimension (FD), a widely
used mathematical tool in biomedical signal processing, has shown
promise in AC estimation (Sviridova and Sakai, 2015; Sviridova
et al., 2018; Xing et al., 2023a). FD captures the geometric complexity
of signals and encodes transient changes of physiological status into
the temporal patterns. For example, Esteller et al. found that Katz’s
FD (KFD) yielded consistent results in discriminating between states
of brain function and was less susceptible to noise effects (Esteller
et al., 2001). In our previous comprehensive search, we found that
Higuchi FD is closely related to mean blood pressure (BP), while
KFD is significantly associated with compliance (Xing et al., 2023a;
Xing et al., 2023b). It is important to note that the compliance
estimation method employed in those studies was imprecise and did
not undergo validation against a gold standard. Despite the
demonstrated utility of FD in estimating hemodynamics, the
physiological meaning or origin of FD remains unclear
(Khodabakhshi et al., 2022). Sviridova et al. proposed that the
chaotic characteristics of PPG could arise from a set of
differential equations, reminiscent of those incorporated in the
four-element Windkessel model, which considers pressure,
volume, flow, and employs principles of momentum conservation
(Sviridova and Sakai, 2015; Wang et al., 2017). While Windkessel
models offer valuable insights into the interplay between KFD and
various hemodynamic parameters, such as compliance, they

inherently fail to fully account for the complex multiple wave
reflections occurring within the intricately branching vasculature,
thereby emphasizing the requirement for a deeper, more
sophisticated understanding.

To address these concerns, we propose conducting in silico
studies (with synthetized virtual data) using the more advanced
one-dimensional model and known hemodynamic parameters,
alongside the experimental study (with real human data), to
compare and validate our proposal. The aim is to build a
framework for a physiological explanation of complexity
measures such as KFD and thoroughly evaluate its potential
benefits in estimating AC.

2 Materials and methods

2.1 Data source

2.1.1 In silico databases
In order to explore the potential role of KFD as a surrogate

measure of AC, this study employed both in silico and experimental
data. The in silico data were generated using three different models
with similar distribution of hemodynamic properties to form
three databases.

The first in silico database consists of simulated waveforms of BP
and PPG for a single cardiac cycle from various arteries (aorta, head,
neck, torso, and limbs) in 4374 virtual subjects spanning six age
decades (25–75 years old). We hereby refer to this database as
PWDB (Charlton et al., 2021; Hong et al., 2023). Among these
subjects, 537 exhibited BPs outside of healthy ranges. This was
predominantly due to abnormal aortic or brachial PP (observed in
431 subjects) and abnormally high ratio of brachial to aortic PP
(90 of the remainder) (Charlton et al., 2019). However, we still
included these subjects in our analysis. This choice was based on the
fact that these subjects still adhere to model-based physiological
rules, and may occur in scenarios such as surgeries (Lee et al., 2022).
This database employed a one-dimensional (1D) blood flow model
to incorporate different cardiovascular parameters from
116 systemic arterial segments. A simplified illustration is shown
in Figure 1C. In previous studies utilizing PWDB, the aortic Young’s
modulus (EAo) has been commonly employed to evaluate vascular
aging. However, when it comes to BP or PP estimation, ACmay hold
greater relevance. AC is inversely proportional to Young’s
modulus and represents the ratio of blood volumetric changes
to PP. In our study, we primarily utilized AC as the reference and
examined its correlation with PP and temporal complexity
measures of PPG. To determine the correlations between the
estimated parameters and the reference, we employed the
Pearson correlation coefficient (PCC).

The second and third in silico databases were generated using
four-element Windkessel (WK4) models, as illustrated in Figures
1A, B. These models are zero-dimensional (0D) lumped models that
do not consider segmented pulse wave reflections (Segers et al., 2008;
Xing et al., 2023b). In the classic 0D model, the central compliance
(C1) is assumed to be fixed (Segers et al., 2008), as exemplified in
Equation Set 1, which shares similarities with the equations
governing the chaotic Rössler system (Sviridova and Sakai, 2015).
In reality, C1 varies throughout the cardiac cycle, and this variation
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can result in the formation of temporal complexity patterns (Xing
et al., 2023b). To capture the dynamics of varying C1, we developed a
modified WK4 model, as presented in Eq. 2. This adaptation
involved treating C1 as a temporally evolving variable and
designating pp(t) as the sole unknown parameter.

dq t( )
dt

� 1
L

pc t( ) − pp t( )( ) . . . . . . . . . 1a( )
dpc t( )
dt

� 1
C1

qin t( ) − q t( )( ) . . . . . . . . . 1b( )

dpp t( )
dt

� 1
C2

q t( ) − pp t( )
R

( ) . . . . . . . . . 1c( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
d3pp t( )
dt3

+ 1
RC2

d2pp t( )
dt2

+ 1
LC1 t( ) +

1
LC2

( ) dpp t( )
dt

+ 1
LRC1 t( )C2

pp t( ) � 1
LC1 t( )C2

qin t( ) (2)

In these equations, pc(t) is the central BP, pp(t) is the peripheral
BP, R is the peripheral resistance (PVR), C2 is the peripheral
compliance (PVC), and L is the inertance. q(t) refers to blood
flow and qin(t) refers to the cardiac flow waveform during a
cardiac cycle. To ensure a fair comparison, we employed
hemodynamic profiles that closely resembled those of the
4374 virtual subjects in the PWDB. By generating an equivalent
number of virtual measurements, we aimed to maintain consistency
throughout. The detailed 0D model construction procedures are
described in the Appendix.

By employing these three models, we can investigate some
enduring questions regarding the origin of the temporal complexity
of PPG. Specifically, we hypothesize that if temporal complexity
patterns arise from frequency-dependent PPG wave transmission,

both WK4 databases should demonstrate a significant correlation
between KFD and AC. If temporal complexity patterns are only
observed in WK4 models with varying C1 and PWDB, it implies
that the temporal variation during a cardiac cycle aids in the formation
of complexity. Conversely, if the hemodynamics-induced temporal
patterns are exclusively observed in the 1D model-generated PPG, it
suggests that signal complexity originates from back-reflected waves
caused by multiple junctions during wave propagation. Importantly,
both compliance variations and reflected waves can coexist and
contribute to the observed complexity in physiological signals.
However, it is worth mentioning that this analysis does not
encompass longer-term complexity (>1 cardiac cycle), such as that
observed in closed-loop models or with beat-to-beat cardiac output
(CO) fluctuations.

Despite our efforts to align the key hemodynamic parameters,
certain discrepancies remain evident. At low to moderate R, the two
0D models exhibited a close resemblance to each other and the 1D
model, as shown in Figure 1D. However, as R increases to high R, the
0D model with fixed C1 displays significant distortions, as shown
in Figure 1E.

2.1.2 Experiment databases
The study collected experimental data from two publicly

available sources, exhibiting varying levels of noise and
targeting different populations. The first source (Dataset1)
utilized was a short-recorded PPG dataset for BP monitoring
(Liang et al., 2018). This dataset contains PPG and BP data from
219 subjects with 657 measurements in a sitting position,
covering an age range of 20–89 years and including
individuals with hypertension and diabetes. Each subject
underwent three measurements, each lasting 2.1 s, with the

FIGURE 1
Simulation models used to create the in silico datasets. (A) 0Dmodel with fixed central compliance (C1). (B) 0Dmodel with time-dependent C1. (C)
1D model with distributed compliances, resistances and blood flow. Examples of waveforms generated by the three theoretical models at (D)moderate
and (E) high peripheral resistance respectively. pc(t) refers to central BP; pp(t) refers to peripheral BP; qin(t) refers to the cardiac flow waveform during a
cardiac cycle; q(t) refers to vascular blood flow; C2 refers to peripheral compliance; L refers to inertance; R refers to peripheral resistance.
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collection of reference BP from the opposite arm shortly before
the PPG measurement. Data acquisition was performed using the
SEP9AF-2 PPG sensor (SMPLUS Company, Korea), positioned
on the left fingertip. The sensor utilized dual LEDs with
wavelengths of 660 nm and 905 nm, a sampling rate of 1 kHz,
and a 12-bit ADC. Signal processing involved a 0.5–12 Hz
bandpass filter.

The second database (Dataset2) used in the study was created by
Carlson et al. from Kansas State University (Carlson C. et al., 2020).
It consists of data collected from 40 healthy subjects in a supine
position for approximately 5 min. A vital sign monitor (GE Datex
Ohmeda CardioCap 5, USA) was used to gather finger PPGs with a
sampling rate of 100 Hz. The output PPG was internally filtered by a
lowpass filtered with a cutoff frequency of 10 Hz. The reference BP
was obtained by a beat-to-beat BP monitor (Finometer PRO,
Finapres Medical Systems, the Netherlands) at the finger site and

reconstructed to brachial BP. This dataset includes parameters such
as stroke volume (SV), BP, PPG, and more. Table 1 shows a
comprehensive overview of participants’ information, and
Figure 2 showcases representative data from the two datasets. To
compare the distribution of characteristics of the datasets, we
employed a Student’s t-test with uneven sample sizes.

2.2 Signal pre-processing procedure

The original PPG signals, especially PPG from Dataset 1 is very
noisy, hindering its ability to extract morphological features, and
fractal dimensional information. For optimal data preprocessing, we
recommend following the steps outlined in Figure 3. Firstly, it is
crucial to accurately identify each heartbeat. The benchmark Multi-
Scale Peak and Trough Detection algorithm is recommended
(Bishop and Ercole, 2018). Secondly, normalization should be
applied to obtain a standardized PPG waveform with a
maximum height of one and a minimum of zero. To reduce
noise and restore some of the distortions, denoising technique
should be applied. Additionally, scaling the amplitude of the
waveform with a device-specific factor, determined by the
sampling rate, is recommended. The detailed explanation of the
rationale behind this scaling procedure can be found in Section 2.3.
Finally, dividing by the heart rate and calculating KFD will allow for
robust and meaningful information extraction. By following these
steps, we obtained reliable results in the analysis.

To find the optimal scaling factor and denoising technique that
best preserves the AC information, we compared different scaling
strategies and several popular filtering techniques, which are
introduced in Section 2.3 and Section 2.5.

The normalization of PPG waveforms relies on accurately
estimating the pulsatile amplitude of PPG (ΔVppg), which
measures blood volume at the fingertip in our study. For in silico
data, we calculated ΔVppg by multiplying the pulsatile cross-
sectional vascular area with the vascular length. To maintain
simplicity while preserving the validity of the conclusion, we
assumed a vascular length of 1 cm at the measurement site. For

TABLE 1 Characteristics of the real-world datasets.

Dataset1 Dataset2

Subjects 219 40

Posture Sitting Supine

Sex (F/M) 115/104 23/17

Measurements 657 40

Duration (s) 2.1 ~300

Reference BP Discrete Continuous

Age (years) 58 ± 16* 34 ± 15

Height (cm) 160 ± 8* 171 ± 11

Weight (kg) 60 ± 12* 76 ± 18

SBP (mmHg) 126 ± 20* 146 ± 25

DBP (mmHg) 70 ± 11* 88 ± 18

*Significantly different between groups (p < 0.05).

BP. blood pressure; SBP. systolic blood pressure; DBP. diastolic blood pressure; F. female;

M: male.

FIGURE 2
Illustrations of data from two experimental datasets. (A) Dataset 1: Three short PPG measurements obtained from a single subject, with a reference
SBP/DBP of 123/73 mmHg taken shortly before the PPG measurement at the opposite arm. (B) Dataset 2: First 30 s of a continuous PPG measurement.
Average SBP/DBP for this subject is 122/68 mmHg. The pulsatile amplitude of PPG (ΔVppg_m) depends on the device, tissue coupling coefficient, and
pulsatile blood volume (ΔVppg).
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experimental data, the pulsatile portion of PPG (ΔVppg_m) was
obtained by calculating the difference between detected peaks
and troughs of each cardiac cycle, as illustrated in Figure 2. It is
important to note that the ΔVppg_m does not provide an absolute
measure of blood volume. Instead, it also depends on the device
and tissue coupling coefficient, which requires personalized
calibration.

In this study, our primary focus was on utilizing SIppg as a
comparative measure due to its strong correlation with EAo in virtual
human data (Hong et al., 2023). Additionally, we calculated RI and
AGI to assess their susceptibility to noise interference. To ensure
precise and reliable feature estimation, we leveraged the code
published by Charlton et al. and Hong et al. (Charlton et al.,
2019; Hong et al., 2023). We made minor adjustments to address
the issue of failure when applied to experimental data. The signal
quality was assessed following the methodology outlined by
Orphanidou et al. (Orphanidou et al., 2015), utilizing a template-
matching approach. Measurements that did not meet the predefined
quality threshold were excluded from the analysis.

2.3 Katz’s fractal dimension

Compared to SIppg, which relies on characteristic points and is
vulnerable to noise, KFD is derived from the entire waveform,
making it robust against noise. The definition of KFD is as in
Eq. 3.

KFD � log10 L

log10 d
(3)

where L is the sum of distances between successive points, and d is
the estimate of diameter between the first point of the sequence (1st)
and the point with the farthest distance among all other points (ith).
Mathematically, d can be expressed as

d � max distance 1st, ith( )( ) (4)
In this context, the term “distance” refers to the Euclidean

distance between the ith point of the sequence and the first
point. Although KFD is a dimensionless measure of the distance
ratio, it still exhibits a reliance on the signal’s amplitude. This
reliance arises from the fact that the distance calculation
comprises two dimensions: time and amplitude. The choice of
time and amplitude scales plays an important role in determining
the relative importance of these dimensions in the distance
calculation. Additionally, the duration of the cardiac cycle varies,
resulting in a variable length of the time axis.

To address these issues, we firstly normalized the PPG amplitude
and adjusted the time axis using the heart rate. Subsequently, we

determined an optimal universal scaling factor α that allowed us to
maximize the correlation between KFD and AC.We conducted tests
by using a scaling factor of α×Fs/HR, where α was chosen to vary
from 0.1 to 0.5 with a step size of 0.05. Here, HR represents the heart
rate in units of Hz, and Fs denotes the sampling rate. This approach
ensured that the two axes shared the same unit and had a
comparable scale. We applied the same scaling factor to all in
silico models. For comparing the three models, we employed a
Student’s t-test with equal sample sizes. To compare the correlations
between KFD and AC with PPG morphology-derived indices and
AC, we computed the confidence intervals of the correlation
coefficients. If the confidence intervals do not overlap, we
interpret the correlation coefficients as significantly different.

We also utilized a probability-based outlier detection
algorithm to clean KFD data, similar to the method proposed
by McCool et al. (McCool et al., 2016). Initially, the KFD was
calculated without explicitly checking the data quality.
Subsequently, the state transition probability was determined
for discretized KFD values. If the probability of KFD state
transition fell below 1% of the whole dataset, the corresponding
states related to the KFD were labeled as outliers. This approach
allowed us to identify and exclude potential outliers in the data,
ensuring the accuracy and reliability of the results. Data points
outside the range of the median plus or minus three times the
standard deviation (SD) were also excluded. We followed a similar
procedure to remove outliers of AC.

2.4 Estimation of AC in experimental setting

When working with in silico data, hemodynamic parameters like
AC are known. However, accurately quantifying absolute
compliance for in vivo data posed challenges without advanced
MRI scanning or applanation tonometry. In this study, we utilized
PP as an intermediate variable to assess the correlation between
KFD and AC.

PP, which is measured in the experimental data, has long been
used as an indicator of AC, expressed as ACest = f (PP). In this study,
for easier comparison between in silico and in vivo data, we also
investigated the correlation between PP and KFD, represented as
PPest = g (KFD). By showcasing the robust reversibility of the
functions f (PP) and g (KFD), we can conclude that KFD can
serve as a reliable indicator of AC. If these functions are able to
withstand noise and disturbances, then the estimation of ACest and
PPest can be considered robust.

To assess the function f (PP), we examined the relationship
between AC, KFD and several PPG-morphology-derived features, as
well as their combinations. Similarly, we obtained g (KFD).

FIGURE 3
Optimal pre-processing steps.
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2.5 Influence of noise and filtering

Representative factors influencing PPG signals encompass
motion artifacts, powerline interference, low amplitude, and
premature ventricular contraction (Elgendi, 2012). These factors
can be identified, eliminated, or rectified (Elgendi, 2016; Shin, 2022).
The remaining noise is predominantly white Gaussian (Tang et al.,
2020). Noise has a strong impact, not only on SIppg, but also on KFD.
To obtain comparable results from signals with different levels of
noise, we firstly have to design a filter to restore the original PPG
signals, which conform to physiological mechanisms. In this
process, the filter with the least loss of AC information should
be chosen.

To investigate the noise effect, white Gaussian noise was added
to the in silico PPG signals (PWDB) to simulate instrumental noise
(Redheuil et al., 2010). Noise was superimposed on the simulated
data and a bandpass filter (Kaiser window FIR filter, 0.665–35 Hz)
was used to remove the noise. As reported by Hong et al. (2023),
three levels of noise intensity were generated by setting signal-to-
noise ratio (SNR) to 15, 20, and 30 dB. We replicated these noise
generation and filtering parameters to facilitate direct comparisons
with the aforementioned study. The performance of SIppg and KFD
with and without noise was compared.

For real human data, it was observed that certain signals
exhibited noticeable levels of noise and corruption, which could
not be effectively eliminated by the bandpass filters (Charlton et al.,
2022). As the experimental signal underwent processing by the
internal filter, the original noise type and level became unknown.
Nonetheless, residual noise remains prominent in Dataset1.
Therefore, we measured the residual noise in Dataset1 to
gauge the relative noise level. The noise was calculated as the
variance between the noisy signal and the further filtered data,
with the filtered signal designated as the clean signal. Three signal
filtering techniques were implemented and compared: median
smoothing (Li et al., 2018), bandpass filtering (Hong et al., 2023),
and knowledge-based multi-Gaussian fitting (Banerjee et al.,
2015). The correlations of SIppg, RI, AGI, and KFD with AC
were assessed using the most effective filter. To mitigate the
impact of outliers, SIppg beyond a standard deviation from the
median was excluded. RI and AGI, having a lower standard
deviation, had the threshold set at two standard deviations.
The outlier detection approach for KFD was elaborated
in section 2.3.

For median smoothing, a sliding window of 15 data points was
used to smooth out the signal. The window size was empirically
selected and was suitable for both experimental datasets, despite the
difference in sampling rates. This technique aids in mitigating
abrupt fluctuations and noise in the waveform.

For the bandpass filtering, we employed the identical bandpass
filter utilized in the evaluation of noise effects in the in silico PWDB
(Hong et al., 2023). While Dataset1 and Dataset2 underwent
preprocessing with bandpass and lowpass filters, respectively, the
specific filter designs used in these processes were unknown. Our
study revealed that incorporating an additional Kaiser window FIR
filter resulted in further signal improvement.

The knowledge-based multi-Gaussian fitting technique assumes
that PPG waveforms are composed of five Gaussian waveforms
representing the forward and back reflected waves (Couceiro et al.,

2015). Rules are applied to restrict the amplitude and arrival time of
each Gaussian wave. Specifically, we postulate the presence of two
forward waves, along with three waves involving one or multiple
reflections. In accordance with this model, single-reflected waves
exhibit diminished amplitudes compared to the principal forward
waves, with subsequent reflections displaying even smaller
intensities due to progressive energy dissipation. The arrival
sequence of reflected waves is consistent with a progression from
single-reflection to double-reflection, and ultimately to multiple-
reflections. More details could be found in the previous work
(Couceiro et al., 2015). The resulting fitted waveform serves as a
denoised representation based on expected PPG waveform
characteristics. We evaluated the effect of these filters on the
correlation of SIppg, KFD, AC, and PP. The filter that best
preserved the intercorrelation between these parameters, leading
to a minimal decline in correlation coefficients in the presence of
noise, was chosen as the most suitable filter.

2.6 Sensitivity analysis

The analysis of KFD sensitivity to AC is crucial. For instance, in
areas where sensitivity is reduced, it is recommended to refrain from
solely relying on KFD for quantitative AC estimation. Nevertheless,
leveraging the collective sensitivity patterns of various features can
lead to a more reliable and robust AC estimation.

A straight line has a fractal dimension of 1. As the simulated
PPG signals in our study were smooth and free from measurement
errors, the resulting KFD value was slightly above 1, exhibiting a
narrow dynamic range. To highlight the pulsatile or “fractal portion”
of the curvature, it is advisable to subtract the baseline one from the
fractal dimension. Thus, we adjusted the relative sensitivity index (I)
originally proposed by Hong et al. (Hong et al., 2023), by choosing a
divisor of KFD-1.

For PWDB data, when an individual model input parameter was
independently varied by one SD from its baseline value, we
calculated the individual sensitivity of KFD to these
hemodynamic changes as follows:

Iindividual � V − V0

V0 − 1( )v × 100 (5)

V0 andV represent, respectively, the baseline and the value in
response to perturbation, and v indicates variations (±SD) for
each input parameter (Charlton et al., 2019). Theses input
parameters includes SV, AC, and PVR. To analyze the
distribution of Iindividual across different hemodynamic statuses,
we recorded the Iindividual and three key parameters: AC, R, and
CO at the baseline. For ease of comparison, we selected Iindividual of
SIppg for analysis. RI and AGI could be examined in a similar way.

In our analysis of the experimental data, we aimed to determine
the sensitivity of KFD to each variable while considering potential
confounding factors. To achieve this, we calculated the partial
correlation between KFD and each parameter. Since only
Dataset2 provided continuous recordings with variations, we
exclusively used Dataset2 for the sensitivity analysis. Within
Dataset2, we had access to measurements of SV and BP.
Consequently, we substituted CO and AC with SV and PP as the
key parameters. To estimate R, we divided the mean blood pressure
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(MAP) by CO (Westerhof et al., 2019). It is worth noting that, we
used ∂KFD/∂PP−1 to estimate the sensitivity of KFD to AC.

3 Results

The results were presented in the following order. First,
surrogate AC measures were proposed and evaluated using
virtual human data. Next, the study optimized KFD calculation
procedure to maximize its correlation with AC. The potential origin
of KFD was also investigated by comparing three theoretical models
of varying complexity. The robustness and sensitivity of KFD to AC
was tested using virtual human data to establish the theoretical
limits. Finally, using real human subjects of different age groups and
health conditions, the study verified the findings from in silico
studies and showed potential limitations of the method.

3.1 Estimation of AC

In the PWDB dataset, a direct correlation between AC and KFD
could be readily established. However, when dealing with real-world
human data lacking readily accessible AC values, an indirect
approach relying on PP as an intermediary parameter becomes
necessary. To establish connections between AC and PP, and then
between PP and KFD, we constructed a sequential linkage among
these variables, allowing us to infer the predictability of AC through
this indirect chain of associations.

With regards to the correlation between AC and PP, we
discovered that a linear combination of 1/PPb, with PPb as the
pulse pressure at the brachial location, and finger pulsatile blood
volume (ΔVppg) exhibits a strong correlation with AC (r = 0.92), as
shown in Eq. 6 and Figure 4A. Eq. 6 is an explicit expression of f (PP)
described in the method section. In this context, a and b serve as
constants, further substantiating the notion that PP can serve as an
effective surrogate for AC in instances where direct AC
measurements are unavailable.

ACest � a ×ΔVppg + b/PP ~ f PP( ) (6)

ΔVppg, though susceptible to variations stemming from elements
like hydration levels, non-hematological cellular constituents,
cutaneous pigmentation, contact force, and individual-specific
calibration parameters, tends to exhibit a commendable degree of
consistency within a given subject due to the relative constancy of
these influencing factors. The robust correlation of 0.78 observed
between 1/PP and AC underscores the pivotal role of PP in
determining ACest. Therefore, Eq. 6 represented by f (PP) should
be resilient against uncertainties introduced by ΔVppg_m. In the
PWDB dataset, the numeric expression of f (PP) became
ACest = −0.98 + 40.56ΔVppg+51.62/PP, wherein the variables
ΔVppg and PP are quantified with respective units of “milliliters
(mL)" and “millimeters of mercury (mmHg)". Based on this
knowledge, we utilized 1/PPb and its linear combination with
ΔVppg as an alternative indicator of arterial compliance, referred
to as ACest. While it would be logical to use the pulse pressure at the
finger site (PPf), this hemodynamic quantity is not commonly
measured. As PPb demonstrates a linear correlation with PPf, we

opted to use PPb in our subsequent investigations, as shown in
Figure 4B. For the sake of clarity, we will refer to PPb as PP
throughout this study.

3.2Optimization of KFD calculation and its In
silico correlation with AC

In Figure 5A, we observed that KFD’s overall relationship with α is
non-linear. The optimal α value was determined to be 0.3 (r = 0.75), as
evidenced in Figures 5D, E. Using this scheme, the PPG axis was scaled
to an average of 0.3 s, which is slightly lower than half the average
duration of the cardiac cycle, which is 0.82 s. The variation in KFD in
response to differing waveforms and α values is visually depicted in
Figures 5B, C. Considering that the trace of PPGwaveform ismore than
twice the peak amplitude, it is a reasonable scaling factor. Using the
correlation between KFD and EAo as a target led to the same optimal
scaling factor α. However, it is noteworthy that the best correlation
between KFD and EAo was relatively smaller (r = −0.58). If we use PP−1

as the reference, its best correlation with KFD is 0.65, as shown in
Figure 5F. Combining KFD and ΔVppg linearly only marginally
improved this correlation to 0.72. This relationship is represented by
Eq. 7, which is an explicit expression of g (KFD) described in the
method section. Here, c and d are constants.

1/PPest � c ×ΔVppg + d × KFD ~ g KFD( ) (7)

As such, in the PWDB dataset, the specific numeric form of g
(KFD) assumes the following expression:
1/PPest = −2.05-0.42ΔVppg+2.01KFD. Combining with Eq. 6, we
can examine whether KFD might function as a predictor of PP and,
subsequently, an indicator of AC, as shown in Eq. 8.

KFD∝
1

d × PP
− c

d
×ΔVppg ~ ACest (8)

In PWDB, the explicit dependence of ACest on KFD was
expressed as ACest = 107.04 + 18.81ΔVppg-103.61KFD.

Utilizing the same optimal scaling factor, the WK4 models with
fixed C1 and time-dependent C1 displayed correlations of 0.19 and
0.49, respectively, between KFD and AC, as shown in Figure 6. One
interesting observation is that the KFD has fewer outliers and
showed a better linear correlation with AC when C1 is time-
dependent. We did not perform a correlation analysis with EAo,
as its role in the 0D model was not clearly defined.

3.3 Effect of data quality and noise using In
silico data (PWDB)

In PWDB (in silico data) with artificially added noise, as the
SNR levels decreased, we observed an increase in fluctuations in
the PPG morphologies for all virtual subjects, which could not be
completely eliminated with bandpass filters. When examining
morphology-derived features like SIppg, RI and AGI, we found a
significant decrease in their correlation with AC as the noise level
increased. Notably, SIppg exhibits a nonlinear association with
AC, prompting the utilization of SIppg

-1 for calculating its
correlation with AC. In contrast, the correlation between KFD
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and AC or EAo was minimally affected by the noise level, as
shown in Figure 7. It is important to note that these conclusions
only hold true when filters are employed. KFD relies on waveform
trace measurement, and increased noise significantly affects KFD
values and reduces the correlation.

3.4 Sensitivity of KFD to hemodynamic
parameters using In silico data (PWDB)

KFD is primarily influenced by AC, PVR, and SV. However, it
is important to note that individuals exhibit distinct behaviors

FIGURE 4
Simulated hemodynamic parameters (from the PWDB data) (A) Correlation between arterial compliance (AC) and estimated arterial compliance
(ACest), a linear combination of ΔVppg and PP−1. (B) Correlation between PPf and PPb, the pulse pressure at the finger and brachial locations respectively.
(C) Correlation between AC and 1/PPb. (D) Correlation between AC and ΔVppg, the pulsatile blood volume at the peripheral site.

FIGURE 5
The optimal universal scaling factor for KFD calculation with a single cardiac cycle. (A) Scale-dependence of KFD, with selected virtual human data
for detailed investigation. (B)Waveforms corresponding to selected virtual human data. (C) KFD changes caused by scaling factor α. (D)Optimal α for KFD
calculation. (E) The AC-KFD correlation with the optimal scaling factor: 0.3 (r = 0.75). (F) The 1/PP-KFD correlation with the optimal scaling factor
(r = 0.65).
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during different hemodynamic processes, as shown in Figure 8.
For instance, when only AC undergoes changes while other
hemodynamic parameters remain constant, the Iindividual of
KFD tends to be mostly positive, with reduced sensitivity in
certain AC regions. This behavior is inherent to the
hemodynamic process and not a result of experimental noise.
Similarly, when PVR changes, the Iindividual of KFD
predominantly shows negative values, with diminishing
sensitivity observed at certain hemodynamic statuses. Similar
mixed sign patterns were observed in Iindividual of SIppg, with a few
instances of particularly high sensitivities.

We compared the hemodynamic status of both negative and
positive Iindividual of KFD and SIppg, as shown in Table 2. Our
analysis revealed significant differences in certain hemodynamic
parameters. This finding presents challenges when attempting to use
a single index to track intra-subject AC, R, or SV, as the sensitivity

can be either positive or negative due to the unknown hemodynamic
status or the source of fluctuation in real experiments.

However, this finding can also be advantageous if
appropriate maneuvers are employed to clarify ambiguous
predictions about the hemodynamic status. For example, if a
known maneuver is performed to increase SV, and we observe
an increase in KFD and decrease in SIppg, it is highly likely that
the subject had a lower baseline AC initially. This possibility of a
chain reaction may help improve long-term, ambulatory AC
measurements.

3.5 Experimental PP and KFD correlation

The original SNR of both datasets remains undisclosed.
Following internal filtering of the devices, the median residual

FIGURE 6
Correlation of arterial compliance and KFD using (A)WKmodel with fixed C1 and (B)WKmodel with varying C1. (C) The difference between models
were calculated by subtracting KFD with fixed C1 from KFD with varying C1.

FIGURE 7
Simulated hemodynamic parameters with added noise and filtering (PWDB). (A) Correlation of KFD, SIppg

-1, RI, AGI and AC. (B) Correlation of KFD,
SIppg, RI, AGI and EAo.
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SNR is 21.4 dB in Dataset1 and varies from 8.2 dB to 31.7 dB. In
Dataset2, the median residual SNR is 31.8 dB, varying from 6.1 dB to
37.5 dB. This noise presents a notable challenge since both SIppg and
KFD calculations necessitate high-quality data. Figure 9 illustrates
how residual waveform distortion can lead to artificially inflated
KFD values that do not reflect hemodynamics accurately. To address
this issue, we tested and compared three filtering techniques: median
filter, band-pass filter and multi-Gaussian fitting.

The distortion of the waveform had a significant effect on KFD.
Consequently, achieving a reasonable overall waveform recovery
becomes crucial. In Dataset 2, the Gaussian filter yielded a
correlation of 0.58 between KFD and 1/PP. However, when

employing bandpass and median filters, the correlation dropped
to 0.14 and 0.15, respectively. For Dataset1, due to significantly
higher noise level, the correlation coefficients were 0.36, 0.05, and
0.16 for Gaussian filtering, band-pass and median filters,
respectively. Hence, Gaussian filtering emerged as the most
effective method for preserving PP-related information. It is
important to mention that two subjects were excluded from
Dataset2 due to obesity, with body mass index (BMI) of 48 and
36 respectively. We observed that these two subjects have artificially
high KFD. This can be attributed to the impact of excessive contact
pressure on the finger, which alters transmural pressure and local
compliance, in turn disrupting the estimation of central arterial

FIGURE 8
(A–C) Distribution of the Iindividual of KFD in response to variations of AC, R and SV with the magnitude of v. (D–F) Distribution of Iindividual of SIppg in
response to variations of AC, R and SV with the magnitude of v; v indicates ±SD of AC, R and SV respectively.

TABLE 2 Hemodynamic status of in silico simulation with positive and negative Iindividual.

v Positive Iindividual Negative Iindividual

N (%) SV (mL) AC (mL/mmHg) R (mmHg.s/mL) N (%) SV (mL) AC (mL/mmHg) R (mmHg.s/mL)

KFD ΔAC 87 61.7 ± 4.1* 1.03 ± 0.26* 0.78 ± 0.07* 13 59.4 ± 3.7* 0.88 ± 0.23* 0.82 ± 0.06*

ΔR 31 61.7 ± 4.1 1.03 ± 0.25 0.78 ± 0.07 69 61.7 ± 4.1 1.03 ± 0.25 0.78 ± 0.07

ΔSV 53 59.4 ± 4.1* 0.88 ± 0.25* 0.82 ± 0.07* 47 61.7 ± 3.9* 1.03 ± 0.25* 0.78 ± 0.07*

SIppg ΔAC 20 59.4 ± 3.1 0.88 ± 0.19* 0.82 ± 0.05* 80 61.7 ± 4.1 1.03 ± 0.26* 0.78 ± 0.07*

ΔR 61 61.7 ± 4.1 1.03 ± 0.26 0.78 ± 0.07 39 61.7 ± 4.1 1.03 ± 0.25 0.78 ± 0.07

ΔSV 24 64.3 ± 4.1* 1.23 ± 0.26* 0.72 ± 0.07* 76 59.4 ± 4.0* 0.88 ± 0.23* 0.82 ± 0.07*

N, percentage of positive or negative iindividual in virtual human data; * indicate a significant difference between the hemodynamic parameters in the positive or negative Iindividual group. A

Student’s t-test with uneven sample sizes was used.
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compliance. Another five subjects were excluded due to lowΔVppg_m

(<0.05), which indicates poor perfusion.
The correlation between KFD and PP−1 were 0.36 and

0.58 respectively for Dataset1 and Dataset2. In comparison, the best
correlations achieved by PPG-morphology-derived indices with PP−1

were −0.18 and 0.33, respectively, significantly lower than the proposed
KFD method. The detailed results are presented in Table 3. It is worth
noting that, the removed outliers are not the same for KFD and PPG-
morphology-derived features, leading to a slight mismatch of the used
measurements. While AGI displayed a slightly stronger correlation
than RI in Dataset1, the difference was not statistically significant, with
confidence interval widths of 0.06 for AGI and 0.05 for RI, respectively.
Therefore, we opted to depict the correlation of RI and PP−1 in
Figure 10. The correlation of PPG-morphology-derived features and
PP−1 also depends on SNR, as expected. By partitioning the data in
Dataset1 based on the median SNR value, we observed that
measurements with low SNR exhibited a correlation of
0.05 between RI and PP−1, whereas measurements with high SNR
showed a correlation of 0.19 between RI and PP−1. In terms of KFD, the
disparity between the various SNR groups was 0.31 and 0.39, indicating
a relatively smaller contrast.

The linear combination of ΔVppg_m and KFD yields 1/PPest,
which has an even stronger correlation with 1/PP compared to
KFD alone, as demonstrated in Figure 10. This observation
aligns with the findings from the in silico simulation presented
in Figure 4. Another interesting finding is that this correlation
depends on health status. Dataset1 consists of individuals with
cerebral infarction (N = 45) and diabetes (N = 38). Our findings
indicate that for these subjects, the correlation coefficients of
estimated and measured PP decreased to 0.26, whereas it was
0.49 for both healthy and hypertensive subjects without other
known complications, regardless of age. It is worth noting that
ΔVppg_m and KFD were derived independently from the PPG
signal, while PP was measured using a separate device.

Consequently, this comparison provides a rigorous evaluation
of the relationship between these variables, indicating the
robustness of g (KFD).

While the correlation of AC and its surrogatemeasure is influenced
by noise levels and filtering techniques, which can complicate
comparisons between datasets, we believe it remains valuable to
compare our results with those from previous publications, as
shown in Table 4. Different surrogate measures, such as PP, Age,
and PWV, were utilized to assess the correlation of AC with PPG-
derived features. Even when examining the same PPG-morphology-
derived feature like SIppg, its correlation with the AC surrogate measure
could vary significantly from 0.65 to 0.1, depending on the particular
cohort and measurement conditions. We hypothesize that noise may
be the primary contributor to this phenomenon.

3.6 Experimental sensitivity of KFD to
hemodynamic parameters

Moreover, consistent with the findings from the in silico
simulation, the sensitivity of KFD to AC was observed to vary,
exhibiting both positive and negative correlations depending on
the hemodynamic status and underlying causes of fluctuations. To
delve deeper into this phenomenon, we conducted a partial
correlation analysis of KFD with SV, PP, and R using Dataset2,
which consisted of continuous recordings. We then compared
these results with the predictions generated by the in silico simulation.

The relationship between the resulting sensitivity and
hemodynamic status in Dataset2 generally aligned with the in
silico prediction, with two notable discrepancies, as shown in
Table 5. Firstly, measurements with positive ∂KFD/∂R
demonstrated lower PP or higher AC, which was not observed in
the in silico data. Additionally, in Dataset2, the majority of individuals
displayed a positive sensitivity to variations in all three parameters:
SV, AC, and R. In contrast, the in silico data indicated that KFD
primarily exhibited a positive sensitivity only when AC was altered. It
is important to acknowledge that these discrepancies could be
attributed to the distribution of the data. The in silico simulation
assumes a homogeneous distribution of hemodynamic status, whereas
real-world data typically follows a Gaussian distribution and relies on
the characteristics of the study population. In the case of our analysis,

FIGURE 9
Different filtering techniques for a set of experimental data (Dataset1). (A) Raw signal, (B) Median filter, (C) Band-pass filter, (D) Knowledge-based
multi-Gaussian filtering.

TABLE 3 Correlations of PPG-derived indices and PP−1.

KFD PPest
-1 SIppg RI AGI

Dataset1 0.36 0.44 −0.14 0.16 −0.18

Dataset2 0.58 0.86 −0.12 0.33 −0.18
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Dataset2 consisted of a younger and overall healthy population, which
contrasts with PWDB that includes virtual subjects ranging from 25 to
75 years old. Therefore, this mismatch is reasonable, considering the
actual occurrence probability.

4 Discussion

4.1 Novelty and main finding

Changes in arterial compliance can indicate the presence of
underlying health conditions such as arterial stiffness,
atherosclerosis, or hypertension. By monitoring arterial compliance

over time, healthcare professionals can gain insights into the
progression of these conditions and make informed decisions
regarding treatment and intervention strategies (Pannier et al.,
2002; Budoff et al., 2021). Although PPG-derived SIppg may
produce consistent results in noiseless virtual human simulations
(Hong et al., 2023), it is prone to significant errors under low SNR
conditions and is not a robust index in the real world. These findings
suggest that while AC information can be transmitted to peripheral
sites with relatively high fidelity, the main challenge lies in preserving
this information under low SNR conditions.

Our study presents compelling evidence for using KFD instead
of SIppg for AC assessment, particularly due to KFD’s noise
resistance properties. In addition, KFD has an exponential

FIGURE 10
Dataset1: Correlation between (A) 1/PP and KFD, (B) 1/PP and 1/PPest, (C) 1/PP and RI. “All” indicates all the data; CI refers to cerebral infarction.
Dataset2: Correlation between (D) 1/PP and KFD, (E) 1/PP and 1/PPest, (F) 1/PP and RI. Pearson correlation coefficient was used.

TABLE 4 Comparison with previous studies using single-site PPG.

Study Protocol AC surrogate
measures

PPG-derived
features

Correlation
(r)

Trumpp et al.
(2017)

70 patients after surgery (age not reported), camera-based PPG PP (invasive) PPG amplitude 0.54

Takazawa et al.
(1998)

39 patients (54 ± 11 years), finger PPG Age AGI 0.8

Park et al. (2019) 262 women outpatients (38.57 ± 11.64 years), finger PPG PP (Wrist) AGI 0.18

Millasseau et al.
(2002)

87 asymptomatic subjects (21–68 years; 29 women), finger PPG cfPWV SI 0.65

Said et al. (2018) 169 613 individuals (45.8%males; average age 56.8 years old) participating in
United Kingdom Biobank, finger PPG, r2 was reported

PP SI ~0.1

Padilla et al.
(2006)

30 healthy subjects (10 female and 20 male, 24–52 years old), finger PPG baPWV RI
SI

0.32
0.57

cfPWV, Carotid-femoral pulse wave velocity; baPWV, Brachial-ankle pulse wave velocity.
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association with the ground truth of FD, which renders it
particularly apt for signals displaying exponential characteristics.
Given the known exponential relationship between AC and blood
vessel radius r (AC∝exp (-k·r)), KFD appears to be a particularly
suitable choice compared to other FD measures. Virtual human
studies provided an advantageous platform for thorough
comparison. By controlling hemodynamic distribution, noise
levels, and utilizing transparent simulation parameters, we could
isolate the factors affecting temporal patterns and generate more
interpretable results. In simulated scenarios, we discovered that
SIppg’s correlation with AC declines sharply when exposed to
high noise levels, making it unsuitable for ambulatory testing.
The same trend was observed for other PPG-morphology-derived
AC measures like AGI and RI. Conversely, KFD maintains a strong
correlation with AC even in noisy environments, thanks to its
resilience against such disturbances. This characteristic positions
KFD as a superior alternative to SIppg. Furthermore, KFD is easy to
use. Even in scenarios with low SNR, KFD remains robust with
knowledge-based multi-Gaussian filtering. This is because KFD
deciphers the AC-related information encoded in the temporal
patterns. A few minor distortions do not significantly impact the
overall shape or fractal dimension.

KFD is originally a mathematical concept. In order to obtain a
comprehensive understanding of the physiological meaning of
PPG’s KFD, we conducted a thorough analysis by comparing
three in silico models and in vivo data. Our investigation revealed
that the correlation between KFD and AC likely arises from the
variation of arterial compliance throughout the cardiac cycle, which
is further enhanced by the tree-like structure of the arterial system.

To validate our findings from in silico databases, we utilized two
experimental datasets. In the case of real human data, we used PP as
an alternative measure for arterial compliance (AC), as suggested in
previous literature (Bortel et al., 2001) and supported by our own
analysis, which showed a high correlation of PP−1 and AC (r = 0.78).
In Dataset2, which consisted of 40 young and healthy subjects, we
observed a strong correlation between KFD and PP−1 (r = 0.58). This
correlation was slightly lower than the corresponding correlation in
the in silico simulation (PWDB, r = 0.65). However, it increased to
0.86 after incorporating ΔVppg_m, which was higher than the
corresponding correlation in the in silico simulation (PWDB, r =
0.72). This unexpected observation can be attributed to the
threshold effect provided by ΔVppg_m, which removed subjects
with poor perfusion. The remaining data may have had a higher
center-peripheral correlation. Subjects with high BMI also
experience a loss of correlation between KFD and AC. This could
be attributed to excessive pressure on the finger or difficulties in

capturing the pulse of the vascular bed. In contrast, the best
correlations attained by PPG morphology-derived features
were −0.18 and 0.33, achieved by AGI and RI, respectively. RI
exhibited better performance in Dataset2, likely attributed to its
stronger correlation with PP−1 in the high PP region (>70 mmHg).

In Dataset1, which comprised 219 older subjects with various
health conditions, the estimated and measured PP−1 correlation was
weaker (r = 0.44), which only improved to 0.49 for a relatively
healthier subpopulation without cerebral infarction or diabetes. This
difference between two datasets can be attributed to variations in the
measurement protocols used. In Dataset2, BP was measured at the
fingertip and then reconstructed into brachial BP, which may
encourage a stronger correlation with finger PPG-derived KFD.
In addition, Dataset1 consisted of short measurements with
reference values obtained from the opposite arm, introducing a
larger uncertainty in the reference. Furthermore, the subjects in
Dataset1 were significantly older compared to those in Dataset2 and
the signal is considerably noisier. Health status is another significant
confounding factor in this analysis, particularly when assessing AC
or PP of subjects with cerebral infarction or diabetes. The lower
correlation in subjects with these health conditions may arise due to
the potential alteration of their hemodynamic status as a result of the
disease, leading to distortion to features or fluctuations. Although
posture differences may also act as confounding factors, additional
investigation is required to determine the extent of their influence on
the association between KFD and AC. No sex difference was found.

An interesting observation is that the sensitivity of KFD varies
depending on the hemodynamic status of the subjects. Specifically, KFD
demonstrates a predominantly positive sensitivity to AC variation,
indicating consistent tracking ability despite regions showing
diminished sensitivity. The sensitivity of KFD to SV or R can
exhibit both positive and negative values, which can interfere with
AC estimation.While KFD alonemay not be suitable as an intra-subject
AC tracking index, when combined with morphological features and
other complexity indices, it providesmore robust information about the
hemodynamic status. This is evident in their ability to exhibit distinct
patterns of positive or negative sensitivity in response to known stimuli
such as changes in posture, mental arithmetic, and exercise. Previous
research has demonstrated the utility of PPG feature interactions in
boosting arterial stiffness estimation precision (Chen et al., 2024). In our
context, such patterns can be utilized to minimize influences from
confounding factors and isolate the AC-induced changes, thereby
enhancing AC estimation, reducing uncertainties caused by signal
noise and instability.

In summary, these findings provide valuable insights into the
application of KFD for arterial compliance assessment.

TABLE 5 Sensitivity of KFD to PP−1, R, and SV based on hemodynamic status.

Iindividual Positive Iindividual Negative Iindividual

N (%) SV (mL) PP (mmHg) R (mmHg.s/mL) N (%) SV (mL) PP (mmHg) R (mmHg.s/mL)

∂KFD
∂PP−1

70.0 96.8 ± 23.4 48.3 ± 8.3* 1.29 ± 0.31* 30.0 97.6 ± 34.2 53.7 ± 13.5* 1.41 ± 0.51*

∂KFD
∂R

87.5 94.9 ± 24.7 48.0 ± 8.7* 1.39 ± 0.40 12.5 99.1 ± 33.6 54.1 ± 13.3* 1.34 ± 0.48

∂KFD
∂SV 82.5 84.8 ± 26.9* 51.4 ± 12.1 1.55 ± 0.49* 17.5 110.4 ± 27.7* 51.6 ± 11.7 1.16 ± 0.26*

N, Percentage of positive or negative Iindividual in real humanmeasurements. * indicate a significant difference between the hemodynamic parameters in the positive or negative Iindividual group. A

Student’s t-test with uneven sample sizes was used.
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4.2 Limitation

There are several limitations in this study. Firstly, although we
have supportive evidence from in silico simulation, the experiment
data used did not include direct measurements of AC. Instead, an
intermediate measure, the pulse pressure, was utilized. While this
surrogate measure provided valuable insights and aligned with the in
silico simulation, it is essential to conduct future experiments to
validate and confirm the results. Future studies should aim to
incorporate more rigorous measures, such as aortic pulse wave
velocity (aoPWV), or invasive measurements, to estimate AC
accurately.

Secondly, the 1D model for the in silico simulation employed in
this study, although capturing vascular tree information, is not a
closed-loopmodel. It represents stable hemodynamics and generates
simulation data for one single cardiac cycle. However, in reality,
cardiac output and hemodynamic parameters undergo continuous
changes at varying rates, influenced by metabolic needs and the
pulmonary circulation (Westerhof et al., 2019). These issues should
be considered in future research.

Moreover, the study did not include heart rate variation and
other long-term autocorrelation measures, such as the
autocorrelation of beat-to-beat CO and ΔVppg, to investigate
long-term fractality (Sviridova and Sakai, 2015; Xing et al.,
2023b). Fortunately, KFD only requires a very short segment of
data, namely, a cardiac cycle. However, other fractal dimensions,
such as Higuchi fractal dimension and Permutation entropy, which
have proven useful in cardiovascular and metabolic disease
monitoring, require longer recording times (Wei et al., 2020;
Xing et al., 2023b). Their correlation with PP should also be
investigated and compared with KFD. To explore the theoretical
basis of these measures, longer simulations and more
comprehensive models should be developed.

Theoretically, we should have more than 80% of the AC
information transmitted from the center to the periphery,
assuming a noiseless SIppg performance (Hong et al., 2023). In
silico studies could help us identify where the information is lost.
While the application of KFD has addressed the issue of noise, there
are still other factors that need to be considered and remedied. These
factors include the cardiac blood flow waveform, turbulence, partial
blockage of the vasculature, and auto-regulation, among others
(Westerhof et al., 2019).

Our study exclusively focused on applying KFD to
transmissive PPG, which has a well-established theoretical
foundation. For alternative PPG modalities, like remote PPG
acquired via cameras, the unique experimental setups and signal
generation processes must be taken into account, with the
possibility of adapting insights gained from transmissive PPG
after appropriate modifications (Kamshilin et al., 2015; Moço
et al., 2018).

5 Conclusion

Katz’s fractal dimension of PPG displays a robust correlation
with arterial compliance. Possessing exceptional noise resistance, it
reliably estimates AC even in demanding scenarios. The study
demonstrates that this heightened efficacy stems from KFD’s

capacity to encapsulate signal complexity arising from
compliance fluctuations across a cardiac cycle and intricate
vascular structures, diminishing the need for specific
characteristic points. This investigation results in an innovative
method for ongoing, wearable monitoring of arterial compliance
through PPG signals, offering potential for improved cardiovascular
health evaluation.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participant’s legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

XX: Writing–original draft. JH: Writing–review and editing.
JA: Writing–review and editing. XL: Writing–review and editing.
HL: Writing–review and editing. W-FD: Writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Key R&D Program of China
(2022YFC3601003) and Youth Innovation Promotion Association
CAS (2021323).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Physiology frontiersin.org14

Xing et al. 10.3389/fphys.2024.1398904

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1398904


References

Banerjee, R., Ghose, A., Choudhury, A. D., Sinha, A., and Pal, A. (2015). “Noise
cleaning and Gaussian modeling of smart phone photoplethysmogram to improve
blood pressure estimation,” in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19-
24 April 2015, 967–971. doi:10.1109/icassp.2015.7178113

Bishop, S. M., and Ercole, A. (2018). “Multi-scale peak and Trough Detection
optimised for periodic and quasi-periodic neuroscience data,” in Intracranial
pressure and neuromonitoring XVI. Editor T. Heldt (Springer International
Publishing), 189–195.

Bortel, L. M. A. B. V., Struijker-Boudier, H. a.J., and Safar, M. E. (2001). Pulse
pressure, arterial stiffness, and drug treatment of hypertension. Hypertension 38,
914–921. doi:10.1161/hy1001.095773

Budoff, M. J., Alpert, B., Chirinos, J. A., Fernhall, B., Hamburg, N., Kario, K., et al.
(2021). Clinical applications measuring arterial stiffness: an expert consensus for the
application of cardio-ankle vascular index. Am. J. Hypertens. 35, 441–453. doi:10.1093/
ajh/hpab178

Carlson, C., Turpin, V. R., Suliman, A., Ade, C., Warren, S., and Thompson, D. E.
(2020a). Bed-based ballistocardiography: dataset and ability to track cardiovascular
parameters. Sensors (Basel) 21, 156. doi:10.3390/s21010156

Carlson, C. T. V. R., Suliman, A., Ade, C., Warren, S., and Thompson, D. E. (2020b)
Bed-based ballistocardiography dataset.

Charlton, P. H., Celka, P., Farukh, B., Chowienczyk, P., and Alastruey, J. (2018).
Assessing mental stress from the photoplethysmogram: a numerical study. Physiol.
Meas. 39, 054001. doi:10.1088/1361-6579/aabe6a

Charlton, P. H., Harana, J. M., Vennin, S., Li, Y., Chowienczyk, P., and Alastruey, J.
(2019). Modeling arterial pulse waves in healthy aging: a database for in silico evaluation
of hemodynamics and pulse wave indexes. Am. J. Physiology-Heart Circulatory
Physiology 317, H1062–H1085. doi:10.1152/ajpheart.00218.2019

Charlton, P. H., Kotzen, K., Mejía-Mejía, E., Aston, P. J., Budidha, K., Mant, J., et al.
(2022). Detecting beats in the photoplethysmogram: benchmarking open-source
algorithms. Physiol. Meas. 43, 085007. doi:10.1088/1361-6579/ac826d

Charlton, P. H., Paliakaitė, B., Pilt, K., Bachler, M., Zanelli, S., Kulin, D., et al. (2021).
Assessing hemodynamics from the photoplethysmogram to gain insights into vascular
age: a review from VascAgeNet. Am. J. Physiology-Heart Circulatory Physiology 322,
H493–H522. doi:10.1152/ajpheart.00392.2021

Chen, Y., Yang, X., Song, R., Liu, X., and Zhang, J. (2024). Predicting arterial stiffness
from single-channel photoplethysmography signal: a feature interaction-based
approach. IEEE J. Biomed. Health Inf., 1–12. doi:10.1109/jbhi.2024.3383234

Couceiro, R., Carvalho, P., Paiva, R. P., Henriques, J., Quintal, I., Antunes, M.,
et al. (2015). Assessment of cardiovascular function from multi-Gaussian fitting of
a finger photoplethysmogram. Physiol. Meas. 36, 1801–1825. doi:10.1088/0967-
3334/36/9/1801

Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Curr.
Cardiol. Rev. 8, 14–25. doi:10.2174/157340312801215782

Elgendi, M. (2016). Optimal signal quality index for photoplethysmogram signals.
Bioeng. (Basel) 3, 21. doi:10.3390/bioengineering3040021

Esteller, R., Vachtsevanos, G., Echauz, J., and Litt, B. (2001). A comparison of
waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I Fundam.
Theory Appl. 48, 177–183. doi:10.1109/81.904882

Hong, J., Nandi, M., Charlton, P. H., and Alastruey, J. (2023). Noninvasive
hemodynamic indices of vascular aging: an in silico assessment. Am. J. Physiology-
Heart Circulatory Physiology 325, H1290–H1303. doi:10.1152/ajpheart.00454.2023

Kamshilin, A. A., Nippolainen, E., Sidorov, I. S., Vasilev, P. V., Erofeev, N. P.,
Podolian, N. P., et al. (2015). A new look at the essence of the imaging
photoplethysmography. Sci. Rep. 5, 10494. doi:10.1038/srep10494

Khalid, S. G., Liu, H., Zia, T., Zhang, J., Chen, F., and Zheng, D. (2020). Cuffless blood
pressure estimation using single channel photoplethysmography: a two-step method.
IEEE Access 8, 58146–58154. doi:10.1109/access.2020.2981903

Khodabakhshi, M. B., Eslamyeh, N., Sadredini, S. Z., and Ghamari, M. (2022). Cuffless
blood pressure estimation using chaotic features of photoplethysmograms and parallel
convolutional neural network. Comput. Methods Programs Biomed. 226, 107131. doi:10.
1016/j.cmpb.2022.107131

Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984). The static
elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the
parameters of a new model. J. Biomechanics 17, 425–435. doi:10.1016/0021-9290(84)
90034-4

Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D.,
et al. (2006). Expert consensus document on arterial stiffness: methodological issues and
clinical applications. Eur. Heart J. 27, 2588–2605. doi:10.1093/eurheartj/ehl254

Lee, H.-C., Park, Y., Yoon, S. B., Yang, S. M., Park, D., and Jung, C.-W. (2022).
VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients. Sci.
Data 9, 279. doi:10.1038/s41597-022-01411-5

Li, S., Liu, L., Wu, J., Tang, B., and Li, D. (2018). Comparison and noise suppression of
the transmitted and reflected photoplethysmography signals. BioMed Res. Int. 2018,
4523593. doi:10.1155/2018/4523593

Liang, Y., Chen, Z., Liu, G., and Elgendi, M. (2018). A new, short-recorded
photoplethysmogram dataset for blood pressure monitoring in China. Sci. Data 5,
180020. doi:10.1038/sdata.2018.20

Mancia, G., Fagard, R., Narkiewicz, K., Redón, J., Zanchetti, A., Böhm, M., et al.
(2013). Guidelines for the management of hypertension and target organ damage: reply.
J. Hypertens. 31, 2464–2465. doi:10.1097/HJH.0000000000000006

Mccool, P., Altmann, Y., Perperidis, A., and Mclaughlin, S. (2016). “Robust Markov
Random Field outlier detection and removal in subsampled images,” in 2016 IEEE
Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 26-29 June
2016, 1–5. doi:10.1109/ssp.2016.7551766

Mejía-Mejía, E., May, J. M., Elgendi, M., and Kyriacou, P. A. (2021). Classification of
blood pressure in critically ill patients using photoplethysmography and machine
learning. Comput. Methods Programs Biomed. 208, 106222. doi:10.1016/j.cmpb.2021.
106222

Millasseau, S. C., Kelly, R. P., Ritter, J. M., and Chowienczyk, P. J. (2002).
Determination of age-related increases in large artery stiffness by digital pulse
contour analysis. Clin. Sci. (Lond) 103, 371–377. doi:10.1042/cs1030371

Moço, A. V., Stuijk, S., and De Haan, G. (2018). New insights into the origin of remote
PPG signals in visible light and infrared. Sci. Rep. 8, 8501. doi:10.1038/s41598-018-
26068-2

Monge-Álvarez, J. (2024) Higuchi and Katz fractal dimension measures. MATLAB
Central File Exchange. Available at: https://www.mathworks.com/matlabcentral/
fileexchange/50290-higuchi-and-katz-fractal-dimension-measures.

Niiranen, T. J., Kalesan, B., Mitchell, G. F., and Vasan, R. S. (2019). Relative
contributions of pulse pressure and arterial stiffness to cardiovascular disease.
Hypertension 73, 712–717. doi:10.1161/HYPERTENSIONAHA.118.12289

Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., and Tarassenko,
L. (2015). Signal-quality indices for the electrocardiogram and photoplethysmogram:
derivation and applications to wireless monitoring. IEEE J. Biomed. Health Inf. 19,
832–838. doi:10.1109/JBHI.2014.2338351

Padilla, J. M., Berjano, E. J., Saiz, J., Facila, L., Diaz, P., and Merce, S. (2006).
“Assessment of relationships between blood pressure, pulse wave velocity and digital
volume pulse,” in 2006 Computers in Cardiology, Valencia, Spain, 17-20 September
2006, 893–896.

Pannier, B. M., Avolio, A. P., Hoeks, A., Mancia, G., and Takazawa, K. (2002).
Methods and devices for measuring arterial compliance in humans. Am. J. Hypertens.
15, 743–753. doi:10.1016/s0895-7061(02)02962-x

Park, Y. J., Lee, J. M., and Kwon, S. H. (2019). Association of the second derivative of
photoplethysmogram with age, hemodynamic, autonomic, adiposity, and emotional
factors. Med. Baltim. 98, e18091. doi:10.1097/MD.0000000000018091

Pereira, T., Correia, C., and Cardoso, J. (2015). Novel methods for pulse wave velocity
measurement. J. Med. Biol. Eng. 35, 555–565. doi:10.1007/s40846-015-0086-8

Pereira, T., Santos, I., Oliveira, T., Vaz, P., Correia, T., Pereira, T., et al. (2013).
Characterization of optical system for hemodynamic multi-parameter assessment.
Cardiovasc. Eng. Technol. 4, 87–97. doi:10.1007/s13239-013-0125-y

Radha, M., De Groot, K., Rajani, N., Wong, C. C. P., Kobold, N., Vos, V., et al. (2019).
Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
Physiol. Meas. 40, 025006. doi:10.1088/1361-6579/ab030e

Redheuil, A., Yu,W. C., Wu, C. O., Mousseaux, E., De Cesare, A., Yan, R., et al. (2010).
Reduced ascending aortic strain and distensibility: earliest manifestations of vascular
aging in humans. Hypertension 55, 319–326. doi:10.1161/HYPERTENSIONAHA.109.
141275

Said, M. A., Eppinga, R. N., Lipsic, E., Verweij, N., and Van Der Harst, P. (2018).
Relationship of arterial stiffness index and pulse pressure with cardiovascular
disease and mortality. J. Am. Heart Assoc. 7, e007621. doi:10.1161/JAHA.117.
007621

Schlesinger, O., Vigderhouse, N., Moshe, Y., and Eytan, D. (2020). Estimation and
tracking of blood pressure using routinely acquired photoplethysmographic signals and
deep neural networks. Crit. Care Explor. 2, e0095. doi:10.1097/CCE.0000000000000095

Segers, P., Rietzschel, E. R., De Buyzere, M. L., Stergiopulos, N., Westerhof, N., Van
Bortel, L. M., et al. (2008). Three- and four-element Windkessel models: assessment of
their fitting performance in a large cohort of healthy middle-aged individuals. Proc.
InstitutionMech. Eng. Part H J. Eng. Med. 222, 417–428. doi:10.1243/09544119JEIM287

Shin, H. (2022). Deep convolutional neural network-based signal quality assessment
for photoplethysmogram. Comput. Biol. Med. 145, 105430. doi:10.1016/j.compbiomed.
2022.105430

Stergiopulos, N., Westerhof, B. E., and Westerhof, N. (1999). Total arterial inertance
as the fourth element of the windkessel model. Am. J. Physiology-Heart Circulatory
Physiology 276, H81–H88. doi:10.1152/ajpheart.1999.276.1.H81

Frontiers in Physiology frontiersin.org15

Xing et al. 10.3389/fphys.2024.1398904

https://doi.org/10.1109/icassp.2015.7178113
https://doi.org/10.1161/hy1001.095773
https://doi.org/10.1093/ajh/hpab178
https://doi.org/10.1093/ajh/hpab178
https://doi.org/10.3390/s21010156
https://doi.org/10.1088/1361-6579/aabe6a
https://doi.org/10.1152/ajpheart.00218.2019
https://doi.org/10.1088/1361-6579/ac826d
https://doi.org/10.1152/ajpheart.00392.2021
https://doi.org/10.1109/jbhi.2024.3383234
https://doi.org/10.1088/0967-3334/36/9/1801
https://doi.org/10.1088/0967-3334/36/9/1801
https://doi.org/10.2174/157340312801215782
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.1109/81.904882
https://doi.org/10.1152/ajpheart.00454.2023
https://doi.org/10.1038/srep10494
https://doi.org/10.1109/access.2020.2981903
https://doi.org/10.1016/j.cmpb.2022.107131
https://doi.org/10.1016/j.cmpb.2022.107131
https://doi.org/10.1016/0021-9290(84)90034-4
https://doi.org/10.1016/0021-9290(84)90034-4
https://doi.org/10.1093/eurheartj/ehl254
https://doi.org/10.1038/s41597-022-01411-5
https://doi.org/10.1155/2018/4523593
https://doi.org/10.1038/sdata.2018.20
https://doi.org/10.1097/HJH.0000000000000006
https://doi.org/10.1109/ssp.2016.7551766
https://doi.org/10.1016/j.cmpb.2021.106222
https://doi.org/10.1016/j.cmpb.2021.106222
https://doi.org/10.1042/cs1030371
https://doi.org/10.1038/s41598-018-26068-2
https://doi.org/10.1038/s41598-018-26068-2
https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures
https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures
https://doi.org/10.1161/HYPERTENSIONAHA.118.12289
https://doi.org/10.1109/JBHI.2014.2338351
https://doi.org/10.1016/s0895-7061(02)02962-x
https://doi.org/10.1097/MD.0000000000018091
https://doi.org/10.1007/s40846-015-0086-8
https://doi.org/10.1007/s13239-013-0125-y
https://doi.org/10.1088/1361-6579/ab030e
https://doi.org/10.1161/HYPERTENSIONAHA.109.141275
https://doi.org/10.1161/HYPERTENSIONAHA.109.141275
https://doi.org/10.1161/JAHA.117.007621
https://doi.org/10.1161/JAHA.117.007621
https://doi.org/10.1097/CCE.0000000000000095
https://doi.org/10.1243/09544119JEIM287
https://doi.org/10.1016/j.compbiomed.2022.105430
https://doi.org/10.1016/j.compbiomed.2022.105430
https://doi.org/10.1152/ajpheart.1999.276.1.H81
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1398904


Sviridova, N., and Sakai, K. (2015). Human photoplethysmogram: new insight into
chaotic characteristics. Chaos, Solit. Fractals 77, 53–63. doi:10.1016/j.chaos.2015.05.005

Sviridova, N., Zhao, T., Aihara, K., Nakamura, K., and Nakano, A. (2018).
Photoplethysmogram at green light: where does chaos arise from? Chaos, Solit.
Fractals 116, 157–165. doi:10.1016/j.chaos.2018.09.016

Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M., et al. (1998).
Assessment of vasoactive agents and vascular aging by the second derivative of
photoplethysmogram waveform. Hypertension 32, 365–370. doi:10.1161/01.hyp.32.
2.365

Tang, Q., Chen, Z., Allen, J., Alian, A., Menon, C., Ward, R., et al. (2020). PPGSynth:
an innovative toolbox for synthesizing regular and irregular photoplethysmography
waveforms. Front. Med. 7, 597774. doi:10.3389/fmed.2020.597774

Trumpp, A., Rasche, S., Wedekind, D., Rudolf, M., Malberg, H., Matschke, K., et al.
(2017). Relation between pulse pressure and the pulsation strength in camera-based
photoplethysmograms. Curr. Dir. Biomed. Eng. 3, 489–492. doi:10.1515/cdbme-
2017-0184

Vlachopoulos, C., Aznaouridis, K., and Stefanadis, C. (2010). Prediction of
cardiovascular events and all-cause mortality with arterial stiffness: a systematic
review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327. doi:10.1016/j.jacc.
2009.10.061

Voges, I., Jerosch-Herold, M., Hedderich, J., Pardun, E., Hart, C., Gabbert, D. D., et al.
(2012). Normal values of aortic dimensions, distensibility, and pulse wave velocity in

children and young adults: a cross-sectional study. J. Cardiovasc. Magnetic Reson. 14, 77.
doi:10.1186/1532-429X-14-77

Wang, L., Xu, L., Zhou, S., Wang, H., Yao, Y., Hao, L., et al. (2017). Design and
implementation of a pulse wave generator based on Windkessel model using field
programmable gate array technology. Biomed. Signal Process. Control 36, 93–101.
doi:10.1016/j.bspc.2017.03.008

Wang, S., Wu, D., Li, G., Song, X., Qiao, A., Li, R., et al. (2022). A machine
learning strategy for fast prediction of cardiac function based on peripheral pulse
wave. Comput. Methods Programs Biomed. 216, 106664. doi:10.1016/j.cmpb.2022.
106664

Wei, H. C., Ta, N., Hu, W. R., Wang, S. Y., Xiao, M. X., Tang, X. J., et al. (2020).
Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic
indicator for future peripheral neuropathy in type 2 diabetic subjects. Diagn. (Basel) 10,
32. doi:10.3390/diagnostics10010032

Westerhof, N., Stergiopulos, N., Noble, M., and Westerhof, B. (2019) Snapshots of
hemodynamics: an aid for clinical research and graduate education. Springer.

Xing, X., Dong, W.-F., Xiao, R., Song, M., and Jiang, C. (2023a). Analysis of the
chaotic component of photoplethysmography and its association with hemodynamic
parameters. Entropy 25, 1582. doi:10.3390/e25121582

Xing, X., Huang, R., Hao, L., Jiang, C., and Dong, W.-F. (2023b). Temporal
complexity in photoplethysmography and its influence on blood pressure. Front.
Physiology 14, 1187561. doi:10.3389/fphys.2023.1187561

Frontiers in Physiology frontiersin.org16

Xing et al. 10.3389/fphys.2024.1398904

https://doi.org/10.1016/j.chaos.2015.05.005
https://doi.org/10.1016/j.chaos.2018.09.016
https://doi.org/10.1161/01.hyp.32.2.365
https://doi.org/10.1161/01.hyp.32.2.365
https://doi.org/10.3389/fmed.2020.597774
https://doi.org/10.1515/cdbme-2017-0184
https://doi.org/10.1515/cdbme-2017-0184
https://doi.org/10.1016/j.jacc.2009.10.061
https://doi.org/10.1016/j.jacc.2009.10.061
https://doi.org/10.1186/1532-429X-14-77
https://doi.org/10.1016/j.bspc.2017.03.008
https://doi.org/10.1016/j.cmpb.2022.106664
https://doi.org/10.1016/j.cmpb.2022.106664
https://doi.org/10.3390/diagnostics10010032
https://doi.org/10.3390/e25121582
https://doi.org/10.3389/fphys.2023.1187561
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1398904


Appendix

In this study, we utilized two lumped WK4 models to generate
simplified versions of PWDB. These 0Dmodels incorporated central
compliance (C1), peripheral compliance (C2), peripheral resistance
(R), and inertance (L) as its key components (Figure 1). Since PWDB
did not explicitly provide an inertance value and L is inversely
correlated with arterial cross-sectional area, we hypothesized that L
is linearly correlated with SIppg (Stergiopulos et al., 1999;Wang et al.,
2017). Additionally, we integrated CO, heart rate, duration of left
ventricle ejection and the peak occurring time during systole from
PWDB into the 0D PPG simulations. These parameters help to build
the cardiac flow waveform qin(t), as shown in Figures 1A, B. For each
virtual subject in PWDB, we used the transfer function from finger
BP to PPG as described in (Charlton et al., 2018). This transfer
function was then used to map the peripheral BP waveform (pp(t))
generated by the 0D model to the corresponding PPG waveform.

For the lumpedWK4model with fixed C1(t), equation 1 could be
solved using the Runge-Kutta (4,5) formula (ODE45). The step-
to-step solving procedure was demonstrated by Wang et al. (Wang
et al., 2017). For the lumpedWK4model with time-dependent C1(t),

we adopted the definition of C1 proposed by Langewouters et al.
(Langewouters et al., 1984), as shown in Eq. A.1. This definition
allows the C1 to vary with pressure and simplifies the numerical
solution to the time-dependent WK4 model equations, as
demonstrated in our previous research (Xing et al., 2023b).

C1 t( ) � Aml

πP1 1 + pc t( ) − P0( )/P1( )2[ ] (A.1)

Am is the maximum cross-sectional area of the aorta, l is the unit
length and P0 is the transmural pressure when compliance reached
its maximum. P1 represents the steepness of the compliance rise.
Since the C1 profile was determined by three variables: Aml, P0 and
P1, we used the Young’s modulus profile in PWDB to estimate Aml,
P0 and P1 and produce a matching C1 profile. By defining these
variables, we can express all the unknowns in Eq. 2 as functions of
pp(t). Although this equation is more complex compared to the one
with a fixed C1, it is still solvable using the Runge-Kutta (4,5)
formula (ODE45). This approach allows us to obtain a time-
dependent pp(t) waveform. The detailed derivation procedure was
shown in our previous publication (Xing et al., 2023b).
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