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Introduction: This study presented a novel approach to predict future front crawl
swimming world records (WRs) by employing a methodology that integrated
performance data from both running and front crawl swimming.

Methods: By extracting the top one running and swimming performances from
1995 to 2023 and applying a model that correlates physiological characteristics
such as maximum aerobic power, anaerobic capacity, the decrement in
maximum power with prolonged effort, and performance speed and duration,
it was possible to project the potential record-breaking performances in
2024 across various swimming distances for both male and female athletes.
Furthermore, this approach was expected to be less susceptible to the influence
of the full-body swimsuit era, which may have disrupted the typical trajectory of
swimming performance progression.

Results: The average relative error between the top one and estimated speeds in
front crawl swimming (50–1,500 m, from 1995 to 2023, and for male and female)
was 0.56% ± 0.17%. For male, WR in longer distances have been predicted with
new WR in the 400 and 800m. A more ambitious prediction was noted among
female, with twice as many WR as among male illustrated by new WR in the 50,
200, 400 and 800m.

Discussion: This study illustrated that the utilization of a prediction model based
on physiological parameters yielded plausible time estimates. Additionally, the
research accentuated the ongoing trajectory of surpassing existingWR into 2024,
illustrating the competitive zeal fueled by an emerging framework of
exceptional swimmers.
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Introduction

Among sports, swimming has demonstrated a particularly rapid evolution of world
records (WRs) in recent years (Scheerder et al., 2011). Notably, 40% of male’s WR and 55%
of female’sWR have been broken since 2020 (World aquatics, 2022). However, the scientific
literature has predominantly focused on disciplines like running, with publications often
outnumbering those on swimming by a ratio of up to 4:1 (Ben-Zaken et al., 2022). Sport
predictions are useful for optimizing training and strategy planning, thereby aiding athletes
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and coaches in achieving their goals. Additionally, they offer
valuable insights into performance trends and dynamics in sports
(Mujika et al., 2023).

When it comes to performance prediction, studies by authors like
Hopkins (2000) suggested a decade increase of 1%–1.5% in running
performance, implying limitless improvement potential, whereas others
such as Peronnet and Thibault (1989) proposed inherent performance
limits. In swimming, multiples models have been developed (Mujika
et al., 2023) and various statistical models, including extreme value
theory (Spearing et al., 2021), neural network models (Maszczyk et al.,
2012), and nonlinear regression models (Heazlewood and Walsh,
2011), have been employed to predict athletic performance.
Recently, Wu et al. (2022) extended a nonlinear regression model to
a Bayesian framework for predicting winning times in individual
swimming events at the 2021 and 2024 Olympic Games. Most of
the models in swimming performance prediction have traditionally
relied on extrapolating past performance times.

Recently, Wu et al. (2022) extended a nonlinear regression
model to a Bayesian framework for predicting winning times in
individual swimming events at the 2021 and 2024 Olympic Games.
Most of the models in swimming performance prediction have
traditionally relied on extrapolating past performance times.

Swimming could present unique challenges for predictive
modelling due to frequent rule changes, notably the well-known
regulation of full-body swimsuits, which arrived on the market in
the late 1990s and led to a surge inWR broken between 2008 and 2009.
O’Connor L and Vozenilek (2011) concluded that full body swimsuits
were at the origin of the urge number of broken records in 2009 by
notably comparing this evolution with running. Unlike in other sports,
this regulatory shift might have disrupted the typical progression of
performance and could make predictions based solely on time
performance more limited (Spearing et al., 2021).

Numerous mechanical and physiological models have been
formulated to describe the processes that underline human
performance. Moreover, swimming prediction models considering
the underlying physiological attributes of athletes is not well
referenced in the literature in contrast to running, where there exists
a well-established relationship between metabolic power and sustained
speed (di Prampero, 1986). Nonetheless, fundamental principles of
human energetics have been elegantly captured in mathematical
formulations (Peronnet and Thibault, 1989), delineating the energy
expenditure rate as a function of key physiological characteristics such
as maximal aerobic power (MAP), anaerobic capacity (A), and the
decrement in maximum power with prolonged effort (E).

Yet swimming and running share many physiological
characteristics. During submaximal exercise, variables including
cardiac output, stroke volume, heart rate and arteriovenous
oxygen difference exhibited comparable values between
swimming and running modalities (Holmer, 1972; Holmer et al.,
1974). Elite swimmers typically exhibit maximal oxygen
consumption ( _VO2max) ranging from 66 to 80 mL/kg/min
(Maglischo, 2003), comparable to elite runners. At peak levels of
activity, stroke volume during swimming was found to be equivalent
to that during running and measurements of blood lactate and
oxygen uptake from blood circulating in the exercising leg showed
no difference between swimming and running at their maximal
intensities (Holmér et al., 1974). Swimming events ranging from
50 to 1500 m align with running distances of 100–5,000 m in terms

of exertion duration. Despite distinctive techniques, elite swimmers
and middle-distance runners (200–800 m) exhibit comparable levels
of endurance and power during exertions of equivalent duration.
This equivalence can be found in their utilization of similar
percentages of _VO2max and maximal voluntary muscle
contraction during performance (Al-Khelaifi et al., 2018). In
addition, a study by O’Connor L and Vozenilek (2011) found
similarities in sports performance (i.e., metabolic power
developed for the same competition time), reinforcing the
hypothesis that training methods are similar. Swimmers and
runners may share equivalent physiological characteristics,
underscoring a foundational similarity in their athletic profiles.
However, the distinction must be made in the application of
these shared physiological traits in the context of performance
between the two sports. The discipline of swimming,
characterized by movement in a horizontal plane through a more
resistant medium, presents unique challenges that are absent in
athletics. This distinct environment elevates the importance of
optimizing propulsion efficiency and minimizing resistance to
enhance performance. In contrast, running involves a different
set of performance dynamics, where the engagement with these
physiological traits does not encounter the same level of resistance-
driven complexity.

In swimming, the assessment of energy expenditure entails
consideration of multiple factors including speed, drag force,
propelling efficiency, and gross efficiency (Toussaint and
Truijens, 2005). Assuming equivalence in physiological
characteristics between elite swimmers and runners for a given
duration of effort, it becomes feasible to estimate these
parameters or at least an encompassing value thereof, enabling
the prediction of swimming race times. Therefore, the objective
of this study was to compute the physiological attributes of athletes
(MAP, A and E) for each year since 1995 and utilize them to
determine swimming performance factors for predicting race times
in the 2024 Olympic year.

Materials and methods

Data

To cover the range of swimming distances from 50m to 1,500 m,
running distances from 200 m to 5,000 m have been taken into account.
The top one running performance of 200, 400, 800, 1,500, and 5,000 m
and the top one front crawl swimming performance of 50, 100, 200, 400,
800, 1,500 m for male and female were extracted separately for all years
and Olympic years between 1995 and 2023 using the following websites
https://worldathletics.org/records/all-time-toplists and https://www.
worldaquatics.com/swimming/rankings for running and swimming,
respectively. This corresponds to five running performances and six
swimming performances for male and female each year. Hence, this
corresponds to 145 running performances for all years and 35 running
performances for Olympic years formale and female. As for swimming,
this corresponds to 174 and 42 performances for all years and Olympic
years, respectively, for male and female. The top one performance, i.e., a
single value for each combination of distance, year, and gender, were
extracted to make sure that each predicting race time represented the
best possible result.
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Experimental design

For each year, the model physiological characteristics (MAP, A
and E) of a prototypical athlete capable of achieving the top one
running race times over distances ranging from 200 to 1500 m were
calculated. These characteristics were used to calculate the metabolic
power developed for a given effort duration over different distances
in front crawl swimming (50, 100, 200, 400, 800, and 1,500 m). From
these powers, parameters encompassing the multiple factors of
swimming performance, namely speed, drag force, and propulsive
and gross efficiencies (Toussaint et al., 2000) were calculated (K and
n in what follows). The physiological characteristics and swimming
performance parameters (MAP, A, E, K, and n) were linearly
evaluated over the years to obtain their prediction values for
2024. This finally allowed to predict the 2024 best time
performances for front crawl swimming for 50, 100, 200, 400,
800, 1,500 m for male and female.

Theoretical considerations

Running
The average metabolic power output (P) required to run at a

given speed (v) can be computed following the equation developed
by di Prampero (1984):

P v( ) � BMR + 3.86v + 0.4 BSA
m

v3 + 2
d
v3, (1)

where BSA and BMR stand for body surface area and basal
metabolic rate, respectively, m is the body mass, and d the
running distance. BMR is set to 1.2 W/kg (Peronnet and
Thibault, 1989) and BSA and m are set to 1.8 m2 and 70 kg for
male, and to 1.6 m2 and 50 kg for female (Peronnet and
Thibault, 1989).

Another model, developed by Peronnet and Thibault (1989), is
based on the postulate that P is the sum of aerobic and anaerobic
powers and is determined from physiological characteristics. This
model of running performance gives P as function of the running
duration (t) and is described by the following equation:

P t( ) � BMR + B 1 + k1
t

e−
t
k1 − 1( )[ ] + S

t
1 − e−

t
k2( ). (2)

Briefly, k1 and k2 are time constants for the kinetics of aerobic
and anaerobic metabolism at the beginning of exercise and are equal
to 30 s (Linnarsson, 1974; Hagberg et al., 1978; Fox et al., 1980) and
20 s (Peronnet and Thibault, 1989), respectively. B is the relative
maximal aerobic power [difference between MAP and BMR] and S
is the energy from anaerobic metabolism available to a runner over
time. For B and S, athletes are only able to maintain their maximum
intensity for a given duration (tMAP) of ~420 s (Costill and Fox,
1969; Londeree, 1986). After this period, relative maximal aerobic
power, and the amount of energy available through anaerobic
metabolism progressively decrease according to ln t as race
duration increases.

Hence, for t≤ tMAP (Costill and Fox, 1969; Gollnick and
Hermansen, 1973; Londeree, 1986):

B � MAP − BMR

S � A

and, for t> tMAP (Costill and Fox, 1969; Gollnick and Hermansen,
1973; Londeree, 1986):

B � MAP − BMR + E ln
t

tMAP
( )

S � A 1 + f ln
t

tMAP
( )[ ]

f represents the rate of decline of S with running duration when
running duration is larger than tMAP and is equal to −0.233
(Gollnick and Hermansen, 1973).

Front crawl swimming
When the swimmer is moving at a constant speed, according to

Newton’s second law, the swimmer’s propulsive force (Fp) is equal to
the active drag force (Fd). The relationship between this same active
drag force and speed (v) has been defined by a power function (Eq. 3)
(di Prampero, 1986; Toussaint et al., 2004):

Fd v( ) � avn, (3)
where a and n are the parameters of the power function. The total
useful mechanical power output (Pu) is equal to the product of Fp
and v:

Pu v( ) � Fp v( )v � Fd v( )v � avn+1. (4)

It is important to acknowledge that the mechanical power (Pm)
is not entirely converted into useful propulsive power (Pu). This
conversion efficiency is quantified by the propelling efficiency (εp),
which is defined as the ratio of these two powers:

εp � Pu v( )
Pm v( )

leading to:

Pm v( ) � Pu v( )
εp

, (5)

It should also be considered that only a fraction of the metabolic
power (P) is transformed into Pm. The rest is converted into heat and
to support other bodily functions. Power metabolic alteration is
described by gross efficiency (εg):

εg � Pm v( )
P v( )

leading to:

P v( ) � Pm v( )
εg

. (6)

By substituting Eqs 4, 5 into Eq. 6, one could obtain:

P v( ) � a

εgεp
vn+1. (7)

Since the parameters a, εg, and εp are constants, they can be
replaced by a parameter encompassing them (K), leading to:

P v( ) � Kvn+1. (8)
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This equation Eq. 8) contains two parameters, a coefficient K
and an exponent n.

Data analysis

Using v � d/t and equating Eqs 1, 2, the optimal set of A, MAP,
and E was obtained for each year by minimizing the relative running
error (er) between the durations of the top one running
performances (tr) obtained from the world athletics website and
the estimated durations of these performances (te) according to:

er � 1
N

∑N

i�1
te,i − tr,i
∣∣∣∣ ∣∣∣∣

tr,i
, (9)

whereN is the number of top one running performance. At this step,
a prototypical athlete with standardized BMR of 1.2 W/kg, weight of
70 kg for male and 60 kg for female, and body surface area of 1.80 m2

for male and 1.60 m2 for female was created for each year.
As front crawl swimmers were assumed to develop similar

metabolic power than runners for a given effort duration, Eq. 2
with the optimal set of A, MAP, and E could be used to describe the
average metabolic power of front crawl swimmers using the
corresponding effort durations (for the same prototypical athlete)
for each year.

At this point, using t � d/v and equating Eqs 2, 8, the optimal set
of K and n was obtained for each year by minimizing the relative
swimming error (es) between the speeds of the top one front crawl
swimming performances (vs) obtained from the world aquatics
website and the estimated speeds of these performances (ve)
according to

es � 1
N

∑N

i�1
ve,i − vs,i
∣∣∣∣ ∣∣∣∣

vs,i
, (10)

where N is the number of top one swimming performance.
The variation of A, MAP, and E as well as the variation of K and

n were linearly evaluated over the years to obtain prediction values
for 2024 for male and female considering all years and the Olympic
years separately. Each 2024 prediction was given by the extrapolated
value of the linear relation between the given variable and years if
this relationship was significant, and by the average value of this
variable over the years if this relationship was not significant.

Finally, this allowed predicting the 2024 best performances for
each front crawl swimming distance (50, 100, 200, 400, 800, and
1500 m). These 2024 predictions were obtained by: 1) equating Eqs
2, 8 using the 2024 predictions of A, MAP, E, K, and n and 2) solving
for t using v � d/t. Data analysis was performed using Python
(v3.8.16, retrieved from http://www.python.org).

Statistical analysis

Descriptive statistics are presented usingmean ± standard deviation.
To be able to perform a linear regression between years and any of the
optimal variables amongA,MAP,E,K, andn, several conditionsmust be
fulfilled. Hence, the independence of the residuals, normality of the
residuals, and homogeneity of the variance of the residuals were tested
using Durbin-Watson, Shapiro-Wilk and Breusch-Pagan tests,
respectively. As a rule of thumb, a value between 1 and 3 of the

Durbin-Watson statistics is considered as relatively normal, meaning
that the residuals are independent. Then, the linearity between years and
any of A, MAP, E, K, and n was evaluated using Pearson’s correlation
coefficient (r) together with its corresponding p-value. Statistical analysis
was performed using Python with a level of significance set at p ≤ 0.05.

Results

The relative running errors reported to obtain the optimal set of
MAP, A, and E (Eq. (9)) were 0.45% ± 0.30% for male and 0.45% ±
0.23% for female for all years and 0.46% ± 0.26% for male and
0.48% ± 0.34% for female for Olympic years.

As for running data for male and female and considering all
years and Olympic years, the residuals were independent, i.e., the
Durbin-Watson statistics ranged between 1.2 and 3.0, and normality
and homogeneity of residuals were satisfied (0.07 ≤ p ≤ 0.99). Hence,
these results allowed us to perform the linear regression.

Analysis revealed a linear relationship between years and maximal
aerobic power (MAP) and amplitude (A) across all years from 1995 to
2023 for females, indicating an increase in MAP over the years (MAP =
0.03 years – 28.59) and a decline in A (A = −0.81 years + 3133.99) with
statistical significance (p ≤ 0.02; Figure 1). A similar linear increase in
MAP with years (MAP = 0.04 years – 48.88) was observed for female
athletes for the Olympic years within the same period, with statistical
significance (p = 0.05; Figure 2). However, no significant correlations
were found in other examined relationships (p ≥ 0.13; Figures 1, 2).

Predictions for MAP, E and A for the year 2024, considering
both all years and Olympic years separately between 1995 and
2023 for male and female athletes, are summarized in Table 1.

The relative swimming errors reported to obtain the optimal set
of K, and n (Eq. (10)) were 0.64% ± 0.20% for male and 0.35% ±
0.12% for female for all years and 0.82% ± 0.21% for male and
0.42% ± 0.15% for female for Olympic years.

As for swimming data for male and female and considering all
years and Olympic years, the residuals were independent, i.e., the
Durbin-Watson statistics ranged between 1.5 and 2.8, and normality
and homogeneity of residuals were satisfied (0.11 ≤ p ≤ 0.97). Hence,
these results allowed us to perform the linear regression.

When considering all years between 1995 and 2023, linearity
was reported between years and both K and n for male and female
(p ≤ 0.04; Figure 3), revealing an increase in K with years for male
(K = 0.02 years – 29.80), a decrease in K with years for female
(K = – 0.01 years + 38.56), and a decrease in n with years for male
(n = – 0.01 years + 14.79) and female (n = – 0.00 years + 9.54). When
considering Olympic years between 1995 and 2023, linearity was
reported between years and K and n for male (p ≤ 0.04; Figure 4),
revealing an increase in K with years (K = 0.03 years – 44.71) and a
decrease in n with years (n = – 0.01 years + 18.17). The relations for
female were not significant (p ≥ 0.35; Figure 4).

2024 predictions of K and n considering separately all years and
Olympic years between 1995 and 2023 and male and female are
summarized in Table 2.

When considering all years, the 400 and 800 m front crawl
swimming WRs are predicted to be broken for male (−0.26%
and −0.04%, respectively; Table 3) as well as the 50, 200, 400,
and 800 m for female (−0.91, −0.75, −0.37, and −0.04%,
respectively; Table 3).

Frontiers in Physiology frontiersin.org04

Patoz et al. 10.3389/fphys.2024.1397946

http://www.python.org/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1397946


FIGURE 1
Maximal Aerobic Power (MAP), reduction inmaximumpower that occurs with increasing running duration (E), and capacity of anaerobicmetabolism
(A) obtained from the top one running performances of 200, 400, 800, 1,500, and 5,000 m for all years between 1995 and 2023 together with their
2024 predictions. Data are reported separately for male (black circles and line) and female (gray circles and line). Each prediction (red circle) was given by
the extrapolated value of the linear relation between the given variable and years if this relationship was significant, and by the average value of this
variable over the years otherwise. The linearity was evaluated using Pearson’s correlation coefficient (r) together with its corresponding p-value and
considered significant if p ≤ 0.05.
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FIGURE 2
Maximal Aerobic Power (MAP), reduction inmaximumpower that occurs with increasing running duration (E), and capacity of anaerobicmetabolism
(A) obtained from the top one running performances of 200, 400, 800, 1,500, and 5,000 m for Olympic years between 1995 and 2023 together with their
2024 predictions. Data are reported separately for male (black circles and line) and female (gray circles and line). Each prediction (red circle) was given by
the extrapolated value of the linear relation between the given variable and years if this relationship was significant, and by the average value of this
variable over the years otherwise. The linearity was evaluated using Pearson’s correlation coefficient (r) together with its corresponding p-value and
considered significant if p ≤ 0.05.
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When considering Olympic years, the 50, 100, 400, and 800 m
front crawl swimming WRs are predicted to be broken for male
(−0.55, −0.19, −0.03, and −0.50%, respectively; Table 3) but all WRs
are predicted to hold for female (+2.16 ± 0.3%; Table 3).

Discussion

The predictive model indicates a promising outlook for the
2024 swimming season. Expectations included notable

advancements in female’s events, with potential WR
breakthroughs in four out of six distances. For men, the focus
shifted to middle distances, promising an exciting season of
endurance and technical mastery.

The models showed remarkable precision in estimating front crawl
swimming speeds from 1995 to 2023 for both male and female, with an
average relative error of 0.56% ± 0.17%. This accuracy is below that
found by Peronnet and Thibault (1989), which was 0.73% but calculated
over only 1 year, and at the same level (0.57%) than the Bayesian time
series regression recently employed by Wu et al. (2022).

TABLE 1 2024 predictions of physiological characteristics.

Years Sex MAP (W/kg) E (W/kg) A (J/kg)

All M 29.68 −1.96 1653.03

F 26.52 −0.87 1505.47

Olympic M 29.50 −1.68 1666.24

F 26.69 −0.87 1526.20

Notes. Maximal Aerobic Power (MAP), reduction in maximum power that occurs with increasing running duration (E), and capacity of anaerobic metabolism (A) obtained from the top one

running performances of 200, 400, 800, 1,500, and 5,000 m considering separately all years andOlympic years between 1995 and 2023 andmale (M) and female (F). Each prediction was given by

the extrapolated value of the linear relation between the given variable and years if this relationship was significant (p ≤ 0.05), and by the average value of this variable over the years otherwise.

Predictions based on an extrapolated value are shown in bold.

FIGURE 3
Coefficient (K) and exponent (n) obtained from the top one front crawl swimming performances of 50, 100, 200, 400, 800, and 1,500 m for all years
between 1995 and 2023 together with their 2024 predictions. Data are reported separately for male (black circles and line) and female (gray circles and
line). Each prediction (red circle) was given by the extrapolated value of the linear relation between the given variable and years if this relationship was
significant, and by the average value of this variable over the years otherwise. The linearity was evaluated using Pearson’s correlation coefficient (r)
together with its corresponding p-value and considered significant if p ≤ 0.05.
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When comparing predictive models for male, the Olympic
model appeared more optimistic, projecting the breaking of four
WRs (50, 100, 400, and 800 m), whereas all year’s model predicted to
break two WRs (400 and 800 m). This discrepancy is not
unexpected, given the inherent limitations of the Olympic model,
which is based on only seven data points. Such a limited dataset risks
a heightened influence from variations in individual data points.

Furthermore, it is important to consider the broader context of
athlete performance within a 4-year Olympic cycle. It has been
observed that swimmer individual performance typically increases
by 3%–4% during this period (Costa et al., 2011). This improvement
can be attributed to various factors, including rigorous training
regimens, strategic preparations leading up to the Olympic Games,
and the intensity of competition during qualification events.
Therefore, the observed discrepancies between the predictive
models may also reflect the dynamic nature of athletic
performance within the context of Olympic cycles and
competitive events.

Regarding the male’s 400 m front crawl swimming WR set in
2009, this WR is at the time of writing still standing. The forecasted
breach in 2024 is anticipated with optimism, given the emergent
talents like Samuel Short and Ahmed Hafnaoui. Their personal
bests, set in 2023, were remarkably close to the standing WR, with
marginal differences of merely 0.61 and 0.63 s, respectively. This
proximity underscores the potential for these young swimmers to
surpass the current record. Foster et al. (2012) demonstrated that the
introduction of full polyurethane swimsuits in 2009 significantly
enhanced performance across distances ranging from 50 m to
1,500 m, with the greatest improvement observed in the 50 m

FIGURE 4
Coefficient (K) and exponent (n) obtained from the top one front crawl swimming performances of 50, 100, 200, 400, 800, and 1,500 m for Olympic
years between 1995 and 2023 together with their 2024 predictions. Data are reported separately for male (black circles and line) and female (gray circles
and line). Each prediction (red circle) was given by the extrapolated value of the linear relation between the given variable and years if this relationship was
significant, and by the average value of this variable over the years otherwise. The linearity was evaluated using Pearson’s correlation coefficient (r)
together with its corresponding p-value and considered significant if p ≤ 0.05.

TABLE 2 2024 predictions of parameters encompassing themultiple factors
of swimming performance.

Years Sex K n

All M 8.87 1.21

F 7.50 1.59

Olympic M 9.03 1.17

F 7.79 1.64

Notes. Coefficient (K) and exponent (n) obtained from the top one front crawl swimming

performances of 50, 100, 200, 400, 800, and 1,500 m considering separately all years and

Olympic years between 1995 and 2023 and male (M) and female (F). Each prediction was

given by the extrapolated value of the linear relation between the given variable and years if

this relationship was significant (p ≤ 0.05), and by the average value of this variable over the

years otherwise. Predictions based on an extrapolated value are shown in bold.
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freestyle. In longer swimming distances, the freestyle WR has
remained unchanged since 2009, with no new records being set
except for one instance in 2012 for the 1,500 m. This phenomenon
has led to speculation that the stiffness of full-body polyurethane
swimsuits may have adversely affected longer events. Additionally,
the drag force experienced by swimmers, which is proportional to
the square of the velocity, is reduced by these swimsuits. As a result,
it is theorized that events with faster velocities, such as sprints, may
benefit more from the use of such swimsuits. Additionally, research
has shown that during the 400 m freestyle, aerobic metabolism
contributes to 55% of energy output in the first 60 s, increasing
to 95% between 60 and 190 s (Laffite et al., 2004). Consequently, one
could hypothesize that distances under 200 m favor anaerobic
capacity, often quantified in terms of peak power output
(Lundsgaard et al., 2023), making strength and conditioning
pivotal for shorter distances. The role of strength training in
swimmers has been a subject of debate in the scientific
community (Wirth et al., 2022). Therefore, it is conceivable that
improvements inWRs for shorter distances since 2009may be partly
attributed, among other factors, to advancements in understanding
and implementing strength and conditioning programs
for swimmers.

Conversely, the scenario surrounding the 800 m front crawl
swimming record appears more complex. The WR, also set in
2009—a time when full-body polyurethane swimsuits were
permitted—poses a significant challenge. Although Short and
Hafnaoui are identified as prodigies in swimming, their current
times are still a few seconds shy of the WR. The notable gap in
performance could partially be credited to the technological
benefits offered by the full-body swimsuits of that period.
Notably, in the same race, Tunisian swimmer Mellouli also
surpassed the previous WR set by Grant Hackett in 2005.
Presently, Hafnaoui’s time is 1.65 s faster than Hackett’s old
record. Without the extraordinary feats achieved in 2009, this
would currently stand as the WR.

In none of the models was the 1,500 mWR broken. This perhaps
underlines a limitation of the present model, namely that it does not
entirely consider technical developments, particularly those
concerning turns. Indeed, turns averages 37% of the total race
time (Morais et al., 2023) and it has been underlined that turns
in 1,500 m freestyle race are essential for performance in elite
swimmers (Polach et al., 2021).

For female, models have evolved in a different way, with the
opposite trend to male. In fact, the all years model predicted WRs in
the 50, 200, 400, and 800 m, while the Olympic model predicted no
WR at all. This difference, which contradicted the previous
reasoning for male, can be explained by the non-significant
relationship of the two variables K and n as a function of time,
resulting in using the mean value instead of extrapolation value in
the Olympic model.

The comparison of the all year model between the two genders
showed that female should perform more than male. Historically,
female high performances observations lack almost 40 years of
hindsight compared to male due to the later development of
female’s sport. Consequently, the dynamic of improvement in
female performance has been greater than male resulting in more
ambitious prediction model for female (Busso and Thomas, 2006;
Silva et al., 2007). The model seemed to be heading in that direction
as MAP increased significantly for women over the years, while it
remained unchanged for men, indicating ongoing enhancements in
maximal oxygen consumption for women, in contrast to men.
Moreover, unlike male, none of the female’s freestyle WR date
back to 2008 or 2009. This suggests that the influence of body
swimsuits does not have the same effect on female as it has on male.
Issurin et al. (2014) examined the impact of high-tech swimsuits on
50-m performance. The authors observed a greater effect among
male compared to female swimmers, particularly in freestyle and
backstroke events.

In addition, averaging the years of each current record in female’s
front crawls gave 2020 versus 2013 for male, underlining a more solid
recent dynamic for female. Taken together, it could explain the
relatively high number of predict WR of all year model for female.

The 200 and 400 m WRs established in 2023 are attributed to
young female swimmers, potentially approaching their optimal
performance years, generally identified between ages 21 to 26,
with an anticipated peak performance duration of approximately
2.6 ± 1.5 years (Allen et al., 2014). The anticipated model forecasted
slight enhancements in WRs for these disciplines, projecting an
advancement of 0.19% for the 200 m and 0.029% for the 400 m.
These projections were less ambitious than Seiler’s analysis
(Hopkins, 2000), which estimated a decade progressivity rate of
1% for sprinting, 1.5% for distance running, and 5% for swimming.

In the case of the 50 and 800 m events, the situation is less clear-
cut as the current WRs are held by athletes with extensive careers.

TABLE 3 2024 best predicted time performances for front crawl swimming.

Sex Performance Duration (s)

50 m 100m 200m 400m 800m 1500m

M World record 20.91 46.86 102.00 220.07 452.12 871.02

All years 20.95 46.88 103.98 219.49 451.93 878.42

Olympic years 20.72 46.51 103.61 219.26 451.93 876.75

F World record 23.61 51.71 112.85 235.38 484.79 920.48

All years 23.48 51.77 112.63 235.31 482.37 923.79

Olympic years 24.09 53.07 115.20 240.41 492.74 943.13

Notes. World records; world record at the end of 2023, all years; prediction with data from 1995 to 2023; Olympic years, prediction with data from only Olympic years between 1996 and 2021.

Predictions of time under the current world record are reported in bold. M, male; and F, female.
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However, in 2023, the iconic swimmer Sarah Sjöström managed to
surpass the 50 m WR, showcasing her enduring capabilities despite
her long-standing career. This achievement underscores her ability
to continuously challenge boundaries. Conversely, the 800 m event
presents a more intricate scenario. Since the establishment of the
WR in 2016, the best performance to date was recorded in 2024 by
Summer McIntosh, clocking in at 491.39 s. However, this time falls
more than 6 s short of the current WR, highlighting the significant
gap that remains to be bridged.

For both male and female swimmers, there remains ample scope
for enhancement, particularly in the realms of resistance training
and cross-training. The literature continues to grapple with
delineating effective methods for transferring gains from
resistance training to swimming performance, as well as
determining optimal strategies for increasing training volume
through cross-training modalities (Wirth et al., 2022).
Additionally, the monitoring strategies for managing swimmer
training loads continue to evolve, incorporating markers such as
blood lactate levels and mood state profiling. These approaches aim
to mitigate the risk of injury while optimizing performance (Feijen
et al., 2020), potentially offering a competitive edge soon.

When assessing the model, it is crucial to recognize several
limitations. First, the Olympic model lacks sufficient data, leading to
the absence of linear relationship for the variables K and nwith years
for women. This observation aligns with previous research
highlighting the challenge of modeling performance accurately
with limited data. To address this, future studies could explore
the incorporation of additional historical data or extend the analysis
by including Olympic years before 1995. Seond, the model overlooks
technical advancements in areas such as diving, turning, and
starting, which can significantly influence performance outcomes
(Figueiredo et al., 2020). Finally, the model was not individualized in
terms of anthropometric characteristics, such as weight and height,
of the record-setting athlete in any given year. Instead, the model
represented two prototypical athletes (male and female) with
standardized weight and body surface area. The age or biological
age was also not considered in the present study, which might
however be necessary for performance prediction in younger
swimmers (Abbott et al., 2021). These limitations underscore the
need for continued refinement and expansion of performance
modeling approaches to better capture the complex dynamics of
athletic performance.

To conclude, this investigation presents an innovative prognostic
model for aquatic performance, integrating both historical outcomes
and physiological metrics. This approach transcends conventional
time-based forecasting by mitigating the impact of exogenous
variables, such as the advent of full-body swimwear and
disruptions caused by the COVID-19 pandemic, which have
historically exerted a significant influence on the evolution of
swimming performance. The inclusion of data derived from track
and field athletics provides a robust foundation for this model,
aiming to offer predictions less susceptible to these external

perturbations. The results highlight a gender-specific divergence in
performance trajectories, with forecasts showing a more optimistic
outlook for female competitors, indicative of ongoing physiological
progress in female’s swimming compared to a more stable trend
observed in male. Moreover, the study suggests that relying solely
on Olympic Games performances for predictions may be premature.
With 15 new WRs set in 2023 all disciplines combined; this research
underscores the prevailing competitive spirit within the swimming
community. Looking ahead, this study anticipates that the trend of
record-breaking performances will continue into 2024, underscoring
the enduring dynamism and competitive intensity inherent in the sport.
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