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The assessment of vascular accessibility in patients undergoing hemodialysis is
predominantly reliant on manual inspection, a method that is associated with
several limitations. In this study, we propose an alternative approach by recording
the acoustic signals produced by the arteriovenous fistula (AVF) and employing
deep learning techniques to analyze these sounds as an objective complement to
traditional AVF evaluation methods. Auscultation sounds were collected from
800 patients, with each recording lasting between 24 and 30 s. Features were
extracted by combining Mel-Frequency Cepstral Coefficients with Mel-
Spectrogram data, generating a novel set of feature parameters. These
parameters were subsequently used as input to a model that integrates the
Convolutional Block Attention Module and a Long Short-Term Memory neural
network, designed to classify the severity of AVF stenosis based on two sound
categories (normal and abnormal). The experimental results demonstrate that the
CBAM-LSTM model achieves an Area Under the Receiver Operating
Characteristic curve of 99%, Precision of 99%, Recall of 97%, and F1 Score of
98%. Comparative analysis with other models, including VGG, Bi-LSTM,
DenseNet121, and ResNet50, indicates that the proposed CBAM-LSTM model
outperforms these alternatives in classifying AVF stenosis severity. These findings
suggest the potential of the CBAM-LSTM model as a reliable tool for monitoring
AVF maturation.
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1 Introduction

The pathological voice is caused by abnormalities in the vocal system. The assessment of
pathological voice in patients treated with blood dialysis mainly relies on manual
examination (Sandoval et al., 2013), which is cumbersome, and often causes extreme
discomfort. Moreover, the clinical analysis of the voice is often conducted based on
subjective standards that are unsatisfactory. To overcome these difficulties, researchers
have manually extracted features based on general classifiers (Gaussian mixture model,
support vector machine, and hidden Markov model) to classify the pathological voice,
including by integrating frequency cepstral coefficients (Barchiesi et al., 2015; Chachada and
Kuo, 2014). Considering the superiority of the Convolutional Neural Network (CNN) over
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manual methods of feature extraction (Chachada and Kuo, 2014;
Piczak, 2015; Pons and Serra, 2019; Salamon and Bello, 2017;
Simonyan and Zisserman, 2014; Tokozume et al., 2017) even
though it is primarily used for visual recognition, it has been
successfully applied to analyze speech (Lee et al., 2009; Deng
et al., 2013a; Abdel-Hamid et al., 2014; Sainath et al., 2013;
Abdel-Hamid et al., 2012; Abdel-Hamid et al., 2013; Deng et al.,
2013b) and music (Dieleman et al., 2011; Van den Oord et al., 2013).
Among them, the convolutional attention mechanism is an
improvement of the convolutional neural network. By combining
space and channels, they are fused for multi-directional convolution
to extract more important information, which enhances the
network’s ability to extract effective information.

The traditional Recurrent Neural Network (RNN) is hindered
by gradient-related issues, such as vanishing and exploding
gradients, when dealing with long input sequences, leading to
suboptimal performance. To resolve this challenge, Hochreiter
introduced the Long Short-Term Memory (LSTM) model, which
mitigates gradient issues by maintaining a continuous flow of
error signals through its memory units. This ability to manage
long-term dependencies makes LSTMs particularly effective for
tasks involving sequences with significant delays between input
and output (Schmidhuber, 1997). In the field of biomedicine,
LSTM networks have been successfully applied to remove
artifacts from EEG signals by leveraging their capacity to
model long-range dependencies while filtering out sequential
noise, thus preserving the integrity of the desired signal
(Ghosh et al., 2023). Recent advancements have also proposed
hybrid models combining CNNs with RNNs for applications
such as Automatic Speech Recognition (ASR) (Sainath T. N.
et al., 2015; Battenberg et al., 2016; Sainath T. et al., 2015) and
music classification (Choi et al., 2017).

Neural networks learn the nonlinear mapping between input
and output using training data, allowing them to generalize and
achieve high classification accuracy on previously unseen data.
Glangetas et al. (2021) proposed incorporating algorithms into
digital stethoscopes, creating autonomous devices that can
function as smartphone accessories, offering a more accessible
diagnostic tool (Vasudevan et al., 2020). Early diagnosis and
timely intervention, such as percutaneous transluminal
angioplasty, are critical for managing AVF stenosis (Mccarley
et al., 2001; Tessitore et al., 2004). Park et al. (2023). applied
deep convolutional neural networks, specifically ResNet50, to
predict AVF stenosis and its primary patency over 6 months
using acoustic features like Mel spectrograms. Chen et al. (2021)
studied the use of pulse radar sensors combined with machine
learning classifiers to monitor and predict abnormalities in the
flow function of AVFs. This method primarily relies on
biometric signals captured by radar sensors and machine learning
algorithms. Ota et al. (2020) employed a CNN-BiLSTM model to
classify AVF sounds, achieving an accuracy of 70%–93% with an
AUC of 0.75–0.92 after 100 training iterations. This method
processes heartbeats’ acoustic signals, classifying them by stenosis
degree, contributing to more reliable AVF detection tools.

To further enhance classification performance, it is essential to
convert sound signals into parameters that accurately describe their
characteristics. For instance, Guo analyzed pathological sounds by
extracting residual signal features, including the amplitude of the

fundamental frequency, spectral flatness, and cepstral domain
features, demonstrating their effectiveness in distinguishing
between normal and pathological sounds when used in
conjunction with traditional sound parameters (Guo et al., 2019).
Similarly, Fang proposed a method that fuses pathological sound
features by integrating Mel-frequency cepstral coefficients (MFCC)
with non-linear vocal cord lesion features. This approach has shown
promise in diagnosing and analyzing conditions such as coal
workers’ pneumoconiosis (Chunying, 2017). Ghaderpour et al.
(2024) introduced a technique for computing confidence level
surfaces for least-squares wavelet spectrograms, addressing the
impact of measurement errors and missing data on spectral
feature identification. This stochastic approach enhances the
robustness of feature extraction, improving classification accuracy
for AVF shunt sounds and potentially increasing diagnostic
precision in AVF monitoring.

In this study, we present a method for classifying arteriovenous
fistula sounds using a Convolutional Block Attention Module-Long
Short-Term Memory (CBAM-LSTM) neural network. By
integrating the Convolutional Block Attention Module with
convolutional operations, the proposed model effectively captures
key spatial and channel features from the AVF sound samples. The
attention mechanism in CBAM improves the model’s focus on the
most relevant aspects of the data, enabling enhanced feature
extraction. Recent studies have demonstrated the successful
application of CBAM in improving deep residual networks for
recognizing complex patterns, such as symmetric and asymmetric
human activities (Mekruksavanich and Jitpattanakul, 2024), further
underscoring its adaptability. In our model, pooling operations are
utilized for downsampling, reducing the dimensionality of the data
and allowing the network to capture local structures and features
within the audio signals more effectively. The Long Short-Term
Memory layer is employed to process temporal data, enabling the
model to capture long-term dependencies and handle sequential
data while addressing the challenges of vanishing and exploding
gradients. By combining these layers, the model can leverage both
spatial and temporal information to enhance the classification of
AVF sounds.

Additionally, we optimize the pathological sound features
through a feature fusion algorithm that combines MFCCs and
Mel spectrogram features, thereby improving the diversity of the
audio data. The Mel spectrogram is widely adopted in audio analysis
due to its effectiveness across various applications, and ongoing
research continues to enhance its performance. For instance, Hu
proposed a Mel spectrogram enhancement method based on
Continuous Wavelet Transform, aimed at improving the clarity
and quality of synthesized speech (Hu et al., 2024). The integration
of CBAM, the LSTM network, and the fused feature parameters
contributes to the high classification performance of pathological
sounds. Comparative experiments demonstrate that the proposed
CBAM-LSTM model, when combined with the fused feature
parameters, outperforms other architectures such as VGGNet, Bi-
LSTM, Densenet121, and ResNet50 in classifying AVF
sound samples.

Our results have significant implications for the development of
non-invasive diagnostic tools for monitoring vascular access in
hemodialysis patients. Furthermore, the proposed method holds
promise for broader applications, potentially extending to the
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classification of other types of biomedical signals. The framework of
the proposedmethod is illustrated in Figure 1. The key contributions
of this work are summarized as follows.

• Introduction of a Novel CBAM-LSTM Architecture: We
propose a CBAM-LSTM neural network that effectively
captures both spatial and temporal features of AVF sounds,
thereby enhancing classification accuracy.

• Incorporation of an Attention Mechanism: The integration of
CBAM with convolutional operations allows the model to
focus on critical local spatial and channel features within AVF
sound samples.

• Fusion of MFCCs and Mel Spectrogram Features: We apply a
feature fusion algorithm to combine MFCCs and Mel
spectrogram features, improving the representation of audio
and boosting classification performance.

• Achievement of Superior Performance: Experimental results
indicate that the proposed method outperforms existing
models such as VGGNet, Bi-LSTM, Densenet121, and
ResNet50, achieving state-of-the-art results in classifying
pathological AVF sounds.

2 Data construction and feature fusion

2.1 AVF shunt sound database

The study utilized data from 800 dialysis patients who were
hospitalized at the dialysis center of Henan Provincial People’s
Hospital in China. These patients had undergone dialysis
treatment through an arteriovenous fistula and maintained stable
hemodynamics. The participants were hospitalized for various
medical conditions and continued to receive maintenance
dialysis. Data collection was conducted following the acquisition
of informed consent from all participants. The characteristics of the
participants are summarized in Table 1.

A wireless electronic stethoscope was positioned directly over
the venous conduit at the anastomosis sites of 800 hemodialysis
patients, and the sounds generated by the arteriovenous fistula
(AVF) shunts were recorded for 24–30 s. These recordings were
classified into two categories: “normal” and “abnormal.” In total,
800 AVF shunt sounds were captured, consisting of 600 normal and
200 abnormal samples, which were then stored as WAV audio files.

FIGURE 1
Flowchart of proposed method to classify sounds of the arteriovenous fistula based on the CBAM-LSTM neural network.

TABLE 1 Information on the dataset.

Feature Value

Age 12–86

Gender

Man 426

Woman 374

Have a history of AVF 591

Narrow area

Above the anastomosis 576

Anastomosis channel opening 132

Head of the superior vena cava 48

Central vein 44
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Clinical assessments suggest that an arteriovenous fistula is
considered stenotic when its diameter is less than 1.8 mm. Based
on this criterion, sound samples obtained from fistulas with
diameters smaller than 1.8 mm were classified as abnormal, while
those from fistulas larger than 1.8 mm were categorized as normal.

2.2 Dataset augmentation and
preprocessing

Training neural networks in a supervised manner faces
challenges such as high computational workload and the need for
labeled data. We evaluated the CBAM-LSTM network for classifying
arteriovenous fistula sounds using 800 audio segments (24–30s
each) at a 16 kHz sampling rate, balancing input quality and
computational cost.

However, the training data available for AVF sounds was
limited in both size and the number of abnormal samples, which
created an imbalance between the normal and abnormal

categories. This imbalance may hinder the neural network’s
ability to generalize across varying scenarios and data
variations, thereby restricting its performance in real-world
applications. To address these challenges, we employed two
strategies to augment the dataset of AVF sounds.

2.2.1 Addition of audio noise
To improve the model’s generalization, random white noise was

added to the audio samples to simulate background interference.
Figure 2 shows the original and noise-augmented waveforms,
highlighting the increase in noise magnitude. This approach
enhanced the model’s adaptability and robustness in diverse
clinical conditions.

2.2.2 Audio clipping
Figure 3 shows that we used the characteristics of the task and

the dataset to extract audio segments with durations of 3–6 s and
18–21 s from the original 24–30 s long audio recordings to generate
more training samples and increase the size of the dataset.

FIGURE 2
Comparison of signals of the time domain before and after the addition of noise. The top and bottom figures show signals of the time domain before
and after the addition of noise, respectively.

FIGURE 3
Sound samples cropped into audio clips with durations of 3–6 s and 18–21 s.
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Following the augmentation of the dataset, it was randomly
partitioned into training, validation, and test subsets, with allocation
ratios of 70%, 10%, and 20%, respectively. This procedure is depicted
in Figure 4.

The parameters of the dataset following its augmentation are
presented in Table 2.

We combined the Mel spectrogram with MFCCs to extract
features from the audio data. Both the Mel spectrogram andMFCCs
are widely recognized techniques for representing audio signals.
Initially, we performed pre-processing on the audio signals to
enhance their quality and prepare them for feature extraction.

Specifically, we applied pre-emphasis to boost the high-frequency
components, compensating for the natural attenuation that occurs
in frequencies above 800 Hz. Pre-emphasis was achieved through
the use of a specific transfer function, as represented by Equation 1.

H Z( ) � 1 − μZ−1 (1)

The aggravation coefficient μ in this paper is taken as 0.97. The
result after the pre-emphasis treatment is shown in Equation 2.

y n( ) � x n( ) − 0.97x n − 1( ) (2)
Where x(n − 1) represents the AVF blood flow acoustic input

signal at the previous moment; x(n) is the AVF blood flow acoustic
input signal at the current moment; and y(n) represents the output
signal after pre-emphasis processing. Figure 5 presents the acoustic
spectra both prior to and following pre-emphasis, emphasizing the
alterations in the frequency distribution and the variation in the
energy of the different frequency components.

2.3 Feature fusion algorithm

To generate a Mel spectrogram, the signal was initially
segmented using a window of 25 m in length, with a step

FIGURE 4
Flowchart of dataset expansion.

TABLE 2 Parameters of the dataset after its expansion.

Parameters Value

Training Set 1,680

Test Set 480

Validation Set 240

Normal Samples 1,200

Anomalous Samples 1,200
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size of 10 m. The signal within each window was then
transformed from the time domain to the frequency domain
via a Fourier transform. Subsequently, the spectrum was

mapped to the Mel scale using a Mel filter bank, producing
the power spectrum. To standardize the dimensions of the
samples, the resolution of the Mel spectrogram was adjusted
to (128, 128).To acquire the MFCC, we set the same window
length and step size as those used to acquire the Mel
spectrogram to ensure signal stability in each frame. These
signals were subsequently converted into the mel scale in the
frequency domain and processed through a series of Mel filters
to mimic the perception of different frequencies by the human
ear. Following this, the log of power of the output of each filter
was calculated and transformed into the cepstral domain by
using the discrete cosine transform (DCT), yielding a set of
MFCC features with dimensions of (128,13). Next, we use a
feature fusion strategy to combine these two features. The
process of feature fusion consists of three main steps.

FIGURE 5
Spectrum before and after pre-emphasis. The left picture is the spectrum before pre-emphasis, and the right picture is the spectrum after
pre-emphasis.

FIGURE 6
CBAM-LSTM neural network model.

TABLE 3 Training parameters of CBAM-LSTM neural network.

Parameters Value

Learning rate 0.001

batch 64

Number of categories 2

Number of iterations 300

The CBAM-LSTM, model uses the above approach to integrate the capabilities of the

CBAM, layers to extract spatial features with those of the LSTM, layers to process temporal

data, thereby offering a powerful tool to analyze the acoustic signals of AVFs.
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2.3.1 Normalisation
The featuresM of the Mel Spectrogram and the features C of the

MFCC are normalised by the custom Normalize function, which
scales the eigenvalues to the range [0,1], and for each element in the
Mel Spectrogram features and the MFCC feature matrices, the
normalisation process is shown in Equation 3.

Mnorm,i,j �
Mi,j −min M: ,j( )

max M: ,j( ) −min M: ,j( )
Cnorm,i,j �

Ci,j −min C: ,j( )
max C: ,j( ) −min C: ,j( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

WhereMi,j ,Mnorm,i,j represent the elements in row i and column
j of the matrix before and after normalisation of the Mel spectrogram
features, respectively;Ci,j,Cnorm,i,j represent the elements in row i and
column j of the matrix before and after normalisation of the MFCC
features, respectively; M: ,j represents all the elements of the j-th
column of the Mel spectrogram feature M; C: ,j represents all the
elements of the j-th column of the MFCC feature C.

2.3.2 Connected features
By splicing the Mel spectrumMnorm with normalised dimension

(128,128) and the MFCC feature Cnorm with normalised dimension
(13,128) along the feature dimension, the ith row and j-th column of
the fusion feature F can be defined by Equation 4.

Mnorm,i,j, i≤ 128
Cnorm,i−128,j, i> 128{ (4)

This process creates a new matrix F of dimension (141,128).

2.3.3 Normalised convergence
characteristics again

Normalise the fused features again: for the already fused feature
vectors, the normalisation operation is performed again to ensure

FIGURE 7
Parameter maps derived from the fusion of features. The left figure shows the characteristic spectrum of the parameter of normal AVF shunt sound,
while the right figure shows the characteristic spectrum of the parameter of abnormal AVF shunt sound.

TABLE 4 Differential indicator parameters.

Features PSNR (dB) SSIM

Mel spectrogram 15.1096 0.5256

MFCC 19.6950 0.7677

Fused Feature 8.58732 0.4344

FIGURE 8
Curves of the loss function and accuracy of the proposed model.The left figure shows the training loss (blue curve) and verification loss (orange
curve). The right figure shows the training accuracy (blue curve) and verification accuracy (orange curve).
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that each dimensional feature in the fused feature vectors is on the
same scale, to prevent the new features from being fused to
introduce a new bias, expressed as Equation 5:

Ffinal,i,j �
Fi,j −min F: ,j( )

max F: ,j( ) −min F: ,j( ) (5)

Where Ffinal,i,j is the feature matrix which is normalised again
with the same dimensions as F. Finally, these MFCC features were
combined with the features of the mel spectrogram and processed
through a feature fusion algorithm to yield fused feature-related
parameters with dimensions of (128,141). The data was then
expanded to (128, 141, 1) to match the input requirements of the
convolutional layer in the neural network model.

3 CBAM-LSTM neural network

We employed the CBAM-LSTM neural network model to analyze
the acoustic signals of arteriovenous fistulas. This model integrates the
Convolutional Block Attention Module for spatial feature extraction
with the Long Short-Term Memory network for sequential data
processing, providing a comprehensive framework for AVF acoustic
analysis. The CBAM module preserves the gradient and important
features from the convolutional layers by applying both max pooling
and average pooling operations. These pooling operations are followed
by a recalibration step, where feature weights are adjusted to emphasize
critical regions, allowing the model to focus on the most informative
areas in the data.

The process begins with the convolutional layer, where the output
feature map F ∈ RC×H×W (with C,H, andW representing the channel,
height, andwidth dimensions, respectively) is produced.Next, theCBAM
applies the channel-wise attention mechanism by first computing the
channel compression matrix MS(F), followed by element-wise
multiplication of F with the attention map, as shown in (Equation 6):

F1 � MS F( ) ⊙ F (6)
whereMS(F) ∈ RC×1×1 is the channel attention weight matrix, and ⊙
denotes element-wise multiplication. The spatial attention
mechanism is then applied to the output F1, where the spatial
compression matrix MS(F1) is computed, followed by another
element-wise multiplication, as shown in Equation 7:

F2 � MS F( ) ⊙ F1 (7)
In this case, MS(F1) ∈ R1×H×W represents the spatial attention

matrix, which is applied to adjust the feature map based on the most
significant spatial regions. The spatial attention mechanism helps
the model focus on critical spatial areas by reweighting the feature
map according to the spatial attention map.

The final feature map F2 is thus a refined representation of the
input features, where both spatial and channel attention
mechanisms are applied to enhance the model’s focus on the
most relevant information in the AVF acoustic signals. These

FIGURE 9
ROC curve and confusion matrix of CBAM-LSTM neural network in test set.

TABLE 5 Evaluation metrics of the performance of the proposed model.

Parameter Value

Precision 0.99

Recall 0.97

F1 Score 0.98

Accuracy 0.97

Loss 0.11

AUROC 0.99

TABLE 6 Evaluation indicators of four models.

Model AUROC Precision Recall F1 score

VGGNet 0.95 0.96 0.90 0.93

Bi-LSTM 0.97 0.97 0.93 0.95

DenseNet121 0.93 0.93 0.90 0.91

ResNet50 0.91 0.91 0.89 0.90

Ours 0.99 0.99 0.97 0.98
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processed features are then passed to the LSTM network, which
models temporal dependencies and captures long-range correlations
in the sequential data.

The architecture of the proposed CBAM-LSTM model, shown
in Figure 6, involves a series of multi-layered convolutional layers
(Conv2D) that are responsible for extracting local spatial features
from the acoustic signals. The first convolutional layer uses 64 filters,

each of size 3 × 3, to extract the initial feature mappings, respectively,
to refine and deepen the levels of the features. Each layer is closely
followed by a LeakyReLU activation function that enables the
network to model non-linear features while maintaining a
portion of the negative gradient, thereby preventing zero
activation values. Batch normalization layers are subsequently
applied to each convolutional layer to normalize the data, and to

FIGURE 10
The figures illustrate the ROC curve, loss function curve, and accuracy curve for various models. The first row corresponds to the Bi-LSTM model,
showing the ROC curve, loss function curve, and accuracy curve. The second row represents the same curves for the VGGNet model. The third row
displays these curves for the DenseNet121 model, and the fourth row depicts the ROC curve, loss function curve, and accuracy curve for the
ResNet50 model.
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enhance the efficiency of training and stabilize the performance of
the network. Introducing channel attention modules and spatial
attention modules after the BN (Batch Normalization) layer
enhances the model’s ability to extract effective information.

Two-dimensional max-pooling layers then perform
downsampling on the obtained feature mappings to reduce the
computational load and prevent overfitting while retaining the most
significant features. Dropout layers further enhance the capability of
generalization of the model by randomly dropping some neuronal
connections during training, thus reducing dependencies and
improving the adaptability of the model to new data. The second
and third parts of the model utilize convolutional layers with
128 and 256 filters, respectively, to further refine and deepen the
hierarchical representation of features, while the remaining parts are
identical to the first part.

Subsequent to the CBAM layers, the feature maps are passed
through flattening and reshaping layers, preparing the data for
processing by the Long Short-Term Memory network, which is
responsible for capturing the temporal dynamics of the data. The
LSTM layers are specifically designed to model the sequential
patterns of the AVF sound signals over time, thereby addressing
the long-term dependencies critical for accurately classifying the
characteristics of AVF sounds.

Finally, two dense layers, which are processed through the
LeakyReLU activation functions and the dropout layer, are
responsible for generating the predictions of the network. The
entire network is optimized by using a binary cross-entropy loss
function as defined in Equation 8, with an Adam optimizer with a
learning rate of 0.001 used during training. The batch size used for
training was set for 300 rounds, with an early stopping mechanism
incorporated into the callback functions.

L � − 1
N

∑N
i�1

yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )[ ] (8)

where N represents the number of samples, yi is the actual label of
the i th sample, which can be either zero or one, and ŷi is the
predicted label of the i th sample, signifying the probability predicted
by the model of the sample belonging to category 1. The parameters
of the CBAM-LSTM model are presented in Table 3.

4 Experiments and analysis

4.1 Experimental platform and evaluation
indicators

All training and testing was conducted on the same computer,
which was equipped with a five vCPU Intel(R) Xeon(R) Platinum
8358P CPU @ 2.60 GHz, and an RTX 3090 GPU (24 GB). We used
Python version 3.9 along with the Python libraries NumPy,
matplotlib, scikit-learn, TensorFlow, and Keras.

We employed objective criteria to assess the performance of the
CBAM-LSTM model. The evaluation metrics included the area
under the receiver operating characteristic curve (AUROC), the
confusion matrix, precision, recall, F-1 score, and accuracy. These
metrics are defined by the formulas in Equations 9–12. Precision is
the proportion of true positives among all instances predicted as
positive by the model. Recall indicates the proportion of actual
positive cases correctly identified by the model. The F-1 score
represents the harmonic mean of precision and recall, while
accuracy reflects the ratio of correctly predicted samples to the
total number of samples.

FIGURE 11
Figure a illustrates the front view of the device, while Figure b presents its side view.
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Precision � TP

TP + FP
(9)

Recall � TP

TP + FN
(10)

F1Score � 2 ×
Precision × Recall

Precision + Recall
(11)

Accuracy � TP + TN

TP + TN + FP + FN
(12)

where TP, FP, TN, and FN respectively represent the number of
samples correctly predicted as positive, the number of samples
incorrectly predicted as positive, the number of samples correctly
predicted as negative, and the number of samples incorrectly
predicted as negative by the model.

4.2 Characteristic spectra of normal and
abnormal AVF shunt sounds

The features of the spectrogram of AVF shunt sounds, both pre-
percutaneous transluminal angioplasty (pre-PTA) and post-PTA,
were qualitatively correlated with the degree of AVF stenosis.

We collected shunt sounds from the AVFs and synthesized fused
sound-related features by integrating the Mel spectrograms and the
MFCCs by using a fusion algorithm. The horizontal axis in the fused
feature parameter maps in Figure 7 represents time, measured in
seconds, and the vertical axis denotes the feature dimensions. The
brightness of the colors reflects the relative intensity of the energy at
the respective time points and feature dimensions. The color bar
represents normalized unit values, ranging from 0 to 1, without any
physical units. It indicates the relative intensity of the feature values,
where 0 corresponds to the minimum value, and one indicates the
maximum value. We observed the features of energy distribution
related to stenosis through a visual analysis of the fused feature-related
parameter of theMel spectrograms andMFCCs, and identified several
key differences. The spectrograms of normal sound samples exhibited
a relatively uniform energy distribution across the entire range of
frequency, particularly in low-frequency areas, indicating that blood
flow was not significantly obstructed. By contrast, the energy
distribution of the fused feature-related parameter of the
spectrogram of abnormal sound samples was scattered, and the
high-energy area was not as prominent as that of the fused
feature-related parameter of the spectrogram of normal sound
samples. This means that the energy of abnormal AVF sounds in
the entire spectrum was relatively low. Weak abnormal AVF sounds
correspond to hemodynamic abnormalities caused by AVF stenosis.

To assess the performance variations among the fused feature
parameter spectrogram, MFCC spectrogram, and Mel spectrogram,
a random selection of 50 samples was made for comparison. The
performance can be quantified using the following formulas for the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM), as shown in Equation 13:

PSNR � 10 · log10
MAX2

MSE
( ) (13)

whereMAX is the maximum possible pixel value of the image, and
MSE is the mean squared error between the compared
spectrograms, as shown in Equation 14:

SSIM x, y( ) � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( ) (14)

where μx and μy are the average intensities of the compared images,
σ2x and σ2y are their variances, σxy is the covariance, C1 and C2 are
small constants to stabilize the division.

The average values of PSNR and SSIM are presented in Table 4.
In this study, these metrics are used to investigate the differences
between the Mel spectrograms of AVF blood flow in patients and
those in healthy individuals, as well as to compare the performance
of other spectrogram types.

A comparison of the data in Table 4 reveals that the fused feature
parameter spectrogram displays the highest variability between
normal and abnormal samples, with a PSNR value of 8.5873 dB
and an SSIM value of 0.4344. This notable variability is
advantageous for model training, as it facilitates the model’s
ability to distinguish between normal and abnormal conditions.
Consequently, when training the CBAM-LSTM model for AVF
blood flow sound classification, the fusion of feature parameters
emerges as the most effective approach to enhance
classification accuracy.

4.3 Analysis based on evaluation indicators

A pivotal aspect of deep learning models is the iterative
optimization of their parameters to minimize errors of
classification. We used the loss function as a critical indicator
that provides a quantifiable measure of the performance of the
model in terms of the accuracy of classification. This metric plays a
fundamental role in guiding the trajectory of optimization, and
substantially influences the refinement of the model. Moreover,
accuracy, which represents the ratio of correctly classified
instances to the total number of instances, is an essential
evaluative parameter. The curves of both the loss function and
the accuracy are integral for assessing the performance of the model
over its iterations, and are shown in Figure 8.

During the training of the model, a noticeable trend emerged as
the number of epochs of training increased. Both the training loss
(illustrated by the blue curve in Figure 8) and the validation loss
(represented by the orange curve) exhibited a consistent decline.
This trend continued until the 50th epoch, at which point both the
training and validation losses reached a plateau, and stabilized at
0.21 and 0.11, respectively. Due to the early stopping mechanism
added to the model, training was stopped after 80 epochs. The
convergence and subsequent stabilization of these loss values were
reflective of the effective learning and generalization of the model,
with the close correlation between them suggesting a minimized risk
of overfitting.

To thoroughly evaluate the performance of our arteriovenous
fistula sound classification model based on the CBAM-LSTM neural
network, we employed confusion matrices and ROC curves for
result analysis. The confusion matrix is a widely used tool in medical
image processing, offering a visual representation of the model’s
classification performance, particularly in its ability to distinguish
between positive and negative samples. The AUROC is utilized to
assess the overall discriminative capacity of the model, serving as a
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robust measure for evaluating binary classification systems. A
classification threshold of 0.5 was selected, as it is a standard
value for binary classification tasks. Figure 9 presents the ROC
curve and confusion matrix on the test set, providing insights into
the model’s accuracy in distinguishing between normal and
abnormal arteriovenous fistula sound samples.

The AUROC is a pivotal metric in this context. It provides a
comprehensive measure of the discriminative capacity of the model,
particularly in scenarios of binary classification. We opted for a
classification threshold of 0.5, which is a standard benchmark in
binary classification systems. The corresponding ROC curve is
shown in Figure 8, and provides a visual representation of the
capability of classification of our model under various thresholds.

It is evident from the ROC curve that the model had a high
accuracy of recognition. The ROC curve was far from the diagonal
line in the graph, which represents the performance of random
guessing, while the curve of our model closely hugged the upper-left
corner, indicating a near-perfect ability of classification. The
AUROC value was 0.99, and approached the ideal value of one.
This implies that the model can detect AVF stenosis with a very high
true-positive rate while maintaining a low false-positive rate in
medical diagnostic scenarios.

A detailed examination of the confusion matrix reveals that
the model was highly precise. It correctly classified
238 instances as true negatives and erroneously categorized
only two instances as false positives. This indicates a substantial
reduction in the propensity of the model to commit type-I
errors, and underscores its reliability in not misclassifying
normal instances as anomalous. Moreover, the model was
able to accurately identify 233 instances as true positives,
with only seven instances incorrectly classified as false
negatives. This reflects its commendable sensitivity in
detecting abnormalities in the AVF and confirms its
diagnostic accuracy. The results of the confusion matrix not
only validate the robustness of our CBAM-LSTM model, but
also show its potential for use in clinical scenarios for efficiently
and accurately monitoring the AVF.

We also computed key statistical metrics to quantify the
performance of our model, including the precision, recall, and F1-
score. The model delivered a remarkable precision of 0.99, indicating
its exceptional accuracy in correctly identifying positive instances. Its
recall, or the true-positive rate, was 0.97, highlighting its efficiency in
detecting and capturing positive samples. Its F1-score, a harmonized
measure of the precision and recall, was an impressive 0.98.
Collectively, these metrics demonstrate the reliability and
effectiveness of our model in classifying sounds of the AVF. This
verifies the effectiveness and reliability of the proposed CBAM-LSTM
neural network model for the classification of AVF shunt sounds. Its
evaluation metrics are presented in Table 5.

4.4 Comparison with other detection
algorithms

We compared our CBAM-LSTM neural network model with
three neural network-based approaches to learning: VGGNet, Bi-
LSTM, Densenet121 and ResNet50. The diagnostic performance
metrics of these methods are listed in Table 6.

The ROC curves, loss curves, and accuracy curves for Bi-LSTM,
VGGNet, Densenet121 and ResNet50 are shown in Figure 10. Our
model demonstrated significant advantages over them across
multiple performance metrics. It achieved an AUROC score of
99%, significantly surpassing the 97% recorded by Bi-LSTM, 95%
by VGGNet, 93% by DenseNet121% and 91% by ResNet50. This
indicates that our model had a higher accuracy and reliability in
identifying the severity of AVF stenosis (i.e., normal vs abnormal).

Furthermore, our model achieved 99% in terms of precision and
97% in terms of recall. These results show its exceptional
performance in terms of minimizing misclassification while
ensuring that nearly all actually abnormal cases were correctly
identified. It recorded an F1-score of 98%, which was noticeably
superior to those of the Bi-LSTM (95%), VGGNet (93%),
DenseNet121 (91%) and ResNet50 (90%). This demonstrates the
superior capability of our model in balancing precision and recall.

In summary, our model not only offers superior diagnostic
performance to that of the other models, but also ensures a more
accurate and reliable monitoring of the AVF in patients undergoing
hemodialysis. Finally, we developed an instrument that incorporates
the CBAM-BiLSTM model, enabling it to perform non-contact
assessment of arteriovenous fistula stenosis. The device is linked
to the physician’s mobile phone via Bluetooth, with its parameters
configured through a specialized application. The test results are
subsequently transmitted to the server via the app.The device is
shown in Figure 11.

5 Conclusion

Early detection and monitoring of arteriovenous fistula
maturation are critical for patients undergoing hemodialysis, as
early intervention can significantly improve clinical outcomes. In
response to the need for non-invasive, accurate, and efficient
diagnostic techniques, this study proposes an approach leveraging
advanced neural network architectures to classify AVF shunt sounds
with high precision.

We introduce a CBAM-LSTM model that combines the
Convolutional Block Attention Module with Long Short-Term
Memory networks to analyze acoustic signals from AVFs. By
utilizing feature fusion techniques that combine Mel-frequency
cepstral coefficients and Mel spectrograms, the CBAM-LSTM model
enhances the ability to capture subtle differences in AVF sound data.
This feature fusion improves the model’s diagnostic accuracy, making it
better equipped to detect and classify AVF stenosis with high precision.
This integration enhances the model’s performance, achieving an Area
Under the Receiver Operating Characteristic Curve of 99%. Moreover,
the CBAM-LSTM model outperforms alternative architectures,
including VGGNet, Bi-LSTM, Densenet121, and ResNet50. These
results highlight the promising potential of the CBAM-LSTM model
for clinical applications in the monitoring of AVF maturation.

Future research should consider incorporating stochastic
analysis techniques, such as the computation of confidence level
surfaces for spectrograms, to further improve the robustness of
feature extraction. Additionally, the exploration of multi-scale
fusion methods combining ultrasound data with acoustic signals
may enhance classification accuracy, facilitating more accurate
diagnostics and personalized patient management.

Frontiers in Physiology frontiersin.org12

Zhang et al. 10.3389/fphys.2024.1397317

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1397317


Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

JZ: Methodology, Writing–review and editing. RZ:
Writing–original draft, Writing–review and editing, Investigation,
Validation. XS: Data curation, Writing–review and editing. HZ:
Funding acquisition, Investigation, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research

was funded by the Henan Science and Technology Department
(Project Number 221111310800).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abdel-Hamid, O., Deng, L., and Yu, D. (2013). Exploring convolutional neural
network structures and optimization techniques for speech recognition. Interspeech
2013, 1173–1175. doi:10.21437/Interspeech.2013-744

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio,
Speech, Lang. Process. 22 (10), 1533–1545. doi:10.1109/TASLP.2014.2339736

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., and Penn, G. (2012). “Applying
Convolutional Neural Networks concepts to hybrid NN-HMM model for speech
recognition,” in 2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP) (Kyoto, Japan), 4277–4280. doi:10.1109/ICASSP.2012.
6288864

Barchiesi, D., Giannoulis, D., Stowell, D., and Plumbley, M. D. (2015). Acoustic Scene
Classification: classifying environments from the sounds they produce. IEEE Signal
Process. Mag. 32 (3), 16–34. doi:10.1109/MSP.2014.2326181

Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen, J., Chrzanowski, M., et al.
(2016). “Deep speech 2: end-to-end speech recognition in English and Mandarin,” in
International conference on machine lea-rning. New York, NY: PMLR, 173–182.
Available at: https://proceedings.mlr.press/v48/amodei16.html?ref=https://
codemonkey.link.

Chachada, S., and Kuo, C.-C. J. (2014). Environmental sound recognition: a survey.
APSIPA Trans. Signal Inf. Process. 3, e14. doi:10.1017/ATSIP.2014.12

Chen, C.-H., Tao, T.-H., Chou, Y.-H., Chuang, Y.-W., and Chen, T.-B. (2021).
Arteriovenous fistula flow dysfunction surveillance: early detection using pulse radar
sensor and machine learning classification. Biosensors 11, 297. doi:10.3390/
bios11090297

Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2017). “Convolutional recurrent
neural networks for music classification,” in 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP) (New Orleans, LA, USA), 2392–2396.
doi:10.1109/ICASSP.2017.7952585

Chunying, F. (2017). Research on key technologies for health status analysis of coal
miners based on acoustic diagnosis.Heilongjiang Sci. 8 (04), 23–25. Available at: https://
k n s . c n k i . n e t / k c m s 2 / a r t i c l e / a b s t r a c t ? v =
PkrNiO65NLlVJahmBOidFHD1WgDxPgF8 i9KBgRGvgDFQ8oZukN9_
sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-
eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS.

Deng, L., Abdel-Hamid, O., and Yu, D. (2013a). “A deep convolutional neural
network using heterogeneous pooling for trading acoustic invariance with phonetic
confusion,” in 2013 IEEE international conference on acoustics, speech and signal
processing (Vancouver, BC, Canada), 6669–6673. doi:10.1109/ICASSP.2013.6638952

Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., et al. (2013b). “Recent advances
in deep learning for speech research atMicrosoft,” in 2013 IEEE international conference
on acoustics, speech and signal processing (Vancouver, BC, Canada), 8604–8608. doi:10.
1109/ICASSP.2013.6639345

Dieleman, S., Brakel, P., and Schrauwen, B. (2011). “Audio-based music classification
with a pretrained convolutional network,” in Proceedings of the 12th international
society for music information retrieval conference: proc. ISMIR 2011. Editors A. Klapuri
and C. Leider (Miami, FL: University of Miami), 669–674. Available at: http://hdl.
handle.net/1854/LU-1989534.

Ghaderpour, E., Pagiatakis, S. D., Mugnozza, G. S., and Mazzanti, P. (2024). On the
stochastic significance of peaks in the least-squares wavelet spectrogram and an
application in GNSS time series analysis. Signal Process. 223, 109581. doi:10.1016/j.
sigpro.2024.109581

Ghosh, R., Phadikar, S., Deb, N., Sinha, N., Das, P., and Ghaderpour’s recent work, E.
(2023). Automatic eyeblink and muscular artifact detection and removal from EEG
signals using k-nearest neighbor classifier and long short-term memory networks. IEEE
Sensors J. 23 (5), 5422–5436. doi:10.1109/JSEN.2023.3237383

Glangetas, A., Hartley, M. A., Cantais, A., Courvoisier, D. S., Rivollet, D., Shama, D.
M., et al. (2021). Deep learning diagnostic and risk-stratification pattern detection for
COVID-19 in digital lung auscultations: clinical protocol for a case–control and
prospective cohort study. BMC Pulm. Med. 21, 103. doi:10.1186/s12890-021-
01467-w

Guo, L., Cao, H., and Li, T. (2019). Effective characteristic parameters classify normal
and pathological speech. Acoust. Technol. 38 (05), 554–559. doi:10.16300/j.cnki.1000-
3630.2019.05.012

Hu, G., Tan, H., and Li, R. (2024). A mel spectrogram enhancement paradigm based
on CWT in speech synthesis. arXiv Prepr. arXiv:2406.12164, 401–405. doi:10.1109/
ialp63756.2024.10661192

Lee, H., Pham, P., Largman, Y., and Ng, A. Y. (2009). Unsupervised feature learning
for audio classification using convolutional deep belief networks. Adv. Neural Inf.
Process. Syst. 22, 1096–1104. Available at: https://proceedings.neurips.cc/paper_files/
paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf.

Mccarley, P., Wingard, R. L., Shyr, Y., Pettus, W., Hakim, R. M., and Ikizler, T. A.
(2001). Vascular access blood flow monitoring reduces access morbidity and costs.
Kidney Int. 60 (3), 1164–1172. doi:10.1046/j.1523-1755.2001.0600031164.x

Mekruksavanich, S., and Jitpattanakul, A. (2024). Deep residual network with a
CBAM mechanism for the recognition of symmetric and asymmetric human activity
using wearable sensors. Symmetry 16, 554. doi:10.3390/sym16050554

Ota, K., Nishiura, Y., Ishihara, S., Adachi, H., Yamamoto, T., and Hamano, T. (2020).
Evaluation of hemodialysis arteriovenous bruit by deep learning. Sensors 20, 4852.
doi:10.3390/s20174852

Park, J. H., Yoon, J., Park, I., Sim, Y., Kim, S. J., Won, J. Y., et al. (2023). A deep
learning algorithm to quantify AVF stenosis and predict 6-month primary patency: a
pilot study. Clin. Kidney J. 16 (3), 560–570. doi:10.1093/ckj/sfac254

Piczak, K. J. (2015). “Environmental sound classification with convolutional neural
networks,” in 2015 IEEE 25th international workshop on machine learning for signal
processing (MLSP) (Boston, MA, USA), 1–6. doi:10.1109/MLSP.2015.7324337

Pons, J., and Serra, X. (2019). “Randomly weighted CNNs for (music) audio
classification,” in Icassp 2019 - 2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP) (Brighton, UK), 336–340. doi:10.1109/
ICASSP.2019.8682912

Sainath, T., Weiss, R. J., Senior, A., Wilson, K., and Vinyals, O. (2015b). Learning the
speech front-end with raw waveform CLDNNs. Available at: https://ronw.net/pubs/
interspeech2015-waveform_cldnn.pdf.

Sainath, T. N., Kingsbury, B., Mohamed, A.-R., Dahl, G. E., Saon, G., Soltau, H., et al.
(2013). “Improvements to deep convolutional neural networks for LVCSR,” in

Frontiers in Physiology frontiersin.org13

Zhang et al. 10.3389/fphys.2024.1397317

https://doi.org/10.21437/Interspeech.2013-744
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/MSP.2014.2326181
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://doi.org/10.1017/ATSIP.2014.12
https://doi.org/10.3390/bios11090297
https://doi.org/10.3390/bios11090297
https://doi.org/10.1109/ICASSP.2017.7952585
https://kns.cnki.net/kcms2/article/abstract?v=PkrNiO65NLlVJahmBOidFHD1WgDxPgF8i9KBgRGvgDFQ8oZukN9_sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=PkrNiO65NLlVJahmBOidFHD1WgDxPgF8i9KBgRGvgDFQ8oZukN9_sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=PkrNiO65NLlVJahmBOidFHD1WgDxPgF8i9KBgRGvgDFQ8oZukN9_sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=PkrNiO65NLlVJahmBOidFHD1WgDxPgF8i9KBgRGvgDFQ8oZukN9_sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=PkrNiO65NLlVJahmBOidFHD1WgDxPgF8i9KBgRGvgDFQ8oZukN9_sEPwEfaltbrQw1HBZbKYE4IrDNISlM76jJJpA228jsFoRcVnm2BlURlGga8i-eyHdYLpiqTcLef70EMnH-ie-vw=&uniplatform=NZKPT&language=CHS
https://doi.org/10.1109/ICASSP.2013.6638952
https://doi.org/10.1109/ICASSP.2013.6639345
https://doi.org/10.1109/ICASSP.2013.6639345
http://hdl.handle.net/1854/LU-1989534
http://hdl.handle.net/1854/LU-1989534
https://doi.org/10.1016/j.sigpro.2024.109581
https://doi.org/10.1016/j.sigpro.2024.109581
https://doi.org/10.1109/JSEN.2023.3237383
https://doi.org/10.1186/s12890-021-01467-w
https://doi.org/10.1186/s12890-021-01467-w
https://doi.org/10.16300/j.cnki.1000-3630.2019.05.012
https://doi.org/10.16300/j.cnki.1000-3630.2019.05.012
https://doi.org/10.1109/ialp63756.2024.10661192
https://doi.org/10.1109/ialp63756.2024.10661192
https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
https://doi.org/10.1046/j.1523-1755.2001.0600031164.x
https://doi.org/10.3390/sym16050554
https://doi.org/10.3390/s20174852
https://doi.org/10.1093/ckj/sfac254
https://doi.org/10.1109/MLSP.2015.7324337
https://doi.org/10.1109/ICASSP.2019.8682912
https://doi.org/10.1109/ICASSP.2019.8682912
https://ronw.net/pubs/interspeech2015-waveform_cldnn.pdf
https://ronw.net/pubs/interspeech2015-waveform_cldnn.pdf
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1397317


2013 IEEE workshop on automatic speech recognition and understanding, olomouc
(Czech Republic), 315–320. doi:10.1109/ASRU.2013.6707749

Sainath, T. N., Vinyals, O., Senior, A., and Convolutional, S. H. (2015a). “Long short-
term memory, fully connected deep neural networks,” in 2015 IEEE international
conference on acoustics, speech and signal processing (ICASSP) (South Brisbane, QLD,
Australia), 4580–4584. doi:10.1109/ICASSP.2015.7178838

Salamon, J., and Bello, J. P. (2017). Deep convolutional neural networks and data
augmentation for environmental sound classification. IEEE Signal Process. Lett. 24 (3),
279–283. doi:10.1109/LSP.2017.2657381

Sandoval, S., Berisha, V., Utianski, R. L., Liss, J. M., and Spanias, A. (2013). Automatic
assessment of vowel space area. J. Acoust. Soc. Am. 134 (5), EL477–EL483. doi:10.1121/1.4826150

Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9 (8), 1735–1780.
doi:10.1162/neco.1997.9.8.1735

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. Comp. Sci. doi:10.48550/arXiv.1409.1556

Tessitore, N., Lipari, G., Poli, A., Bedogna, V., Baggio, E., Loschiavo, C., et al.
(2004). Can blood flow surveillance and pre-emptive repair of subclinical
stenosis prolong the useful life of arteriovenous fistulae? A randomized
controlled study. Nephrol. Dial. Transpl. 19 (9), 2325–2333. doi:10.1093/ndt/
gfh316

Tokozume, Y., Ushiku, Y., and Harada, T. (2017). Learning from between-class
examples for deep sound recognition. arXiv Prepr. arXiv:1711.10282. doi:10.48550/
arXiv.1711.10282

Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). “Deep content-based
music recommendation,” in Advances in neural information processing systems, 26.
A v a i l a b l e a t : h t t p s : / / p r o c e e d i n g s . n e u r i p s . c c / p a p e r / 2 0 1 3 / h a s h /
b3ba8f1bee1238a2f37603d90b58898d-Abstract.html.

Vasudevan, R. S., Horiuchi, Y., Torriani, F. J., Cotter, B., Maisel, S. M.,
Dadwal, S. S., et al. (2020). Persistent value of the stethoscope in the age of
COVID-19. Am. J. Med. 133 (10), 1143–1150. doi:10.1016/j.amjmed.2020.
05.018

Frontiers in Physiology frontiersin.org14

Zhang et al. 10.3389/fphys.2024.1397317

https://doi.org/10.1109/ASRU.2013.6707749
https://doi.org/10.1109/ICASSP.2015.7178838
https://doi.org/10.1109/LSP.2017.2657381
https://doi.org/10.1121/1.4826150
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1093/ndt/gfh316
https://doi.org/10.1093/ndt/gfh316
https://doi.org/10.48550/arXiv.1711.10282
https://doi.org/10.48550/arXiv.1711.10282
https://proceedings.neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
https://doi.org/10.1016/j.amjmed.2020.05.018
https://doi.org/10.1016/j.amjmed.2020.05.018
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1397317

	Classification of arteriovenous fistula sounds using a convolutional block attention module and long short-term memory neur ...
	1 Introduction
	2 Data construction and feature fusion
	2.1 AVF shunt sound database
	2.2 Dataset augmentation and preprocessing
	2.2.1 Addition of audio noise
	2.2.2 Audio clipping

	2.3 Feature fusion algorithm
	2.3.1 Normalisation
	2.3.2 Connected features
	2.3.3 Normalised convergence characteristics again


	3 CBAM-LSTM neural network
	4 Experiments and analysis
	4.1 Experimental platform and evaluation indicators
	4.2 Characteristic spectra of normal and abnormal AVF shunt sounds
	4.3 Analysis based on evaluation indicators
	4.4 Comparison with other detection algorithms

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


