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Introduction:Maternal obstructive sleep apnea (OSA) during pregnancy is the risk
factor for impaired fetal growth with low birth weight in the offspring. However, it
is unclear whether gestational intermittent hypoxia (IH, a hallmark of maternal
OSA) has long-term detrimental consequences on the skeletal development of
offspring. This study aimed to investigate postnatal maxillofacial bone growth and
cartilage metabolism in male and female offspring that were exposed to
gestational IH.

Methods: Mother rats underwent IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2;
0% CO2) for 8 h per day during gestational days (GD) 7–20, and their male and
female offspring were analyzed postnatally at 5 and 10 weeks of age. All male and
female offspring were born and raised under normoxic conditions.

Results: There was no significant difference in whole-body weight and tibial
length between the IH male/female offspring and their control counterparts. In
contrast, the mandibular condylar length was significantly shorter in the IH male
offspring than in the control male offspring at 5 and 10 weeks of age, while there
was no significant difference in the female offspring. Real-time polymerase chain
reaction (PCR) showed that gestational IH significantly downregulated the mRNA
level of SOX9 (a chondrogenesis marker) and upregulated themRNA level of HIF-
1α (a hypoxia-inducible factor marker) in the mandibular condylar cartilage of
male offspring, but not in female offspring.

Conclusion: Gestational IH induced underdeveloped mandibular ramus/
condyles and reduced mRNA expression of SOX9, while enhancing mRNA
expression of HIF-1α in a sex-dependent manner.
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1 Introduction

Fetal development is susceptible to maternal exposure to
environmental stressors such as hypoxia, metabolic stress, and
malnutrition (Nalivaeva et al., 2018; Ren et al., 2023). Obstructive
sleep apnea (OSA) is a sleep disorder with a prevalence of 10.5% and
26.7% in pregnant women in the early and late stages of pregnancy,
respectively (Pien et al., 2013). The concept that environmental stressors
during fetal development influence the organism’s adaptation to
conditions later in postnatal life is known as the “Developmental
Origins of Health and Disease” (DOHaD) paradigm (Heindel et al.,
2015). Maternal OSA affects the impaired fetal growth with low birth
weight in the offspring and increases the risk of cardiovascular and
neurodevelopmental disorders in offspring (Fung et al., 2013; Chen
et al., 2018; Vanderplow et al., 2022). However, it is unclear whether
gestational IH (a hallmark of maternal OSA) has long-term detrimental
effects on postnatal skeletal development of the offspring.

In pregnant rodents, fetal exposure to IH induces DNA damage in
GABAergic nerve receptors in the cerebellum, neuronal apoptosis, and
cardiovascular disorders such as hypertension and cardiac hypertrophy
in the offspring (Chen et al., 2018). Gestational IH alters the response of
the rat offspring to a subsequent postnatal inflammatory challenge in a
gender-dependent manner (Johnson et al., 2018). It results in a
significant reduction in endurance motor function in male
adolescent offspring rats, associated with potential metabolic
alterations and reduced capillary density in the diaphragm and
anterior tibial muscles (Wongkitikamjorn et al., 2023). Furthermore,
it inducesmitochondrial impairment in the geniohyoidmuscles of male
offspring in the craniofacial region (Wongkitikamjorn et al., 2022).
However, it is unknown whether gestational IH is a risk factor for
craniofacial growth and development in offspring.

Children diagnosed with OSA have thinner cortical mandibular
bones compared to healthy children. A negative correlation between
OSA severity and mandibular cortical bone thickness was also found
(Eimar et al., 2019). Children diagnosedwithOSAby polysomnography
have thinner cortical bone compared with children at low risk for OSA
(Fernandes Fagundes et al., 2021), which suggests the interaction
between mandibular bone development and pediatric OSA. Cortical
bone thickness has a high accuracy in detecting osteoporosis (Calciolari
et al., 2015). Furthermore, neonatal rats exposed to IH display
underdeveloped mandibular ramus/condyles owing to the decreased
mRNA level of SOX9 (Sox9), a key regulator for chondrogenesis in the
mandible and limb (Lekvijittada et al., 2021). However, it is unclear
whether maternal IH during pregnancy is a risk factor for the growth of
mandible and long bone in offspring. This study aimed to clarify the
effects of gestational IH onmandibular growth and development and to
investigate cartilage metabolism-related marker expression in the
mandibular condyle.

2 Materials and methods

2.1 Experimental model

Thirteen-week-old Sprague-Dawley pregnant rats were
randomly exposed to normoxia as sham treatment (control
group) and IH (IH group) (n = 8 each) at a rate of 20 cycles per
hour (nadir, 4% oxygen; peak, 21% oxygen; 0% CO2), for eight

hours/day during the 12-h “lights on” period, from gestation day
(GD) 7–20, as previously described (Wongkitikamjorn et al., 2022;
Wongkitikamjorn et al., 2023). All pups from both groups were born
naturally under normoxia and maintained with their mothers until
weaning. We randomly chose five or six of pups from each mother
rat for this study, and pups were anesthetized with isoflurane and
euthanized at 5 and 10 weeks of age. Nine 5-week-old male, nine 5-
week-old female, nine 10-week-old male, and nine 10-week-old
female pups were used in all analyses. All rats were allowed free
access to food and water during the experimental period. At 5 and
10 weeks of age, male and female offspring were anesthetized with
isoflurane and euthanized, and their bones were immediately fixed
in 4% paraformaldehyde. The experimental procedures used in this
study were approved by the Institutional Animal Care and Use
Committee of the Tokyo Medical University (ethics approval
number: H31-0011).

2.2 Three-dimensional micro-computed
tomography analysis

The structure and bone mineral density (BMD) of the
mandibular and tibial bones were analyzed using micro-
computed tomography (micro-CT; inspeXio [SMX-100CT],
Shimadzu, Kyoto, Japan) and three-dimensional image analysis
software (TRI/3D-BON; RATOC System Engineering, Tokyo,
Japan). The tibial length of the rat pups was measured as an
index of systemic growth. Mandibular growth in rat pups was
established and evaluated using five landmarks based on previous
studies (Hong et al., 2021a; Hong et al., 2021b). Bonemineral density
(BMD) of the mandibular and tibial condylar heads was measured as
previously described (Hong et al., 2021a; Hong et al., 2021b).

2.3 Skeletal muscle analysis

To evaluate skeletal muscle growth, masseter, temporalis,
digastric, and soleus muscles were collected from each rat litter.
The weights of these muscles were measured on the right and left
sides and the average was calculated.

2.4 Real-time polymerase chain reaction
(RT-PCR) analysis

For RNA extraction, the left side of the mandibular condyle and
tibial head were dissected under a stereomicroscope, frozen at
−80°C, and homogenized. Total RNA was isolated from
homogenized samples using a PureLink FFPE total RNA
isolation kit (Invitrogen, Carlsbad, CA, United States), according
to the manufacturer’s protocol. cDNA was synthesized from total
RNA using a High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, United States). Real-time
PCR was performed in triplicate for each sample using a 7500 Real-
Time PCR System (Applied Biosystems). Polymerase chain reaction
analyses were conducted using gene-specific primers and
fluorescently labeled SYBR Green probes (Takara Bio, Shiga,
Japan). Appropriate primers were chosen for real-time PCR
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amplification of Sox9 (forward primer: 5′-agaggtttcaaatgcagtgagcta-
3, reverse primer: 5′-ccatgacacacgcttgcaga-3′), Bmp2 (forward
primer: 5′-ttagacggactgcggtctcctaa-3′, reverse primer: 5′-gggaag
cagcaacactagaagaca-3′), Alp (forward primer: 5′-actgaactgctggccctt
gac-3; reverse primer: 5′-tcaggttgttccgattcaactcata-3), and Hif1a
(forward primer: 5′-tctagtgaacaggatggaatggag-3; reverse primer, 5-
tcgtaactggtcagctgtggtaa-3′). The thermocycling conditions used
were 95°C for 30 s, followed by 40 cycles of 95°C for 5 s, and
60°C for 34 s. The threshold cycle (Ct) values of the target
mRNAs (Sox9, Bmp2, Alp, and Hif1a) were normalized to the Ct
values of the internal control (GAPDH) in the same sample (ΔCt =
Cttarget—CtGAPDH), followed by normalization to the control (ΔΔCt
= ΔCtIHgroup—ΔCtCgroup). The fold-change in expression was
calculated as the relative quantification value (RQ; 2−ΔΔCT) (Livak
and Schmittgen, 2001).

2.5 Statistical analyses

Data are shown as the mean ± standard error (SE). The
normality of the data was assessed using the Shapiro-Wilk test.
The control and experimental groups were compared using an
unpaired t-test, and statistical significance was accepted at a
p-value < 0.05. All statistical analyses were performed using IBM
SPSS Statistics Version 28.0.1 (Chicago, IL, United States).

3 Results

3.1 Systemic growth in rat offspring

The effects of maternal sleep-disordered breathing (such as
gestational OSA) on the birth of children are widely reported and
fetal growth in women with OSA is slowed in the third trimester of
pregnancy (Kneitel et al., 2018). Maternal snoring during pregnancy, a
manifestation of sleep-disordered breathing, is a risk factor for adverse
delivery outcomes such as cesarean section and small births for the

number of weeks of gestation (Micheli et al., 2011; O’Brien et al., 2013).
In addition, maternal snoring is implicated in the risk of hypertension
and growth retardation in logistic regression analysis controlling for
weight, age, and smoking (Franklin et al., 2000). In this experiment,
pregnant rats were exposed to IH fromGD7 to GD20, and delivery was
completed on GD21 (Figure 1), and all pups from both groups were
born naturally under normoxia and maintained with their mothers
until weaning.

Body weight and tibial length (Figure 2A) of the rat offspring
were measured as an index of whole-body growth. The body weight
of all offspring rats gradually increased, with no significant
difference between the control and IH groups at 5 and 10 weeks
after birth (Figure 3A). Moreover, there was no significant difference
in tibial length between the control and IH groups (Figure 3B).

3.2 Effects of gestational IH on mandibular
condylar growth and cortical bone structure
in rat offspring

Mandibular growth in rat pups was evaluated using five
landmarks (Figure 2B; Table 1).

Among the four parameters in the mandible of male offspring, Co-
Go [6.96 ± 0.18 mm in the IH group vs. 7.33 ± 0.16 mm in the N group,
p = 0.041] and Co-Gn [8.52 ± 0.28 mm in the IH group vs. 9.06 ±
0.12 mm in the N group, p = 0.041] parameters related to the condylar
length were significantly shorter in the gestational IH offspring than in
the control offspring at 5 weeks of age (Figures 4, 5A–D). Meanwhile,
there was no significant difference in Co-Go and Co-Gn between the
gestational IH offspring and the control offspring at 10 weeks of age.

In contrast, linear measurements in the mandible were
comparable between the control and IH groups in female
offspring at 5 and 10 weeks of age (Figures 4, 6A–D).

The cortical bone thickness at the inferior edge of the mandible
was measured at the mandibular first molar region (Figures 2C, D).

Cortical bone thickness at the inferior edge of the mandible was
significantly thinner in the gestational IH male offspring than in the

FIGURE 1
Experimental timeline. Abbreviations: GD, gestational day; IH, intermittent hypoxia, N, normoxic.
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controlmale offspring at 5 and 10 weeks of age [5 weeksmale rat: 0.48 ±
0.15 mm in the IH group vs. 0.52 ± 0.16 mm in the N group, p = 0.029;
10 weeks male rat: 0.65 ± 0.011 mm in the IH group vs. 0.68 ±
0.018 mm in the N group, p = 0.040] (Figure 7A). In contrast, there
was no significant difference in cortical bone thickness around the
mandibularM1 at 5 and 10 weeks of age in female offspring (Figure 7B).

3.3 Bone mineral density in the mandible
and tibia

Bone mineral density (BMD) of the mandibular and tibial
condylar heads was measured as previously described
(Figures 2E, F).

FIGURE 2
Micro-CT analysis landmarks for measuring the tibia and mandibular bones. Micro-CT images of the tibia (A); line segment represents tibial length
and separated hemi-right mandible (B). The definitions of the landmarks and variables in the mandible are shown in Table 1. (C) shows the high-
magnification micro-CT frontal image (D) of the mandible around the first molar (M1). The vertical line in (D) shows the area to measure cortical bone
thickness belowM1, and the box indicates the ROI for BMDmeasurement in the mandibular corpus (0.3 mm × 0.5 mm). Region of interest (ROI) for
BMD measurements in the mandibular condyle (1.5 mm × 1.5 mm) (E), tibia (1 mm × 1 mm) (F).
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BMD in the mandibular condyle and mandibular corpus below
M1 showed no significant difference between the control and IH
male offspring at 5 and 10 weeks of age based on micro-CT analysis
(Figures 8A, B). Moreover, BMD in the tibial head was comparable
between both groups of male offspring (Figure 8C). The female
offspring also showed comparable values between the control and
IH groups at 5 and 10 weeks of age in the mandibular condyle,
mandibular corpus below M1, and tibial head (Figures 8D–F).

3.4 Skeletal muscle weight analysis

We measured the weight of masticatory muscles to explore
the possibility of undergrowth of masticatory muscle in IH
offspring since mandibular formation in young rats is
potently affected by masticatory and chewing functions
(Bresin et al., 1999; Kün-Darbois et al., 2015). There were no
significant differences in the weight of the masseter, temporalis,

FIGURE 3
Systemic growth of offspring rats. (A) Body weight changes in male and female offspring at 5 and 10 weeks after birth. (B) Tibia length of male and
female offspring at 5 and 10 weeks after birth. Data are presented as the mean ± SE for each group. *p < 0.05.

TABLE 1 Definitions of landmarks and variables in the mandible.

Landmarks

Co The most posterior and superior points on the mandibular condyle

Go The most posterior point on the mandibular ramus

Gn The most inferior point on the ramus that lies on a perpendicular bisector of the Go-Mn line

Me The most inferior and anterior points on the lower border of the mandible

Mn The most concave portion of the inferior border of the mandibular corpus

Li The most anterior and superior points on the alveolar bone of the mandibular incisor

Linear measurements

Co-Li Total mandibular length

Co-Me Length from the condylar head to Me

Co-Go Length from the condylar head to Go

Co-Gn Ramus height
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gastric, and soleus muscles between the control and IH male
offspring at 5 and 10 weeks of age (Supplementary Figure S1).
However, there was a significant difference in skeletal muscle
weight of the masseter, temporalis, and digastric muscles
between the control and IH female offspring
(Supplementary Figure S2).

3.5 Differential gene expression of SOX9 and
HIF-1α in the mandibular condyle of
gestational IH offspring

The mandibular condylar cartilage is the center of greatest
growth in the mandible (Copray et a1., 1988). SOX9 triggers

FIGURE 4
CT-images of mandibular bone. Representative CT images of male and female offspring mandibles in the normoxic (N) and gestational IH (IH)
groups at 5 weeks of age (5-week) and 10 weeks (10-week) of age.

FIGURE 5
Mandibular linear measurements in male offspring rats. Comparison of changes in mandibular growth between normoxic (N) and IH male offspring
at 5 and 10 weeks of age (A–D). Data are presented as the mean ± SE for each group. *p < 0.05.
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chondrogenic differentiation via TGF-β/Smad signaling (Ikeda
et al., 2005; Furumatsu et al., 2013). Alkaline phosphatase (ALP)
and bone morphogenetic protein-2 (BMP-2) induce
osteogenesis and osteogenic transformation (Kuru et al., 1999;
Selvig et al., 2002). Thus, we checked the mRNA levels of SOX9,
BMP2, and ALP in the underdeveloped mandibular condyles of
IH offspring.

Gestational IH significantly decreased the mRNA level of the
chondrogenesis marker SOX9 (Sox9) and increased the mRNA

level of the hypoxia-inducible factor HIF-1α (Hif1a) in the
mandibular condylar cartilage of the 5- and 10-week-old male
offspring (Figure 9A). However, the mRNA levels of SOX9, HIF-
1α, BMP2 (Bmp2), and ALP (Alp) in the mandibular condyle of
the female offspring were comparable between both
groups (Figure 9B).

In contrast to the mandibular condylar cartilage, gestational IH
did not affect the expression levels of these genes in the tibial
cartilage of male and female offspring (Figures 10A, B).

FIGURE 6
Mandibular linear measurements in female offspring rats. Comparison of changes in mandibular growth between normoxic (N) and IH female
offspring at 5 and 10 weeks of age (A–D). Data are presented as the mean ± SE for each group. *p < 0.05.

FIGURE 7
Cortical bone thickness below themandibular M1. Comparison of changes inmale (A) and female (B) offspring at 5 and 10 weeks after birth. Data are
presented as the mean ± SE for each group. *p < 0.05.
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4 Discussion

This is the first study demonstrating gender-dependent
modification of mandibular growth with reduced SOX9 (Sox9)
mRNA expression and increased HIF1-α (Hif1a) mRNA
expression in the condylar cartilage in male offspring exposed to
gestational IH. A 2-week IH exposure during prenatal development
caused underdeveloped mandibular ramus/condyle growth revealed
in the Co-Go and Co-Gn directions in male offspring, but not in
female offspring. IH exposure during prenatal development also
caused growth failure of the cortical bone below M1 in male
offspring. Although mandibular formation in young rats is
potently affected by masticatory and chewing functions
(Grünheid et al., 2011; Inoue et al., 2019), the weight of the
masticatory muscles was comparable in male offspring of the IH
and control groups (Supplementary Figure S1). Our findings
indicate the possibility of gender-dependent detrimental
consequences on cartilaginous craniofacial development in
offspring exposed to gestational IH, a common symptom of OSA
during pregnancy.

Gestational IH reduces type IIA fiber size in the geniohyoid
muscle of the offspring rat from the gestational OSA model
(Wongkitikamjorn et al., 2022). They suggest that mitochondrial
metabolism is impaired owing to gestational IH and changes in
oxidative myofibers in the geniohyoid muscles, which may be
attributable to the sensitivity of mitochondria of the geniohyoid
muscle to gestational IH. Moreover, exposure to gestational IH
decreases running endurance in the adolescent pups

(Wongkitikamjorn et al., 2023). The expression of genes related
to glucose and lipid metabolism and the protein levels of
phosphorylated AMPK and AKT decreased in pregnant IH rats.
Furthermore, the gene expression of adiponectin receptors 1 and
2 significantly decreased in the respiratory (diaphragm) and limb
(tibialis anterior) muscles (Wongkitikamjorn et al., 2023). These
results suggest that the respiratory and limb muscles are vulnerable
to IH during pregnancy. Chen et al. (2018) showed that maternal
exposure to IH reduced body weight and tibial length in male and
female offspring, with male rats more prone to hypertension and left
ventricular dysfunction. On the other hand, Song et al. (2022)
showed that pups born to gestational IH exhibited catch-up
growth and were comparable to the controls by 5 weeks of age
although they were significantly smaller at birth. In this study, we
observed no significant difference in the body weight and tibial
length of newborn rats exposed to prenatal IH at 5 and
10 weeks of age.

In rat fetuses, the mandibular condyle is recognized as
mesenchymal condensation at GD14.5, and the glenoid fossa of
the mandible is recognized at GD15.5 (Yamaki et al., 2005). At the
fetal mandibular condyle, differentiation of mesenchymal
condensation into chondrocytes is initiated by GD16.5. At GD17,
the secondary cartilage of the mandibular condylar process arises
slightly dorsal to Meckel’s cartilage. At GD18, the secondary
cartilage becomes relatively larger and starts forming a cudgel-
like structure of the mandibular condylar process (Tomo et al.,
1997). Endochondral ossification was observed at GD17.5.
Meanwhile, part of the molar socket region already appears at

FIGURE 8
Bone mineral density (BMD) for the mandible and tibia of male and female offspring rats. Mandibular condylar head (A), mandibular corpus below
M1 (B), and tibial head (C) of male offspring. Mandibular condylar head (D), mandibular corpus below M1 (E), and tibial head (F) of female offspring. Data
are presented as the mean ± SE for each group. *p < 0.05.
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GD17. In this study, the IH period from GD7 to GD20 covered the
period of early embryonic development of the condyle and molar
socket regions of the rat mandible. Furthermore, rat embryos
generally become more sensitive to hypoxia during mid-gestation,
GD13 to GD16 in the uterine clamping model (Ritchie et al., 2017).
Thus, the susceptibility of the rat mandible to gestational IH may
depend on the fetal growth stage.

A study conducted in children found that children with OSA had a
smaller mandibular cortical bone width than children at low risk for
OSA (Fernandes Fagundes et al., 2021). Pediatric OSA is associated with
craniofacial vertical growth retardation and malocclusion, which are
related to mandibular cortical bone thickness. Young rats raised under
the IH condition also exhibit the craniofacial changes such as narrowing
in the lower dental arch (Hosomichi et al., 2017) and the reduced
mandibular growth (Oishi et al., 2016a; Oishi et al., 2016b). Badran et al.
(2019) suggested that IH during pregnancy can induce placental
hypoxia and oxidative stress, exposing the fetus to IH and affect
mandibular growth. Rats born from the pregnant IH group in this
study showed a decrease in cortical bone thickness below M1. Our
pregnant models were exposed to IH on days 7–20 of pregnancy-
induced placental hypoxia and oxidative stress. Exposure to hypoxia
reduces rat osteoblast proliferation and inhibits bone formation in vitro
(Utting et al., 2006). Our results are in accord with a decrease in cortical
bone width in themandible in children with sleep-disordered breathing
(Eimar et al., 2019).

The growth of the mandible in rats was at its maximum from
4 weeks to 8 weeks after birth, and continued to grow until the 16th
week (Kim et al., 2018). Meanwhile, the cortical bone of the
mandible rapidly reaches almost complete mineralization in rats
compared to humans, which suggests that cortical bone remodeling
change little in adolescent rats (Matsumoto et al., 2011; Lad, 2023).
In our study, the morphological growth (cartilage growth) of the
mandible in the male IH group returned to that of the control group
(Figures 5C, D), but not in the cortical bone (Figure 7A). This may
be owing to the difference in the timing of cartilage and bone growth,
and the fact that rat cortical bone does not undergo remodeling. In
addition, our data suggest that some catch-up of skeletal growthmay
occur during the adolescent stage in the offspring, although
gestational IH has a potent effect on skeletal growth during the
early growth stage.

Hypoxia during pregnancy causes differences in the
development of the heart, kidneys, and central nervous system
between the sexes and it affects males but not females (Bourque
et al., 2013; Thompson et al., 2020; Tong et al., 2023; Wilson et al.,
2023). In our study, we found sex differences in the growth and
development of mandibular and cortical bone owing to exposure to
IH during pregnancy. There are no reports on osteochondral
development except for our study, and it is possible that hypoxia
during pregnancy may have caused gender differences in
osteochondral development, as in other organs. However, the

FIGURE 9
mRNA expression levels of genes associated with chondrocyte and bone metabolism in mandibular condyle. Relative mRNA expression levels of
SOX9 (Sox9), BMP2 (Bmp2), ALP (Alp), and HIF-1α (Hif1a) in 5- and 10-weekmale (A) offspring, 5- and 10-week female (B) offspring. Data are presented as
the mean ± SE for each group. *p < 0.05.
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detailed mechanism behind the gender difference in this study is
unclear and further research is warranted.

Quantitative RT-PCR analysis of the mandibular epiphyseal
cartilage of male offspring from pregnant IH mothers revealed
upregulated HIF-1α (Hif1a) and downregulated SOX9 (Sox9)
mRNA levels. There is increased HIF-1α expression in the brains
of offspring rodents exposed to prenatal hypoxia and maternal
smoking (Chan et al., 2016; Wang et al., 2021; Wilson et al.,
2022), which suggests that gestational hypoxia increases oxidative
stress in young adult offspring. Furthermore, hypoxia and
osteogenesis are related via activation of the HIF pathway, which
causes significant changes in bone growth when oxygen levels are
low (Liu and Simon, 2004). HIF-1α regulation of SOX9 is necessary
to maintain the differentiation of hypoxic prechondrogenic cells
during skeletal growth (Amarilio et al., 2007), and HIF-1α
expression levels correlate with SOX9 levels. However, we
observed reduced SOX9 mRNA levels in the epiphyseal cartilage
mandible of male IH offspring, despite increased HIF-1α mRNA
levels. A previous histological study in neonatal IH rats (Hong et al.,
2021a) demonstrates that IH shifts proliferation and maturation in
the mandibular condyle fibrocartilage toward hypertrophic
differentiation and ossification by downregulating mRNA levels
of SOX9 and TGF-β in male rats, which showed mandibular
growth restriction. SOX9 can suppress chondrocyte maturation
and the osteoblast phenotype from the proliferative to early

hypertrophic and developmental stages (Dy et al., 2012), which
may provide a possible explanation for the mandibular growth
retardation and hypertrophic differentiation of mandibular
cartilaginous chondrocytes caused by the decreased SOX9 levels
in gestational IH offspring.

In this study, we found sex differences in mandibular bone growth
andmRNA expression of SOX9 and HIF-1α in the adolescent offspring
of pregnant rats exposed to IH. A previous study in a rat gestational IH
model focused on the different negative effects betweenmale and female
offspring (Wilson et al., 2022), which indicated that exposure to IH
during pregnancy canmediate the developmental programming of both
cortical and subcortical pathways, resulting in long-term negative
consequences for male offspring compared with female offspring.
Pae et al., 2011; Pae and Harper, 2023) revealed that IH exposure
for 1 h immediately after birth causes higher nor-epinephrine levels in
the blood and disturbance of mandibular bone remodeling for at least
the first five postnatal weeks in male neonatal rats, in contrast to female
pups. They also suggested that both bone deficiencies and potential
metabolic alterations are sex-specific. β2-adrenergic receptors, which
are targets of norepinephrine, are predominantly expressed in bone
cells, and skeletal growth is potently regulated by sympathetic
neurotransmission. Hong et al. (2021a) showed that postnatal IH
resulted in higher leptin levels and underdeveloped mandibular
ramus/condyles in adolescent male IH rats. In addition, reduced
bone growth of the mandible with the activation of β2-adrenergic

FIGURE 10
mRNA expression levels of genes associated with chondrocyte and bone metabolism in the tibia. Relative mRNA expression levels of SOX9 (Sox9),
BMP2 (Bmp2), ALP (Alp), and HIF-1α (Hif1a) in 5- and 10-week female (A) offspring, 5- and 10-week female (B) offspring. Data are presented as themean ±
SE for each group. *p < 0.05.

Frontiers in Physiology frontiersin.org10

Suzuki et al. 10.3389/fphys.2024.1397262

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1397262


receptors is restored by intraperitoneal administration of a β2-
adrenergic antagonist, which changes RANKL expression in the
growing condyle (Hong et al., 2021b). Although further
investigations are necessary to clarify both the serum levels of nor-
epinephrine and the neuroskeletal regulatory pathway after gestational
IH, one possible explanation may be that there is an impaired
neuroskeletal regulatory pathway in the male offspring after
gestational IH.

A limitation of this study was the absence of epigenomic data to
show the possible SOX9-directed pathways under gestational IH in
offspring rats. Moreover, we need to examine details of the gender-
dependent pathway of impaired craniofacial bone growth in
offspring to clarify why male offspring were more susceptible to
gestational IH than female offspring.
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