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Introduction: Cardiovascular disease (CVD) is responsible for over 30% of
mortality worldwide. CVD arises from the complex influence of molecular,
clinical, social, and environmental factors. Despite the growing number of
autosomal genetic variants contributing to CVD, the cause of most CVDs is
still unclear. Mitochondria are crucial in the pathophysiology, development and
progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and
mitochondrial haplogroups in the context of CVD has recently been highlighted.

Aims: We investigated the role of genetic variants in both mtDNA and nuclear-
encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease
(CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis
for diabetes.

Methods: We investigated 371,542 variants in 2,527 NEMG, along with
192 variants in 32 mitochondrial genes in 381,994 participants of the UK
Biobank, stratifying by presence of diabetes.

Results:Mitochondrial variants showed associations with CVD, hypertension, and
serum lipids. Mitochondrial haplogroup J was associated with CAD and serum
lipids, whereas mitochondrial haplogroups T and U were associated with CVD.
Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed
associations with CVD, CAD, hypertension, as well as diastolic and systolic
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blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane
40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2
(SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants
associated with hypertension. Variants within these three genes were also
associated with serum lipids.

Conclusion: Our study demonstrates the relevance of mitochondrial related
variants in the context of CVD. We have linked mitochondrial haplogroup U to
CVD, confirmed association of mitochondrial haplogroups J and T with CVD and
proposed newmarkers of hypertension and serum lipids in the context of diabetes.
We have also evidenced connections between the etiological pathways underlying
CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and
HLA-DQA1 genes as common nexuses.

KEYWORDS

cardiovascular disease, coronary artery disease, mitochondrial DNA, blood pressure,
hypertension, diabetes, UK Biobank, mitochondrial haplogroups

Introduction

Cardiovascular disease (CVD) is an umbrella term that
encompasses all diseases of the heart and blood vessels, including
heart disease (involving the heart) and vascular disease (involving
the blood vessels) (Lopez et al., 2023). Coronary artery disease
(CAD), sometimes called coronary heart disease or ischemic
heart disease, is the most common type of heart disease and is
characterized by a narrowing or blockage of the coronary arteries
(Coronary Artery Disease, 2023; Coronary Artery Disease (CAD):
Symptoms & Treatment, n.d.). CVD is the major cause of deaths
worldwide, accounting for more than 30% of mortality (WHO, 2023;
Tsao et al., 2023). CAD is the leading cause of death, accounting for
16% of global mortality in 2019 (WHO, 2023). Diabetes is a major
risk factor for development of CVD and for people with diabetes,
CVD represents the leading cause of morbidity and mortality (WB
and DL, 1979). Individuals with type 2 diabetes mellitus (T2DM)
have a 2–4 times increased risk of CVD (Kishore et al., 2012;
Visseren et al., 2021; Yang et al., 2021).

CVD is a complex multifactorial condition arising from the
combined influence of environmental and hereditary factors. Well
established modifiable risk factors for CVDs include hypertension,
diabetes, hypercholesterolemia and smokingwith these factors used in
the estimation of the 10-year risk of incident cardiovascular events
(Goff et al., 2014; Cadby et al., 2020). Serum lipids, namely, total
cholesterol (Chol), low-density lipoprotein (LDL), high-density
lipoprotein cholesterol (HDL) and triglycerides (TG) are directly
implicated in the development of CVDs, and are used as risk
factors to predict long-term CVD risk and adverse clinical
outcomes (Goff et al., 2014; Cadby et al., 2020), and as therapeutic
targets for CVDs (Ference et al., 2017; Echouffo-Tcheugui et al., 2020).
The aetiology of CVD is clearly influenced by genetics, as evidenced in
many studies (Marino and Digilio, 2000; Muntean et al., 2017; Silva
et al., 2023; Safdar et al., 2024). CVD, and especially CAD, show
polygenic architecture and a substantial heritability, estimated
between 40% and 60% (Watkins and Farrall, 2006; Dai et al., 2016;
Khera and Kathiresan, 2017; Inouye et al., 2018a; Drobni et al., 2022).
Genome-wide association studies (GWAS) have identified
associations between single nucleotide polymorphisms (SNPs) and
CAD, myocardial infarction, and other CVDs (Companioni et al.,

2011; Muntean et al., 2017; Silva et al., 2023). A recent systematic
review confirmed at least 71 genetic variants as susceptibility loci for
CAD (Silva et al., 2023). Beyond SNPs, there are other genetic causes
of CVD, including chromosomal aberrations, copy number variations
and epigenomics (Liu et al., 2023; Safdar et al., 2024). However,
despite the growing number of hereditary factors contributing to
CVD, the cause of the vast majority of CVDs remains unclear (Safdar
et al., 2024). Mitochondria play a significant role in the
pathophysiology, development and progression of CVDs, through
key mechanisms such as excessive reactive oxygen species production,
mitochondrial dysfunction, and genetic factors as mitochondrial
DNA (mtDNA) damage or mutations (Venter et al., 2018; Siasos
et al., 2018; Poznyak et al., 2020; Lin et al., 2021; Calabrese et al., 2022;
Yang et al., 2022). In cardiac mitochondria, mtDNA is important in
the mitochondrial life circle and the proper functioning of oxidative
phosphorylation (OXPHOS). Irreversible mtDNA damage leads to
mtDNA mutations, which in turn aggravate OXPHOS dysfunction
and affect mitophagy, producing a leakage of both mtDNA and
proteins outside the mitochondria, which triggers an innate
immune response, causing cardiovascular damage (Liu et al., 2022).

Mitochondria, the organelles responsible for generating energy
for cellular metabolism (Cooper, 2000; Lodish et al., 2012; Chaban
et al., 2014) contain several copies of their own genome, a circular
double-stranded DNA molecule of ≈16.6 kb which in humans
includes a total of 37 genes, 13 coding for the subunits of
respiratory complexes I, III, IV, and V (Meiklejohn et al., 2013),
22 code for transfer RNAs (tRNAs) for the 20 standard amino acids,
an extra gene for leucine and serine (Taanman, 1999; Cooper, 2000;
Gray et al., 2008), and two for ribosomal RNAs (rRNAs) (Chan,
2006). The replication origin(s) and promoters for mtDNA are
contained in an additional displacement loop (D-loop).
Additionally, the cell nucleus contains genes encoding proteins
related to mitochondria functions which regulate mtDNA
transcription, replication, cell apoptosis and mitophagy,
nucleotide biosynthesis, metabolism, and iron and calcium
homeostasis (Timmis et al., 2004; Dolezal et al., 2006). Common
maternally inherited mtDNA variants have been associated with
CVD risk factors such as hypertension, diabetes, and dyslipidaemia
(Calabrese et al., 2022). Recently, the role of mitochondrial genetic
variants in the lipidomic context of CAD has been highlighted in
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1,409 Han Chinese CAD patients, showing associations of D-loop
variants with TG, Chol, LDL and HDL (Wang et al., 2021). Specific
mitochondrial haplogroups have shown to confer a significant risk
for many CAD related traits, such as coronary atherosclerosis
(Sawabe et al., 2011), ischemic stroke (Tsai et al., 2020),
myocardial infarction (Nishigaki et al., 2007b), atherosclerotic
cerebral infarction (Nishigaki et al., 2007a), essential
hypertension (Tsai et al., 2020) and T2DM in Asians (Fuku
et al., 2007), and CVD (Veronese et al., 2019), atherosclerosis
(Zhelankin et al., 2015; Piotrowska-Nowak et al., 2018), CAD
(Kofler et al., 2009; Palacín et al., 2011), ischemic stroke (Rosa
et al., 2008), hypertrophic cardiomyopathy (Castro et al., 2006;
Singh et al., 2021) and diabetic retinopathy (Kofler et al., 2009;
Estopinal et al., 2014; Bregman et al., 2017) in Europeans. Not all the
studies however indicate an influence of mitochondrial variants in
CAD related traits. No role for mtDNA variation was identified for
hypertension or hyperglycaemia in participants from the
Sympathetic activity and Ambulatory Blood Pressure in Africans
(SABPA) prospective cohort study (Venter et al., 2017). A large
study in over 9,000 Europeans failed to find a role for mitochondrial

haplogroups on morbidity or mortality secondary to CVD (Benn
et al., 2008). Therefore, the identification of mitochondrial genetic
patterns and different forms of CVD and related traits is important
to gain deeper understanding of the biological links between CVDs,
lipid metabolism and clinical outcomes.

In this study, we aimed to investigate the role of genetic variants
in both mtDNA and nuclear-encoded mitochondrial genes (NEMG)
in cardiovascular diseases (CVD, CAD and hypertension) and
cardiovascular risk factors (serum lipids: Chol, HDL, LDL, and
TG) in a large population cohort (UK Biobank), additionally
exploring the impact of diabetes.

Methodology

Ethics statement

This investigation conformed to the principles outlined in the
Declaration of Helsinki. Participants gave informed consent prior to
their inclusion in the UK Biobank project.

FIGURE 1
Design of the study. Abbreviations: chrMT: mitochondrial chromosome; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein
cholesterol; NEMG: nuclear-encoded mitochondrial genes; PCA: principal component analysis.
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Study design and population

This was a retrospective, cross-sectional study in participants of
European ethnicity from the UK Biobank (Bycroft et al., 2018). To
evaluate the effect of diabetes, the association of gene variants with
the phenotypic outcomes were investigated with/without
stratification by diabetes. Therefore, the total (overall) cohort was
divided into two groups, according to the presence (diabetic cohort)
or absence of diabetes (non-diabetic cohort) (Figure 1). Participants
whose assessment of cardiovascular disease or diabetes was not
possible were excluded from the analysis.

The UK Biobank project is a large-scale biomedical database and
research resource providing genetic, lifestyle and health information
from half a million UK participants (Bycroft et al., 2018).

Phenotypic variables

Outcome variables
Outcome variables included CVD, CAD, hypertension, systolic

and diastolic blood pressure (SBP, DBP) and serum lipids
(cholesterol, HDL, LDL, and TG). Detailed definitions and
disorders captured in every variable are provided within the
“Supplementary Methods” section of the Supplementary Data Sheet.

Genotyping and quality control

The Applied Biosystems™ UK Biobank Axiom™ and UK
BiLEVE Axiom™ Affymetrix Arrays were used for genotyping by
the UK Biobank. Genotypes were imputed by the UK Biobank using
a combination of the Haplotype Reference Consortium and merged
UK10K and 1000 Genomes phase 3 reference panels (Bycroft et al.,
2018). PLINK 1.90 beta and PLINK 2.00 alpha were used to perform
quality control (QC) and association analysis (Chang et al., 2015;
Chang and GRAIL, 2020). Before QC, the study was comprised of
488,377 participants, 711,188 variants in NEMG and
265 mitochondrial variants. Individuals with high missingness
rate or call rate lower than 95% were removed. Related
individuals (identity by kinship coefficient >0.0884) and principal
component analysis (PCA) outliers, as calculated by the UK
Biobank, were also removed (Bycroft et al., 2018). Variants with
minor allele frequency (MAF) < 1%, minor allele count (MAC) <
20 or variant call rate <95% were removed from the analysis.
Autosomal variants not fulfilling Hardy-Weinberg equilibrium
(HWE) (p < 1E-20) or imputation score under 0.3 were also
excluded. After QC, 381,994 participants (Overall Cohort),
371,542 variants in 2,527 NEMG, along with 192 variants in
32 mitochondrial genes for the combined arrays and 93 variants
in 28 genes for the BiLEVE array remained. For variants present in
both arrays, only results in the UK Biobank Axiom™ were
considered (largest sample).

Mitochondrial haplogroups

Mitochondrial haplogroups were estimated using HaploGrep2
(Weissensteiner et al., 2016), based on PhyloTree17 (van Oven,

2015). Only the major European haplogroups H, V, HV, J, T, U, K,
Z, W, X, I, and N were considered, grouping the remaining options
in the “Other” category.

Selection of nuclear-encoded
mitochondrial genes

A total of 2,527 unique autosomal genes coding for
22,713 transcripts were investigated. The selection process produced
2,448 unique genes returned from database searches with a further
180 genes identified from literature searches for genes influencing
mitochondrial function (Skelly, 2020). Briefly, several online
databases and literature resources were searched for NEMGs:
Mitoproteome (Taylor et al., 2003; Cotter et al., 2004; Pagliarini
et al., 2008; Calvo et al., 2016), MitoMiner (Smith and Robinson,
2016), MitoMap (Brandon et al., 2005), Ensembl (Zerbino et al., 2018)
and UniProt (The UniProt Consortium, 2017). Genes extracted from
individual sources were reviewed and duplicates were excluded. Gene
names were then screened to ensure there was no duplication between
the database searches and literature searches. Genes were annotated
with their official HUGO Gene Nomenclature Committee (HGNC)
gene symbol (Wain et al., 2002) using Ensembl BioMart release 67 (May
2012) based on the February 2009 Homo sapiens high coverage
assembly GRCh37 from the Genome Reference Consortium
(Zerbino et al., 2018). Any genes not found in the BioMart (Zerbino
et al., 2018) search were manually annotated according to their official
HGNC gene symbol (Wain et al., 2002). The list of genes was then
checked again for duplicates based on HGNC symbols, known
pseudonyms and gene positions. Only genes found in autosomes
were included in the analysis. Any genes on sex chromosomes, non-
human genes, or bacterial artificial chromosomes were excluded from
the final list of genes encoding proteins required for
mitochondrial function.

In silico analysis: functional annotation
clustering

The online tool Functional Mapping and Annotation of
Genome-wide Association Studies (FUMAGWAS) version 1.6.1
(Watanabe et al., 2017; 2019) was used to annotate, prioritise,
visualise, and interpret the function of the genes statistically
associated in the three cohorts. This tool automatically performs
tissue specificity test and gene set/pathway enrichment analyses.

Statistical analysis

Descriptive analysis
Descriptive and bivariate analyses were performed using R (R

Core Team, 2024). Qualitative variables were expressed as
percentage (%) of their total. Quantitative variables were
expressed as the mean and the standard deviation.

Association analysis
Association analysis for individual variants was performed

using PLINK 2.00 alpha using the “--glm” flag (Chang et al.,
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2015). For binary phenotypes (CVD, CAD and hypertension)
--glm fits a logistic or Firth regression model (Chang et al., 2015).
For quantitative phenotypes, --glm fits the linear model (Chang
et al., 2015). Quantitative outcome variables were natural
logarithmic transformed and analysed using the additional
“--pheno-quantile-normalize” flag, to force quantitative
phenotypes to a N (0, 1) distribution, preserving only the
original rank orders (Chang et al., 2015). The --glm flag
performs a multicollinearity check before each regression,
which skips and reports “NA” results when it fails. Age, sex,
genotyping batch and the 10 first PCAs values were included as
covariates.

For the influence of traditional non-genomic risk factors for
CVD on the outcomes (CAD, CVD and hypertension) multivariable
logistic regression was performed in R (R Core Team, 2024).

Multiple comparisons correction
To correct for multiple testing, a Bonferroni correction for the

number of independent variants (estimated using a pruning
procedure of our data; r2 <0.2, window size 50 bp, offset 5 bp)
after QC was used (Wuttke et al., 2016). The pruning estimated
47 independent variants for the mitochondrial chromosome for the
combined arrays of the UK Biobank (35 when only the BiLEVE
array was considered), yielding a threshold of 1E-03, and
57,457 variants for NEMG, yielding a threshold of 9E-07.

Clumping and annotation
Independent loci were identified using PLINK 1.90 beta

clumping procedure (--clump-p1 5e-05 --clump-r2 0.1 --clump-
kb 500) (Chang et al., 2015). A physical distance threshold for
clumping of 1 kb was used for the mitochondrial chromosome. The
independent loci were annotated using SNPnexus (Chelala et al.,
2009; Dayem Ullah et al., 2012; 2013; Dayem Ullah et al., 2018;
Oscanoa et al., 2020).

Mitochondrial haplogroups
Association analysis for mitochondrial haplogroups was

performed using logistic regression in R version 4.3.0 (21/04/
2023) (R Core Team, 2024), including as covariates age, sex and
genotyping. Each haplogroup was analysed separately using all the
other haplogroups as reference, after constructing dummy variables
taking the values of 0 and 1, with the R package “fastDummies”
(Kaplan, 2020). Principal components were not used as covariates to
account for ancestry because of their potential correlation with
haplogroups. The Bonferroni correction was applied to account
for multiple comparisons, adjusting the p-value threshold, dividing
by the number of haplogroups in each dataset (0.05/number of
haplogroups).

Power calculations
Power calculations were performed for the CVD phenotype in

the overall cohort and two strata using the Genetic Association
Study (GAS) Power Calculator, considering a genotype relative
risk of 1.2 (Skol et al., 2006), disease allele frequency of 0.02 and a
prevalence of 32.2% (Einarson et al., 2018). In the cohort with
diabetes, the statistical power was 84.2% and 94% for significance
levels of 9E-07 and 1E-04, respectively; 100% for the
other cohorts.

Results

The descriptive analysis of the population is detailed in Table 1.
Individuals with diabetes were more likely to be takingmedication to
control blood pressure or cholesterol, with more than half having
CVD. Traditional non-genomic risk factors for CVD were
associated with CAD, CVD and hypertension in the three
cohorts (Supplementary Table S3).

Mitochondrial variants

Mitochondrial variants showed associations with CVD,
hypertension, Chol and HDL (Figure 2). Full summary statistics are
available in (Supplementary Document 1). Seven variants inMT-ATP6,
MT-CYB, MT-ND4, MT-ND5, MT-TR and MT-TT were associated
with CVD in the overall cohort (MT-ND4-rs3088053 also in the non-
diabetic cohort). The MT-ND2-rs3020602 variant was associated with
hypertension in the diabetic cohort. Directions of effects were consistent
among cohorts.

Mitochondrial haplogroups

The frequency of the mitochondrial haplogroups in the UK
Biobank Cohort is shown in Supplementary Table S4.Mitochondrial
haplogroup J showed associations with CAD, Chol and LDL,
whereas mitochondrial haplogroups T and U were associated
with CVD. There were no significant associations in the diabetic
cohort (Figure 3). Directions of effects were consistent among
cohorts. The association of mitochondrial haplogroup T and
CVD was consistent, showing associations with four of its
defining mutations (MT-ATP6-rs879233543, MT-TR-rs28358279,
MT-CYB-rs193302983 and MT-TT-rs527236198; Figure 2).

NEMG variants

Significant associations across phenotypes
Figures 4, 5 show the number of genes with associations to the

different phenotypes, in any cohort. NOS3 was common to CVD,
CAD, hypertension, SBP and DBP (Figure 4). In particular, the
NOS3-rs3918226T variant was associated with an increased risk of
CVD, CAD, hypertension, and values of SBP and DBP and
decreased serum levels of Chol and LDL, whereas the NOS3-
rs891511A variant was associated with decreased SBP and DBP
in the overall and/or non-diabetic cohorts (Supplementary
Document 2). The NOS3-rs2070744 and NOS3-rs1007311
variants were also associated with HDL in the overall/non-
diabetic cohorts.

TOMM40, one of the genes associated with CAD but not with
CVD or the blood pressure related phenotypes (hypertension,
SBP and DBP; Figure 4), was common for all the serum lipids,
along with SLC22A2 (Figure 5A), which was common for CVD
and all serum lipids (Figure 5B). Two variants in TOMM40 were
associated with three phenotypes, rs34404554 (CAD, Chol and
HDL) and rs61679753 (Chol, HDL and LDL) (Supplementary
Document 2). Sixteen more variants were associated with Chol,
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TABLE 1 Descriptive analysis of the participants included in the study, stratified by diabetes. For qualitative variables, frequencies are expressed as number
and percentage in brackets. Quantitative variables are expressed as mean and standard deviation.

Overall cohort Non-diabetic cohort Diabetic cohort

Variable n mean ± sd n mean ± sd n mean ± sd

Age (years) 381,994 57.1 ± 7.9 345,245 57.0 ± 8.0 36,749 58.8 ± 7.5

Body Mass Index (kg/m2) 380,779 27.5 ± 4.8 344,230 27.3 ± 4.6 36,549 29.5 ± 5.7

Diastolic blood pressure (mmHg) 381,683 82.4 ± 10.7 344,979 82.4 ± 10.7 36,704 81.7 ± 10.5

Systolic blood pressure (mmHg) 381,681 140.4 ± 19.7 344,977 140.2 ± 19.7 36,704 142.1 ± 19.2

Cholesterol (mmol/L) 364,321 5.7 ± 1.1 329,941 5.8 ± 1.1 34,380 5.1 ± 1.2

HDL cholesterol (mmol/L) 333,403 1.5 ± 0.4 301,859 1.5 ± 0.4 31,544 1.3 ± 0.4

LDL direct (mmol/L) 363,654 3.6 ± 0.9 329,351 3.6 ± 0.9 34,303 3.1 ± 0.9

Triglycerides (mmol/L) 364,027 1.8 ± 1.0 329,701 1.7 ± 1.0 34,326 2.0 ± 1.1

n n (%) n n (%) n n (%)

Sex (male) 381,994 173,246 (45.4) 345,245 153,454 (44.4) 36,749 19,792 (53.9)

Diabetes (yes) 381,994 36,749 (9.6) 345,245 0 (0.0) 36,749 36,749 (100.0)

Ever Smoker (yes) 380,621 174,716 (45.9) 344,059 155,909 (45.3) 36,562 18,807 (51.4)

Hypertensive Medication (yes) 381,388 95,356 (25.0) 344,788 77,692 (22.5) 36,600 17,664 (48.3)

Cholesterol Medication (yes) 381,436 72,626 (19.0) 344,821 54,325 (15.8) 36,615 18,301 (50.0)

Insulin (yes) 381,436 4,205 (1.1) 344,821 0 (0.0) 36,615 4,205 (11.5)

Cardiovascular Disease (yes) 381,994 134,950 (35.3) 345,245 114,127 (33.1) 36,749 20,823 (56.7)

Coronary Artery Disease (yes) 381,974 12,924 (3.4) 345,225 10,063 (2.9) 36,749 2,861 (7.8)

Hypertension (yes) 311,639 303,942 (97.5) 344,944 272,029 (78.9) 36,695 31,913 (87.0)

FIGURE 2
Mitochondrial variants associated with qualitative and quantitative phenotypes in any cohort (expressed as odds ratio and 95% confidence intervals
for qualitative phenotypes and beta coefficients and 95% confidence intervals for quantitative phenotypes). Variants with p < 1E −03 are marked with an
asterisk in the color of the corresponding cohort. The total number of participants per cohort was: 381,994 (overall cohort), 345,245 (non-diabetic
cohort) and 36,749 (diabetic cohort). p-values correspond to the asymptotic p-value (or -log10(p)) for Z/chisq-stat (Qualitative variables, logistic
regression) or for T/chisq-stat (Quantitative variables, linear regression). Abbreviations: chrMT:mitochondrial chromosome; Chol: total cholesterol; CVD:
cardiovascular disease; DBP: diastolic blood pressure; DM: Diabetes Mellitus; HBP: hypertension; HDL: high-density lipoprotein cholesterol LDL: low-
density lipoprotein cholesterol; SBP: systolic blood pressure.
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HDL, LDL and TG (one or several) mainly in the overall and non-
diabetic cohorts (Supplementary Document 2). As for SLC22A2,
the rs10080815 variant was associated with CAD, CVD, Chol,
LDL and TG; rs3127606 with CAD, Chol and LDL. Other
13 variants were associated with one or several phenotypes
(CAD, CVD, Chol, HDL, LDL and TG), mainly in the overall
and non-diabetic cohorts (Supplementary Document 2).

HLA-DQA1 was associated with hypertension and all the serum
lipids (Figure 5C). In particular, the rs6938008 variant was
associated with hypertension and HDL, whereas the
rs3129770 variant was associated with Chol, LDL and TG
(Supplementary Document 2). Two variants were associated only
in the cohort with diabetes (rs1048372 with HDL and
rs9272417 with TG; Supplementary Document 2).

FIGURE 3
Mitochondrial haplogroups associated with phenotypes in any cohort. Associations with p < 4E-03 are marked with an asterisk in the color of the
corresponding cohort (expressed as odds ratio and 95% confidence intervals for qualitative phenotypes and beta coefficients and 95% confidence
intervals for quantitative phenotypes). The total number of participants per cohort was: 381,994 (overall cohort), 345,245 (non-diabetic cohort) and
36,749 (diabetic cohort). p-values correspond to the asymptotic p-value (or -log10(p)) for Z/chisq-stat (Qualitative variables, logistic regression) or
for T/chisq-stat (Quantitative variables, linear regression). Abbreviations: chrMT: mitochondrial chromosome; Chol: total cholesterol; DBP: diastolic
blood pressure; DM: Diabetes Mellitus; HBP: hypertension; HDL: high-density lipoprotein cholesterol LDL: low-density lipoprotein cholesterol; SBP:
systolic blood pressure.

FIGURE 4
Venn diagrams showing the genes in the intersection among coronary artery disease, cardiovascular disease and hypertension (A) and also with
diastolic and systolic blood pressure (B). Abbreviations: CAD: coronary artery disease; CVD: cardiovascular disease; DBP: diastolic blood pressure; HBP:
hypertension; SBP: systolic blood pressure.
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Significant associations in all cohorts
Sixty-six variants in 35 NEMG were consistently significant in

all three cohorts for Chol, HDL, LDL, TG and/or DBP
(Supplementary Figures S1–S5). Supplementary Table S5 shows
the number of gene variants and genes associated with each
phenotype, along with the number of traits reported in GWAS
Catalog for those genes, according to FUMAGWAS (Watanabe
et al., 2017). Among them, six variants in TOMM40 were associated
with LDL and Chol in all cohorts (rs71352238, rs2075650,
rs1160983, rs11668327, rs111784051 and rs115881343). In
addition, TOMM40-rs34404554 was associated with Chol and
HDL in all cohorts (Supplementary Document 2). The GWAS
Catalog reports TOMM40 associations mainly with multiple
serum lipid traits, including Chol, HDL, LDL and TG, C-reactive
protein and body-mass index (BMI) (Supplementary Table S6).

Nine variants in HLA-DQA1 were associated with LDL, TG and
DBP in all cohorts (Supplementary Figures S3–S5). The HLA-DQA1-
rs6938008 variant was also associated with hypertension in the overall
cohort (Supplementary Document 2).

The rs7005363 variant inMSRAwas associated with TG levels in all
cohorts (along with other 12 in the overall/non-diabetic cohorts). Six
other variants in this gene were also associated with CVD and
hypertension in the overall/non-diabetic cohorts. In the enrichment
analysis,MSRA appears along with TOMM40 as cellular components of
the mitochondrion and associated with serum metabolite levels,
according to GWAS Catalog (Supplementary Table S6).

Other genes previously reported as risk factors for lipid traits
and found significant in the three cohorts were GCKR, SLC39A8,
FADS2, PGS1, HNF4A and PLA2G6 (Supplementary Table S6).

Variants with different direction in the cohort
with diabetes

Among the NEMG variants significantly associated in the
overall and non-diabetic cohorts, some of them showed different
direction of association in the diabetic cohort, although not
significantly (Supplementary Figures S6–S12). As an exception to
this, the HLA-DQA1-rs9272417 variant was significant only in the
diabetic cohort (Figure 6; Supplementary Figure S10 and
Supplementary Document 2).

Variants associated only in the cohort with diabetes
Eight variants in seven NEMG showed associations with HDL,

TG, Chol and DBP only in participants with diabetes (Figure 6). In
particular, two variants in HLA-DQA1 were associated with HDL
(rs1048372) and TG (rs9272417).

Discussion

Traditional non-genomic risk factors for CVD are associated
with cardiac phenotypes in the UK Biobank cohort (Littlejohns et al.,
2019; Razieh et al., 2022; Zhang et al., 2024). Although these clinical

FIGURE 5
Venn diagrams showing the genes in the intersection among serum lipids and coronary artery disease (A), cardiovascular disease (B) and
hypertension (C), respectively. Gene names are shown only for sets of five genes or less in the central (common to all phenotypes) and outer layers
(uncommon genes). Abbreviations: CAD: coronary artery disease; Chol: total cholesterol; CVD: cardiovascular disease; DBP: diastolic blood pressure;
HBP: hypertension; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol; SBP: systolic blood pressure; TG:
triglycerides.
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factors account for much of the CVD risk, it is valuable to explore
the association between genomic factors, including mitochondrial
DNA variation and variation in mitochondrial related genes, and
cardiac phenotypes.

mtDNA

Our study shows a consistent association between
mitochondrial haplogroup T and CVD, reflected through
associations not only with the haplogroup itself, but also with
four of its defining mutations. The importance of this
mitochondrial haplogroup on CVD had been previously
evidenced by more than 3.5 times increase in the risk of
hypertrophic cardiomyopathy in males, the most common
genetic disorder of the heart (Castro et al., 2006; Singh et al.,
2021). The mtDNA haplogroup T was associated with higher risk
of CAD (14.8% vs. 8.3%; p = 0.002) in the study of Middle
European Caucasians, including 487 patients with
angiographically documented CAD and 1,527 control subjects
without clinical manifestations of atherosclerotic disease (Kofler
et al., 2009). One of the defining variants of haplotype T (MT-TT-
rs527236198A) has recently been associated with higher risk of
CAD in Iranian patients, demonstrating a transethnic effect
(Heidari et al., 2020). Furthermore, JT haplogroups (HR = 0.75;
95%CI: 0.54–0.96; p = 0.03), and particularly J (HR = 0.71; 95%CI:
0.46–0.95; p = 0.02) have been associated with a reduced risk of
CVD after a median follow-up of 8 years in 3,288 Caucasian
participants (Veronese et al., 2019). In our study, mitochondrial
haplogroup J was associated with higher risk of CVD along with
lower levels of Chol and LDL. Interestingly,MT-ND5-rs28359172,

one of the defining mutations of mitochondrial haplogroup J, was
also associated with Chol levels in 321,188 individuals. We have
recently observed this variant associated with eGFR levels in
329,235 participants from the UK Biobank (Cañadas-Garre
et al., 2024). Other variants in MT-ND5 (rs2853503), and MT-
CYB-rs2853506, both associated with CVD in our analysis, were
also associated with renal function in previous works in the UK
Biobank (SCr, SCysC and eGFR) (Yonova-Doing et al., 2021;
Cañadas-Garre et al., 2024) MT-ND5 encodes the NADH
dehydrogenase 5 subunit gene. Mutations in MT-ND5 have
been associated with tubulo-interstitial kidney disease, clinically
characterised by proteinuria and hypertension (Bakis et al., 2020),
which could partially explain its role in the overlap between CKD
and CVD. Mitochondrial genes like MT-ATP6, MT-CYB, MT-
ND4, MT-ND5, MT-TR and MT-TT, all associated with CVD in
our study, have also been associated with CVD in other ethnic
populations, e.g., CAD in Iranians (Heidari et al., 2020), and
hypertension and ischaemic stroke in Chinese (Zhu et al., 2016;
2018; Guo et al., 2022). Mitochondrial genes, particularly those
coding the oxidative phosphorylation (OXPHOS) enzyme
complexes I-IV, play significant roles in CVD due to their
involvement in mitochondrial function and energy production.
Variants in these genes can disrupt normal electron transport
chain activity, leading to decreased ATP levels and increased
oxidative stress, causing mitochondrial dysfunction, which is
increasingly recognized as a contributing factor to various
forms of heart disease, including CAD and cardiomyopathies
(Venter et al., 2018; Campbell et al., 2022). Many of the
conditions causing CVD, such as atherosclerosis, hypertension,
cardiomyopathy and T2DM, are associated with inflammation
caused by oxidative stress (Venter et al., 2018).

FIGURE 6
Variants in nuclear-encodedmitochondrial genes associated with several phenotypes after stratification by diabetes (expressed as beta coefficients
and 95% confidence intervals). Abbreviations: chrMT: mitochondrial chromosome; Chol: total cholesterol; DM: Diabetes Mellitus; HBP: hypertension;
HDL: high-density lipoprotein cholesterol.
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NEMG

NOS3
The findings of our study place NOS3 as the gene most

consistently associated with CVD, CAD and blood pressure
related traits (hypertension, SBP and DBP). NOS3, encoding for
nitric oxide synthase 3, may play a role in the development and
progression of CAD (Nikpay et al., 2015; Van Der Harst and
Verweij, 2018; Zhou et al., 2018; Hartiala et al., 2021; Aragam
et al., 2022; Temprano-Sagrera et al., 2022; Rai et al., 2023),
which appears to be mediated mainly through blood pressure
regulation across ancestries, according to many GWAS (Liu
et al., 2016; Hoffmann et al., 2017; Wain et al., 2017; Feitosa
et al., 2018; Sung et al., 2018; Kichaev et al., 2019; Giri et al.,
2019; Wojcik et al., 2019; Sakaue et al., 2021; Plotnikov et al.,
2022; Schoeler et al., 2023). Our results confirm the role of
NOS3-rs3918226T as a marker of susceptibility for CAD (Nikpay
et al., 2015; Van Der Harst and Verweij, 2018; Zhou et al., 2018;
Aragam et al., 2022; Temprano-Sagrera et al., 2022) and CVD
(Kichaev et al., 2019), plus NOS3-rs891511A as a potential
reducer of blood pressure (Liu et al., 2016; Hoffmann et al., 2017;
Wain et al., 2017; Feitosa et al., 2018; Sung et al., 2018; Kichaev et al.,
2019; Giri et al., 2019; Wojcik et al., 2019; Sakaue et al., 2021;
Plotnikov et al., 2022; Schoeler et al., 2023). We have recently
reported the association of these two variants in NOS3
(rs3918226 and rs891511) with kidney damage in the UK
Biobank cohort (Cañadas-Garre et al., 2024). Other variants in
NOS3 have shown a clear link with end-stage renal disease
(ESRD) (Elsaid et al., 2021; Padhi et al., 2022), chronic kidney
disease (CKD) (Gunawan et al., 2020), CKD progression (Medina
et al., 2018) and diabetic kidney disease (DKD) (Chen et al., 2016;
Roumeliotis et al., 2021). For patients with ESRD receiving
haemodialysis, CVD is the major cause of morbidity and
mortality (Fox et al., 2012; Mahmoodi et al., 2012) and CVD is
present in over 50% of them (Cozzolino et al., 2018). Longitudinal
cohorts such as the UK Biobank in time will allow further
investigation of common genetic risk factors contributing to early
detection, predisposition and multimorbidity for both
CVD and ESRD.

SLC22A2
In our study, up to 15 variants in SLC22A2 gene were

associated with CAD and CVD and all serum lipids, but none
of the blood pressure related phenotypes. SLC22A2 encodes the
solute carrier family 22 member 2, a polyspecific organic cation
transporter responsible from elimination of endogenous small
organic cations, toxins and drugs (Gründemann and Schömig,
2000). These SLC22A2 gene variant associations confirm results
from many previous GWAS identifying SLC22A2 not only as a
susceptibility risk factor for CAD (Nikpay et al., 2015; Yeo et al.,
2017; Lempiäinen et al., 2018; Van Der Harst and Verweij, 2018;
Svishcheva et al., 2019; Shadrina et al., 2020; Aragam et al., 2022),
but also as a marker of lipoprotein (a) levels (Mack et al., 2017;
Liu et al., 2019; Sinnott-Armstrong et al., 2021), a well-known
genetically determined risk factor of CAD (Berg et al., 1979;
Tipping et al., 2009; Schatz et al., 2017; Foscolou et al., 2018).
Regarding the association of SLC22A2 with serum lipid levels, as
in our study, many others have found variants in the SLC22A2

gene influencing serum levels of atherogenic risk lipids, and
potentially impacting lipid metabolism (Bar et al., 2020; Lotta
et al., 2021; Sakaue et al., 2021; Sinnott-Armstrong et al., 2021;
Koskeridis et al., 2022; Richardson et al., 2022; Davyson et al.,
2023; Schoeler et al., 2023). Altogether, these findings indicate
that SLC22A2 may play a role in regulating serum lipid levels,
thereby potentially influencing the risk of atherosclerosis and
CAD. SLC22A2 has been implicated in the regulation of plasma
lactate levels, particularly in the context of CVD and T2DM, with
TT-carriers of the SLCA22A2-rs316019 variant showing
significantly higher fasting plasma lactate concentrations (Li
et al., 2010). Increased lactatemia has shown to be a marker of
poor prognosis in patients with acute heart failure (Ouyang et al.,
2023). The influence of SLC22A2 variants on lactatemia could not
be assessed, as our UK Biobank application did not include the
participants metabolomics profiling, where lactate levels were
measured. The relevance of SLC22A2 goes beyond CAD, since it
is a shared susceptibility locus for T2DM, with common
etiological pathways between them (Zhao et al., 2017; Xue
et al., 2018; Ray and Chatterjee, 2020). Furthermore, we and
others have previously demonstrated the importance of SLC22A2
in CKD, renal traits and function (Chambers et al., 2010; Köttgen
et al., 2010; Pattaro et al., 2016; Cañadas-Garre et al., 2024), thus
revealing one of the many potential biological connections
between the etiologies of CVD and CKD. Of interest, CKD is
one of the most important risk factors for the development of
CVD, and most patients with CKD die from cardiovascular
causes before they progress to kidney failure (Liu et al., 2014;
Jankowski et al., 2021; Warrens et al., 2022; Zoccali et al., 2023).
In fact, a recent study has highlighted the common genetic
architectures overlapped between CAD and CKD using
summary statistics publicly available from large scale GWAS,
showing NOS3, SLC22A2 and TOMM40 among the genes with
potential pleiotropy between these two conditions (Chen
et al., 2020).

TOMM40
Among the NEMG investigated in our study, TOMM40 was

associated with CAD and all the serum lipids, but not with CVD
or blood pressure related traits. These results reinforce the
robust association between the G-allele of TOMM40-
rs2075650 and increased risk of CAD identified in GWAS
(Middelberg et al., 2011; Deloukas et al., 2013; Christiansen
et al., 2017b; Feng et al., 2017). TOMM40 codes for the channel-
forming subunit of the translocase of the mitochondrial outer
membrane (TOM) complex 40, essential for protein import into
mitochondria (Humphries et al., 2005). The most investigated
variant is rs2075650, located in an intronic region of the
TOMM40 gene, just upstream of APOE, and APOC1, holding
a relatively strong linkage disequilibrium that has suggested the
potential causal variation to relay on the APOE gene (Deelen
et al., 2011; Christiansen et al., 2017a; Palmer et al., 2021).
Variants in TOMM40 have also been proposed as predictors of
non-HDL-Chol in 2,800 African-Americans (Feng et al., 2017),
LDL (Sandhu et al., 2008; Talmud et al., 2009; Middelberg et al.,
2011; Radovica et al., 2014) and TG (Salakhov et al., 2014) in
Europeans and dyslipidaemia in 1,962 Chinese Maonans (Miao
et al., 2018). In our study, the rs2075650 variant was consistently
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associated with LDL and Chol serum levels in all cohorts, with
the G allele reducing HDL levels and increasing the rest of the
serum lipids and the risk of CAD, evidencing again the crucial
role of this gene in the biological pathways involving
serum lipids.

In addition to CAD and dyslipidemia, genetic variants in
TOMM40 have been investigated in other contexts, having been
associated with reduced BMI (Guo et al., 2013), lower levels of
high-sensitivity C-reactive protein (hs-CRP) (Ellis et al., 2014;
Christiansen et al., 2017a), healthy aging and longevity (Deelen
et al., 2011; 2014; Chen et al., 2022; Torres et al., 2022) and
increased risk of Alzheimer’s disease (Denny et al., 2013; Davies
et al., 2015). A recent systematic review identified the
rs2075650 and rs10524523 variants as the two most commonly
associated with longevity. The outcomes associated with
TOMM40 variants were changes in BMI, brain integrity,
cognitive functions, altered inflammatory network,
vulnerability to vascular risk factors (including hypertension,
hyperlipidemia, and diabetes, among others), and longevity (Gui
et al., 2021; Chen et al., 2022). Interestingly, TOMM40
polymorphisms strongly interact with vascular risk factors to
influence cognitive performance, being markedly detrimental to
cognition (Gui et al., 2021). Further analyses revealed TOMM40-
rs2075650G allele also interacted with diabetes, dramatically
reducing the Mini-Mental State Examination score, used to
evaluate cognitive impairment (Gui et al., 2021). In line with
this, other TOMM40 variant previously linked to Alzheimer’s
disease (Nazarian et al., 2019) and cerebral amyloid deposition
(Yan et al., 2021) is rs71352238, found consistently associated
with LDL and Chol levels in all cohorts in our study, bringing
more evidence to the link between TOMM40, serum lipids and
development of Alzheimer’s disease.

HLA-DQA1
Our study identified a consistent association for HLA-DQA1

with hypertension and serum lipids, with up to nine variants
associated with LDL, TG and DBP in all cohorts. The HLA-DQA1
gene, also known as Major Histocompatibility Complex, Class II,
DQ Alpha 1, is part of the human leukocyte antigen (HLA)
complex, which plays a critical role in the immune system by
presenting antigens to CD4-positive T-lymphocytes. Variants of
the HLA-DQA1 gene have been associated with various
autoimmune conditions, including T1DM (Scott et al., 2017;
Onengut-Gumuscu et al., 2019; Liao et al., 2023), and have
been proposed as markers of susceptibility for T2DM and
diabetic nephropathy (Ma et al., 2013). The HLA-
DQA1*0501 allele confers susceptibility to idiopathic dilated
cardiomyopathy, while the DQA1 0201 allele provides
protection (Limas et al., 1995; Liu et al., 2005). Unfortunately,
the tag SNPs for these two markers were not among our postQC
variants. In the context of hypertension, they have been proposed
as a novel genetic risk and prognostic factor for pulmonary
arterial hypertension in systemic lupus erythematosus patients
(Qian et al., 2023), are associated with heart disease, stroke,
diabetes, and hypertension among subjects with Graves’ disease
(Liao et al., 2022) and may influence hypertension and renal
outcomes in patients with membranous nephropathy (Fan et al.,
2021). However, a direct association of HLA-DQA1 with serum

lipids is not reported in the literature. Our study suggests a
potential role for HLA-DQA1 in biological context for the
development of hypertension in patients with altered serum
lipid levels.

Variants associated only in the cohort
with diabetes

Among the associations only found in participants with
diabetes, a TAP1 gene variant was associated with DBP. The
transport associated with antigen processing 1 (TAP1) gene
polymorphism at codon 637 is associated with hypertension
with the GG genotype being linked to higher SBP and DBP
(Shen et al., 2007). However, the exact biological role of TAP1
in the pathophysiology of hypertension is not yet fully
understood.

We found the HEYL gene, encoding a member of the hairy and
enhancer of split-related (HESR) family of basic helix-loop-helix
(bHLH)-type transcription factors, associated with HDL only in the
diabetic cohort. Although we have not found a specific relationship
between the HEYL gene and HDL levels in the literature, HDL
protects against inflammatory activation of the arterial system and
may be involved in the regulation of Notch signaling, which in turn
can impact the expression of HEYL and other related genes (Briot
et al., 2016). In our participants with diabetes, the HLA-DQA1-
rs1048372 variant showed a significant and different direction of
effect over serum TG levels, compared with participants without
diabetes. A recent GWAS in 56,664 individuals has identified other
variant in HLA-DQA1 (rs17426593) associated with
hypothyroidism (Kim and Park, 2023). In those individuals, the
serum TG concentrations were also positively associated with
hypothyroidism risk (Kim and Park, 2023). But given that no
specific relationship between either HEYL and HDL levels or
HLA-DQA1 and TG levels has been reported yet, further
research may be needed to fully understand the connection
between these genes and serum lipid levels.

A further variant with significant association with TG in
participants with diabetes mapped to the tyrosine hydroxylase
(TH) gene, coding an enzyme that catalyzes the first step in the
synthesis of catecholamines, such as dopamine and noradrenaline.
Reduced TH expression in brown adipose tissue can impact various
physiological processes, including lipid metabolism. In TH
heterozygous mice, the reduction of TH in brown adipose tissue
affected the catecholaminergic response to cold exposure, leading to
implications for cold adaptation (Vázquez et al., 2018). In rats,
knockdown in the hypothalamus led to elevated plasma TG levels,
inducing obesity and glucose intolerance (Zhang et al., 2023).
Furthermore, there is evidence that circulating TG can influence
dopamine-associated behaviours (Berland et al., 2020). These
findings suggest a potential link between TH and triglycerides,
indicating a potential role in lipid metabolism and related
physiological functions.

For the rest of the genes with associations only in the cohort with
diabetes (ZZEF1 and Chol, ATXN7, PC,HLA-DQA1 and HDL), this
study is the first to identify an association and more research will be
required to establish a comprehensive understanding of
their impact.
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Limitations

We used a relatively large cohort, the UK Biobank, to investigate an
extensive selection of variants in bothmtDNA andNEMG in this cross-
sectional study with sufficient power to detect associations in common
variants, but our power was reduced for less common variants in sub-
group analysis for diabetes (84.2% for NEMG, 94% for mitochondrial
variants). Nonetheless, we have confirmed known and identified novel
significant associations with CVDs. We have explored a variety of traits
and approached cardiovascular conditions through three different
phenotypes (CVD per se, CAD and hypertension) using standard
definitions taken from the disease and medication information
provided by the UK Biobank, combining data from different
variables; these definitions, based on variables participant operations
(Data Field #20004), non-cancer illness (Data Field #20002), and other
medications (Data Field #20003) as ICD-10 codes were not available,
may differ from those used by other authors. Although our study was
limited to participants with European ancestry, it successfully identified
mitochondrial gene variation associated with cardiovascular traits that
have also been reported in other ethnic populations; however broader
investigation in appropriately powered cohorts with all ethnicities would
be necessary to confirm associations in diverse groups. Our study has
also pinpointed mitochondrial and NEMGs variants capable to
influence multiple phenotypes, as common nexus between CAD,
CVD and hypertension, exhibiting pleiotropy or as a consequence of
a shared genetic structure in these conditions. However, determining
whether a phenotype is specifically associated with mitochondrial
related variants, or influenced by other factors may be quite complex
due to the inherent variability and pleiotropy of mtDNA variants.

Conclusion

Our study highlights the relevance of variants in both
mitochondrial genes and NEMG in the context of CVDs,
especially CAD and hypertension, and CVD modifiable risk
factors such as serum lipids in people with and without diabetes.
We have linked mitochondrial haplogroup U to CVD and
consistently demonstrated an association between mitochondrial
haplogroups J and T and CVD, confirming previous results. We
have also proposed newmarkers of hypertension and serum lipids in
the context of diabetes. The findings of our study also make evident
connections between the etiological pathways underlying CVDs,
blood pressure and serum lipids. Our results place NOS3 gene as the
common nexus between CAD, CVD and hypertension, with serum
lipids connected to CVD through SLC22A2, in combination with
TOMM40 for CAD and to hypertension through HLA-DQA1.

These results may help future endeavors examining the common
mechanisms underlying these traits to elucidate the biological
pathways responsible for CVDs.
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