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Development of continuous
warning system for timely
prediction of septic shock
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As delayed treatment of septic shock can lead to an irreversible health state,
timely identification of septic shock holds immense value. While numerous
approaches have been proposed to build early warning systems, these
approaches primarily focus on predicting the future risk of septic shock,
irrespective of its precise onset timing. Such early prediction systems without
consideration of timeliness fall short in assisting clinicians in taking proactive
measures. To address this limitation, we establish a timely warning system
for septic shock with data-task engineering, a novel technique regarding the
control of data samples and prediction targets. Leveraging machine learning
techniques and the real-world electronic medical records from the MIMIC-
IV (Medical Information Mart for Intensive Care) database, our system, TEW3S
(Timely Early Warning System for Septic Shock), successfully predicted 94% of all
shock events with one true alarm for every four false alarms and amaximum lead
time of 8 hours. This approach emphasizes the often-overlooked importance
of prediction timeliness and may provide a practical avenue to develop a timely
warning system for acute deterioration in hospital settings, ultimately improving
patient outcomes.

KEYWORDS

earlywarning system,machine learning, sepsis, septic shock, artificial intelligence, time-
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1 Introduction

Early warning of clinical deterioration can provide substantial support for clinicians
by facilitating prompt identification of adverse events, allowing for proactive measures
or timely interventions (Muralitharan et al., 2021). Accordingly, early warning systems
hold immense potential in clinical contexts, particularly where the accurate timing of
recognition or treatment is paramount. Of particular interest are sepsis and septic shock,
extensively examined in early warning systems due to their elevated mortality rates and
diagnostic complexity.Sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection, while septic shock is defined as a subset of sepsis in
which underlying circulatory and cellularmetabolismabnormalities are profound enough to
substantially increasemortality (Singer et al., 2016) and is characterized by hyperlactataemia
and hypotension requiring vasopressor therapy (Hotchkiss et al., 2016). While early
treatment can improve patient outcomes (Evans et al., 2021), delayed intervention or
recurring symptoms can lead to irreversible deterioration (Kumar et al., 2006). Thus, the
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development of an early warning system for septic shock can play a
crucial role in timely treatment and prevention of recurrence.

Recent approaches to early warning systems for septic shock
mainly employ data-driven machine learning based methodologies
to generate warnings (Henry et al., 2015; Lin et al., 2018;
Khoshnevisan et al., 2018; Darwiche and Mukherjee, 2018;
Giannini et al., 2019; Liu et al., 2019; Fagerström et al., 2019;
Yee et al., 2019; Khoshnevisan and Chi, 2020; Kim et al., 2020;
Mollura et al., 2020; Misra et al., 2021; Wardi et al., 2021; Agor et al.,
2022), enabling personalized early prediction with high sensitivity
and specificity (Muralitharan et al., 2021). Most of these early
warning systems aim to screen patients who are highly likely to
show septic deterioration before onset as early as possible. These
screening systems can be classified into two categories based on the
timing of their alarmmechanisms.The first category, which we refer
to as the ‘left-aligned approach’, is centered on making predictions
during the initial phase of a patient’s admission. In contrast, the
second category, termed as the ‘right-aligned approach’, is designed
to forecast septic shock events at a specific duration prior to their
actual occurrence. Thus, the ‘left-aligned approach’ aligns cohort
data to the start of each patient’s admission, while the ‘right-aligned
approach’ aligns data points to the onset of events or the end of a
patient’s admission. However, both systems may not be clinically
applicable due to their inability to timely identify the risk, as they
merely predict if patients would suffer from an adverse event in
the future without providing sufficient information regarding the
exact time of onset, making it difficult to preemptively prepare for
timely actions.

We note that the development of timely early warning systems
for clinical deterioration, such as septic shock, necessitates the
incorporation of three components: (1) continuous calculation of
future risk based on the patient’s health status, (2) consideration
of the timely adequacy of predictions based on their located time
frame, and (3) appropriate evaluation of predictive performance
achieved by the system. First, the incapability of alerting
continuously restricts the system to making singular predictions,
falling short in meeting the requisites of timeliness. Second, in
the context of continuous warning systems, the establishment of a
precise interval for timely warnings serves not only to accurately
gauge the system’s predictive performance but also to ensure its
effective management. Lastly, given the inherent disparity between
a warning system designed to capture the onset of adverse events
and a screening system, standard metrics employed in previous
approaches may not be able to adequately measure the performance
of timely warning systems.

In Table 1, prevailing studies on early warning systems for
septic shock are summarized with respect to the three essential
components for timeliness. To the best of the authors’ knowledge,
no current frameworks satisfy all three criteria comprehensively, as
most have been developed with a focus on screening rather than
continuous monitoring. Although some systems leverage machine
learning models capable of generating continuous warnings, such
as LSTM (Long Short-TermMemory), XGBoost (Extreme Gradient
Boosting), or Cox regression, and have set time windows for
true warnings, these systems are still evaluated as screening tools
rather than continuous warning systems. Specifically, the time
windows used to define true warnings typically fall into one of three
categories: the entire duration leading up to septic shock onset,

the initial period post-admission, or a distant interval before the
onset. As a result, despite their ability to produce continuous alerts,
these systems are not optimized for issuing timely warnings. Note
the difference between screening-based systems and continuous
warning systems, as depicted in Figure 1.

While prevailing research on septic shock prediction systems
has not adequately addressed the importance of timeliness, other
prediction systems for clinical deterioration have recognized its
significance (Tomašev et al., 2019; Hyland et al., 2020). Employing
various machine learning techniques, these systems were designed
to trigger warnings based on real-time risk score calculations for
acute kidney injury and circulatory shock. They defined prediction
time windows for true warnings and optimized system performance
within these windows to ensure an adequate amount of lead time
before the onset of deterioration. This acknowledgment of the
importance of timeliness underscores its critical role in facilitating
effective disease management across various clinical contexts.

Therefore, in this study, we propose a novel approach to develop
a clinically applicable early warning system that addresses all
aspects of timeliness. We refer to this approach as the ‘timeliness
focusing approach’, which we apply to the development of an early
warning system for septic shock, named TEW3S (Timely Early
Warning System for Septic Shock). Using the MIMIC-IV (Medical
Information Mart for Intensive Care) database (Alistair et al.,
2022), we designed TEW3S to generate continuous timely alarms
every hour.

2 Materials and methods

2.1 Cohort extraction

In this study, we utilized version 2.0 of the MIMIC-IV database,
a comprehensive open-source repository containing de-identified
health-related data from patients who underwent intensive critical
care at Beth IsraelDeaconessMedical Center between 2008 and 2019
(Alistair et al., 2022). The database encompasses records of 53,569
adult ICU patients, comprising a total of 76,943 stays. A wide array
of medical information, including demographic details, laboratory
findings, vital signs, test results, prescriptions, pharmaceutical
information, and diagnoses, were extracted from the database to
construct the sequential patient data. Supplementary Tables S1, S2
provide a detailed list of the medical information employed in
this research, along with the corresponding MIMIC-IV identifiers
or extraction methods. Additionally, Supplementary Table S3
summarizes the average frequency of physiological signals,
encompassing vital signs and laboratory results.

Given that septic shock constitutes a subset of sepsis and
the diagnosis of sepsis necessitates cohorts with suspected
infections (Singer et al., 2016), our study cohorts were defined as
patients with suspected infections and sepsis prior to the onset
of septic shock. Hence, before selecting the cohorts, we excluded
those lacking variables necessary for defining sepsis or septic shock,
such as systolic blood pressure (SBP), diastolic blood pressure
(DBP), PaO2, FiO2, GlasgowComa Scale (GCS), bilirubin, platelets,
creatinine, and lactate.

Suspected infection was defined for admissions meeting three
conditions: (1) received antibiotics, (2) blood culture tests had been
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TABLE 1 Summary of previous early warning systems developed for septic shock.

Author (Year) Continuous warning Timely range Performance

Henry et al. (2015) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.83, sensitivity: 0.85,
specificity: 0.67, median lead time:
28.2 h

Lin et al. (2018) Incapable Within 12 h after admission AUROC: 0.9411, F1 score: 0.8623,
accuracy: 0.8658, recall: 0.8408,
precision: 0.8849

Lin et al. (2018) Incapable Before 3 h from the onset of event AUROC: 0.8647, F1 score: 0.7731,
accuracy: 0.7747, recall: 0.7676,
precision: 0.7931

Khoshnevisan et al. (2018) Incapable Within 8 h after admission AUROC: 0.895, F1 score: 0.808,
accuracy: 0.813, recall: 0.787, precision:
0.830, Dataset: EHR from Christiana
Care Health System

Khoshnevisan et al. (2018) Incapable Before 4 h from the onset of event AUROC: 0.943, F1 score: 0.868,
accuracy: 0.875, recall: 0.826, precision:
0.915

Darwiche and Mukherjee (2018) a Incapable Before 20 h from the onset of event Accuracy: 0.8312, sensitivity: 0.7812,
specificity: 0.8663

Giannini et al. (2019) Capable but evaluated as screening
system

Whole time range before the onset of
target event

Sensitivity: 0.26, specificity: 0.98, PPV:
0.29, NPV: 0.97, median lead time: 5h
25min

Liu et al. (2019) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.93, sensitivity: 0.88,
specificity: 0.84, precision: 0.52, median
early warning time: 7 h

Fagerström et al. (2019) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.93, median hours before
onset: 28.2 h

Yee et al. (2019) a Incapable Before 24 h from the onset of the event AUROC: 0.81, sensitivity: 0.79,
specificity: 0.66, PPV: 0.46, NPV: 0.90

Khoshnevisan and Chi (2020) Incapable Before 48 h from the onset of event AUROC: 0.793, F1 score: 0.737,
accuracy: 0.741, recall: 0.732, precision:
0.737

Kim et al. (2020) b Incapable At the start of ED admission (warning
based on triage information)

AUROC: 0.902, AUPRC: 0.556,
sensitivity: 0.706, specificity: 0.900,
PPV: 0.427, NPV: 0.967

Mollura et al. (2020) a Incapable Before 15 min from the onset of event AUROC: 0.93, F1 score: 0.84, accuracy:
0.85, sensitivity: 0.89, specificity: 0.82,
PPV: 0.80, NPV: 0.90

Misra et al. (2021) Incapable Within 6 h after admission AUROC: 0.9483, sensitivity: 0.8392,
specificity: 0.8814

Wardi et al. (2021) c Capable but evaluated as screening
system

Before 8 h from the onset of the event AUROC: 0.8, sensitivity: 0.85,
specificity: 0.67

Agor et al. (2022) d Incapable Before 4 h from the onset of event AUROC: 0.9087, accuracy: 0.8312,
recall: 0.7812, precision: 0.8039,
specificity: 0.8663

aThe datasets used in these systems were from the MIMIC-II, or MIMIC-III, databases. While the MIMIC-IV, dataset may share some common cohorts with these earlier versions, the EHR,
system schematics were significantly updated in MIMIC-IV, making direct comparisons between the methods of each study and our method challenging.
bAll performances are those from ensemble (averaging) with baseline predictors only where the target event was the onset of septic shock within 20 h after admission.
cSome performances are reported just with lower bound, and specificity is reported only with a graphic, necessitating approximation.
dAll performances are those from logistic regression with E1 experiment result.
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FIGURE 1
Comparison of continuous warning system versus screening system. The top figure illustrates a continuous warning system that can be managed to
generate timely adequate warnings, while the figures below show two types of screening systems. Both screening systems make predictions before the
event occurs and concentrates on screening whether a patient will suffer from the event in the future or not. The difference between the systems is
their capability of generating continuous warnings where the first screening system is capable of generating continuous warnings while the second
type is not capable.

taken, and (3) infection-related ICD-9 or 10 codes had been issued.
Sepsis was only defined for cohorts with suspected infections, with
its onset marked when the Sequential Organ Failure Assessment
(SOFA) score reached or exceeded two points. Septic shock was
only defined after the onset of sepsis, resulting in the exclusion of
cohorts where septic shock occurred prior to sepsis. This decision is
based on the assumption that timely prediction is more effective in
cases where sepsis precedes septic shock, compared to cases where
septic shock occurs prior to sepsis, as early intervention is more
likely to have already taken place in the latter instances. Note that
this approach can lead to the restriction of our research cohort to
patients with nosocomial septic shock, and as such, our predictive
model may not be applicable to cases of non-nosocomial septic
shock. The onset of septic shock was determined when the lactate
level equaled or exceeded 2 mmol/L and vasopressor therapy was
administered, given that the definition of septic shock includes
hyperlactataemia and vasopressor therapy (Hotchkiss et al., 2016).

2.2 Data refinement

We refined the data through several steps, including unit
unification, outlier removal, adjustment of time errors, and
correction of variable-specific errors. Initially, unit unification
was applied to variables with measurements in different units,
such as height, weight, temperature, vasopressors, and fluids.
We consulted with professional clinicians to establish outlier
criteria, drawing on the guidelines from (Hyland et al., 2020), as
detailed in Supplementary Table S4. This ensured alignment with

both theoretical considerations and practical feasibility in clinical
settings. For instance, heart rate values were accepted within the
range of 0–300 beats per minute, as values below 0 are theoretically
impossible, and values above 300 are extremely rare in clinical
practice. Entries falling outside these criteria were identified as
errors and subsequently removed.

Time errors, defined as data entries assigned to a patient
sequence with timestamps incongruent with the sequence,
were adjusted. Entries recorded more than 2 days before
admission or 2 days after discharge were deleted. For variables
with specific timestamps, such as lab values, entries recorded
outside the interval between ICU admission and discharge
were excluded. Conversely, for variables recorded continuously,
such as pharmaceutical variables and ventilator data, entries
with start and end times outside the admission-to-discharge
interval were omitted.

Additionally, errors specific to GCS and urine output were
addressed. GCS comprises three component variables (eye, motor,
and verbal), and its calculation relies on the summation of
these components, necessitating consistency in the recorded
timing of each variable. For every timestamp of the GCS
components, we assumed all GCS information were recorded but
some random missing entries could occur. To handle missing
values, we employed a forward-and-backward imputation strategy.
Urine output calculations involve unique variables, including
irrigant in and out values. To accurately measure urine output
at specific time points, we subtracted cumulative irrigant in
amounts from cumulative irrigant out amounts. For irrigant out
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values immediately followed by irrigant in values, we recorded the
cumulative sum of irrigant out values minus the cumulative sum of
irrigant in values, retaining these records for further preprocessing.
In cases where no irrigant in values preceded irrigant out values, we
assigned the irrigant in value as 0.

2.3 Sequential merging and resampling

As some data entries were distributed across distinct datasets
using different identifiers despite representing the same variable,
merging the data into a sequential representation was necessary.
We consolidated data entries in the MIMIC-IV datasets according
to their respective variables. For entries categorized as vital signs,
lab results, height, and weight, all values and corresponding
timestamps were collated into a unified sequential timeline for each
variable. Pharmaceutical instances were aggregated based on shared
timestamps, while administration rates were listed individually.
Age at admission and gender were also incorporated into the
sequential data. Variables used to define sepsis and septic shock
shared identical timestamps andwere imputed accordingly based on
variable-specific schemes. We adhered to predefined definitions for
sepsis and septic shock, excluding cohorts without sepsis and those
where sepsis occurred after the onset of septic shock. Subsequently,
we performed data resampling, discretizing the concatenated data
into predefined time intervals by aggregating or averaging variable
values. A 1-h interval was chosen, considering both the dynamic
nature of septic shock and the practical frequency of warnings in
clinical settings.

For feature engineering, summary statistics were computed
within each time interval, including the mean, median, maximum,
and minimum values, with the mean serving as the representative
value. Additionally, slope features were generated by calculating the
difference between values at current and past time points (one, three,
and 5 hours prior).These features capture temporal dynamicswithin
and across intervals, facilitating the predictive model’s learning
process. Features were not derived for unsuitable variables such
as age, drug-related items, and ventilator data. In cases where no
feature valueswere available for a given interval, different imputation
methods were applied based on the nature of the data. Lab-
related features were imputed using backward and forward filling,
while vital signs (excluding GCS), height, and weight were linearly
interpolated. This choice of imputation methods reflects the typical
frequencywithwhich these variables are recorded in clinical practice
(See Supplementary Table S3). Lab measurements are usually taken
less frequently and sporadically, so forward and backward filling
ensures that the last known value is carried forward until a
new measurement is available, preserving temporal continuity. In
contrast, vital signs are monitored more frequently, allowing for the
use of linear interpolation to estimate values betweenmeasurements,
which assumes a more gradual and consistent change over time.
If a variable was not recorded at all across the cohort, all values
for that variable were imputed as 0. To distinguish true zero
feature values from imputed ones, we appended presence features
indicating whether values were filled by imputation (0) or not (1).
This approach accounts for the uncertainty of feature values during
prediction generation, as proposed in warning systems for acute
kidney injury (Tomašev et al., 2019). Finally, we defined sepsis and

septic shock and excluded cohorts using the same procedures as
in the sequential merging process. The resulting resampled dataset
comprised 11,780 stays, of which 4,369 exhibited septic shock.
We partitioned the dataset into training (70%), validation (10%),
calibration (10%), and test (10%) sets.

2.4 Timeliness focusing approach via
data-task engineering

Theultimate aim of our approachwas to demonstrate a clinically
applicable early warning system via successful integration of
timeliness within the development course. In pursuit of such a goal,
we introduce a timeliness focusing approach which encompasses
three main considerations.

First, to ensure the clinical relevance of our system, we evaluated
predictive performance from multiple perspectives. We assessed
performance not only on all instances of shock onset but also
specifically on the first occurrences of shock, which may hold
greater clinical significance. Compared to recurring septic shocks,
the first onset of septic shock may be of more clinical value as
clinicians may not have been aware of the patient’s deteriorating
health status. Furthermore, we analyzed performance variations
by adjusting the definition of timely warnings through what we
termed the ‘evaluation window’, exploring different time points
relative to shock onset to accommodate varying clinical needs.
Relative to the septic shock onset time denoted as t = 0, the
earliest time point of the evaluation window was defined as t
= −8 and the latest time point as t = 0. Varying time points
between t = −8 and t = 0 were employed to assess the robustness
of our system against the varying needs of specific clinical
application contexts.

Second, in addition to standard metrics used in screening
systems or machine learning models, we introduced two metrics to
measure timeliness: Target Event Recall (TER) and True Alarm Rate
(TAR). TER measures the proportion of events warned by timely
alarms, while TAR quantifies the fraction of timely warnings among
both false and timely warnings. Timely warnings are defined as
those occurring within the evaluation window, while false warnings
exclude those generated during prolonged septic shock events.
Although alarms occurring during prolonged shock events fall
outside the evaluation window, they remain critical indicators of
ongoing elevated risk and should not be classified as false alarms.
Furthermore,we utilizedmodified versions of TERandTAR, termed
‘TER stay’ and ‘TAR stay’, respectively. These metrics provide an
average assessment of TER and TAR specifically for stays with
septic shock.

As defined, TER and TAR are calculated for individual
septic shock events, which may differ from evaluation metrics
commonly used in conventional machine learning classification
tasks (e.g., True Positive Rate) or those in prevailing screening
systems for septic shock. To distinguish these metrics, we term
the metrics introduced in this study (TER and TAR) as ‘event-
based metrics’. In contrast, standard machine learning task
metrics evaluate predictions at each time point, while screening
system evaluation metrics are computed for each cohort (e.g.,
the proportion of cohorts adequately predicted). Hence, we
classify the conventional evaluation metrics from machine learning
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FIGURE 2
Illustrative example of how event, time point, and cohort based metrics are calculated. While event based metrics (red box) and time point based
metrics (green box) are computed based on the continuous warnings generated by the system, cohort based metrics (blue box) can only be computed
for each cohort.

tasks as ‘time point-based metrics’ and those from screening
systems as ‘cohort-based metrics’. Figure 2 illustrates the differences
between these three types of metrics.

Third, to optimize the timeliness of our early warning system, we
investigated the impact of various factors on prediction timeliness.
These factors encompassed model architecture, deliberate data
provision, and the utilization of calibration and oversampling
techniques. Our primary focus was placed on data provision, which
involves selecting data samples for training and designing prediction
tasks with different time windows (prediction window). We termed
this approach ‘data-task engineering’, akin to feature engineering,
as it aims to optimize predictive performance by manipulating
the relationship between input data and prediction targets. This
approach distinguishes itself from traditional machine learning-
based early warning systems, where timeliness is often overlooked.
Even when considered, the typical methodology involves training
models with fixed prediction windows and including all possible
data samples in the training set. We hypothesized that each data
entry possesses distinct characteristics depending on its relative
timing to the onset of target events. Thus, systematic inclusion of
data samples can guide the model to learn the intended relationship
between input data and target events.

As depicted in Figure 3, data-task engineering encompasses
three distinct schemes, each tailored to capture specific correlations
between the samples and the prediction tasks. The first scheme
involves manipulating the prediction window, adjusting the
timeframe from 1 hour to 12 h. This variation alters the nature
of the tasks learned by the model. The second scheme centers

on restricting the use of data after the onset of septic shock.
Specifically, we confine the training data to a window spanning
from zero to 2 hours post-onset, termed the ‘training window’.
Additionally, we consider utilizing all training data samples post-
shock onset, labeled as training window ‘all’. Lastly, in the third
scheme, we experiment with retaining only the data entries around
the initial occurrence of septic shock, referred to as ‘first shock focus’.
Through data-task engineering, we aim to further refine the model’s
learned function, thus enhancing predictive performance beyond
conventional approaches.

Focusing on the importance of timeliness, we devised a
comprehensive modeling and validation process. Initially, we
trained and validated the system by exploring various combinations
of model architecture, data-task engineering schemes, and auxiliary
techniques such as oversampling and calibration. We assessed
the predictive performance of each combination, aiming to
exceed a clinically applicable threshold. This threshold was
meticulously determined in consultation with clinical experts
and was defined as a TER of 0.9 and a TAR of 0.2 when
predicting all shocks within the evaluation window of −8 to 0.
Throughout the training and validation process, our primary
objective was to improve TER while maintaining a TAR of 0.2.
Once combinations surpassing the threshold were identified,
we employed an ensemble approach to consolidate these into
the final early warning system, TEW3S. This rigorous approach
ensured that our system met the clinical requirements for timely
detection of septic shock.
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FIGURE 3
Illustration of data-task engineering approach. Data-task engineering involves three schemes: Prediction window (blue text) alters data labels by
labeling the time points within prediction window prior to septic shock onset as positive labels. Training window (red text) determines how much time
points after shock onset to include in the train set and first shock focus (green text) controls whether to include data points after the first shock onset in
the train set. Thus, prediction window is related to the task of the learning objective while training window and first shock focus controls train set data.

2.5 Predictive modeling for TEW3S

TEW3S was developed using supervised machine learning
models, including CatBoost (Hancock and Khoshgoftaar, 2020),
LightGBM (Ke et al., 2017), XGBoost (Chen and Guestrin, 2016),
Random Forest (Breiman, 2001), Logistic Regression (Wright,
1995), Decision Tree (CART) (Lewis, 2000), andMultinomial Naive
Bayes (Webb et al., 2010). Our predictive model was designed to
generate timely predictions every hour, leveraging current-hour
data entries that encompassed not only the mean values but also
temporal variability featureswithin and across time stepswhichwere
derived through feature engineering, along with presence features
to enhance model performance. Throughout the development
process of TEW3S, auxiliary techniques such as oversampling and
calibration were employed. Oversampling techniques like SMOTE
(SyntheticMinorityOver-sampling Technique) (Chawla et al., 2002)
and ADASYN (Adaptive Synthetic Sampling) (He et al., 2008)
were utilized to balance the class distribution, while isotonic and
sigmoid regressionwere used for calibration of resultant risk score of
prediction models. The hyperparameters of each model were set as
Supplementary Table S5.

In assessing the timeliness of model predictions, we also
calculated time point-based metrics such as the area under
the precision-recall curve (AUPRC). AUPRC aided in selecting
candidate settings during training and validation, complementing
timeliness metrics by capturing the density of warnings within
prediction windows. High AUPRC values, coupled with high
timeliness, indicated a high true alarm rate, underscoring
the importance of incorporating AUPRC in the training and
validation process.

The overall training and validation process for TEW3S
comprised three main steps. Initially, we trained and evaluated
various supervised machine learning models with several training

datasets engineered by data-task engineering scheme combinations,
selecting those surpassing clinically applicable thresholds of TER
and TAR. We further refined our selection based on time point-
based AUPRC metric by identifying combinations with AUPRC
values that exceeded the average of selected combinations. Note
that these combinations consisted of which machine learning
model and data-task engineering schemes to use. Subsequently,
we applied auxiliary oversampling and calibration techniques to
enhance either TER or TAR and diversified the pool of training
settings for constructing ensemble models. This phase yielded 31
distinct training settings that met the clinically applicable criteria
for an early warning system, defined as TER 0.9 and TAR 0.2.
In the final phase, both soft and hard voting ensembles were
constructed using the clinically applicable settings, with the hard
voting ensemble outperforming the soft voting ensemble. Thus,
we identified the hard voting ensemble as our ultimate choice
for TEW3S, an early warning system tailored for septic shock.
We implemented this predictive modeling process using Python
3.9 and relevant libraries, including Numpy, Pandas, Matplotlib,
and Sklearn.

2.6 Calculation of misalignment between
event versus cohort and time point-based
metrics

To accurately gauge the predictive timeliness of TEW3S, we
relied on event-based metrics, namely, TER and TAR. These
metrics offer unique advantages over conventional types of metrics,
including both cohort-based and time point-based ones, not only
in terms of their intrinsic meanings but also based on the results
of numerical experiments. This distinction becomes evident when
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FIGURE 4
Detailed case study of a septic shock patient from our study cohorts, illustrating the sequential information relevant to their condition. The figure
displays the patient’s risk score, derived through our timeliness-focused approach, alongside various physiological values and intervention-related
variables.

examining the discrepancy between event-based metrics and other
metrics, which is calculated as follows:

1. Initially, we determined the proportion of training settings,
comprising various combinations of models and three data-task
engineering schemes, that exhibited clinically applicable timeliness
(i.e., TER 0.9 and TAR 0.2 within the evaluation window of −8
to 0). We denote this proportion as ‘p’ and the set of settings
meeting these criteria as ‘C’. Note that in this context, settings
involving oversampling and calibration techniques were excluded,
as these auxiliary techniques were only applied to a subset of the
training settings.

2. For the cohort and time point-based metrics which include
measures related to both event sensitivity and alarm precision, we
calculated the one-p percentile of these metrics.

3. Subsequently, for each cohort- and time point-based metrics,
we computed the proportion of settings within set ‘C’ that
failed to achieve the one-p percentile of the respective metric.
This proportion represents the level of discrepancy observed in
settings that demonstrated high timeliness but attained lower-
ranked performance in other metrics.

This calculated discrepancy proportion underscores the
indispensable role of TER and TAR in evaluating predictive
timeliness effectively.

3 Results

3.1 Predictive performance of TEW3S

Figure 4 provides a detailed case study of a septic shock patient
from our study cohorts, illustrating the sequential information
pertinent to their condition. It presents the patient’s risk score,
derived through our timeliness focusing approach, alongside various
physiological values and intervention-related variables. Note that
the risk score is generated from a model utilized within the
TEW3S ensemble.

The temporal changes in these variables and their correlation with
the risk score yield insightful observations. During periods of low risk
scores, most physiological variables remain stable, except for lactate
levels.However, around the 44-hmark, a slight increase in the risk score
precedes a subsequent drop inboth systolic anddiastolic bloodpressure
(SBP andDBP) approximately 5 hours later.This temporal relationship
suggests our approach’s potential to predict future events. Subsequently,
around the 48-h mark, a significant spike in the risk score coincides
with a sharp decline in both SBP andMAP, falling below critical clinical
thresholds of 90 mmHg and 65 mmHg, respectively, further validating
the physiological plausibility of the risk score’s increase. Interestingly,
despite poor physiological signs after the 44-hmark, there are instances
where the risk score decreases, typically following fluid administration.
However, the risk score remains significantly elevated after the onset of
septic shock at the 52-hmark, persistinguntil the endof theobservation
period, even as other physiological variables return to pre-septic shock
levels. This persistence suggests the model’s ability to recognize the
heightened risk associated with the septic shock state.

Ultimately, our predictive model aims to generate alerts based on
the risk score, starting 8 h before the onset of septic shock. The risk
score notably begins to rise distinctly from the 44-hmark, precisely 8 h
prior to the event, underscoring its predictive capability.Therefore, the
TEW3S, resulting from an ensemble of such risk score-based models,
demonstrates excellent performance in reflecting both current and
future physiological states and the risk of septic shock, offering valuable
insights for clinical practitioners. Given the exemplary predictive
performance demonstrated in this single case, we further evaluate the
predictiveaccuracyof thehardensemble-basedmodelTEW3Sacrossall
patient stays. By utilizing a hard voting ensemble ofmodels that surpass
the predefined threshold, TEW3S achieved a strong performance of
TERof 0.9403 andTARof 0.2018whenpredicting all shockswithin the
evaluation window of −8 to 0. The detailed predictive performance of
the early warning system is presented in Table 2. In summary, TEW3S
accurately identified 94.0% of septic shock onsets and 93.1% of first
septic shock onsets within an 8-h window, with an average of one true
alarm for every four false alarms. Additionally, TAR stay, representing
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TABLE 2 Predictive performances of TEW3S in evaluation
window –8 to 0.

Evaluation metric All shock First shock

TER 0.9403 0.9314

TAR 0.2018 0.1784

TER Stay 0.9314a 0.9347

TAR Stay 0.4305 0.7717

aTER, stay of all shock prediction always equals to TER, of the first shock prediction.

TABLE 3 TER variation in various evaluation windows.

Evaluation Window −8 to 0 −8 to −1 −8 to −2

TER 0.9403 0.8230 0.7537

Evaluation Window −7 to 0 −7 to −1 −7 to −2

TER 0.9382 0.8166 0.7452

Evaluation Window −6 to 0 −6 to −1 −6 to −2

TER 0.9307 0.8049 0.7324

Evaluation Window −5 to 0 −5 to −1 −5 to −2

TER 0.9254 0.7953 0.7175

Evaluation Window −4 to 0 −4 to −1 −4 to −2

TER 0.9168 0.7836 0.6962

the average true alarm rate among septic shock cohorts, reached 0.43
for predicting all shocks and 0.77 for predicting the first shock in the
evaluation window of −8 to 0.

To assess TEW3S’s effectiveness in clinical settings, we analyzed
the number of septic shock events predicted by timely alarms
before clinicians initiated interventions (i.e., treatments for septic
shock). We defined the initiation of septic shock intervention as
the time point of vasopressor and fluid co-administration. Alarms
triggered prior to this intervention start timewere considered timely.
Remarkably, 49% of septic shock events were anticipated by these
timely alarms, implying almost half of septic shock events were
identified through timely alarms preceding clinicians’ interventions,
demonstrating the practical utility of TEW3S in clinical practice.

Additionally, we analyzed TER within different evaluation
windows, ranging from −8 to −4 as the earliest time point and −2
to 0 as the latest. The sensitivity analysis results presented in Table 3
illustrate that TEW3S successfully identified over 75% of septic
shock events 2 hours prior to onset in the evaluation window
starting from −8. Even when considering alarms only within 4 h
prior to onset, 91.7% of all septic shock events were accurately
predicted in advance. Notably, nearly 70% of septic shock events
were timely warned by TEW3S even in the most restrictive
evaluation window of −4 to −2, highlighting its robustness across
various scenarios.

TABLE 4 Clinical variable level comparison between false negative cases
and false positive cases.

Variables False negative False positive

MAP (Mean Arterial Pressure,
mmhg)

76.75 76.41

Lactate (mmol/l) 1.36 2.42

Arterial pH 7.40 7.37

GCS (Glasgow Coma Scale) 9.98 9.33

Creatinine (mg/dL) 1.56 1.80

Bilirubin (mg/dL) 2.28 3.54

Platelets (K/uL) 217.67 194.41

SOFA (Sequential Organ
Failure Assessment)

7.29 8.01

In comparison to existing literature, we further assessed
TEW3S’spredictiveperformanceusingcohort-basedmetrics, including
sensitivity, specificity, precision, accuracy, and the F1 score. Note that as
TEW3Swas constructed using a hard-voting ensemble, AUROC could
not be utilized. Given the focus on timeliness, our main evaluation
metrics are event-based metrics (TER and TAR) as they are most
appropriate forcontinuouswarningsystems.Conventionalmetricswere
utilized for comparison purposes only, as they cannot fully capture
the performance of continuous warning systems. In evaluating these
metrics, we considered only the initial warningwhen labeling the entire
cohort as positive. Consequently, TEW3S demonstrated a sensitivity of
0.9634, specificity of 0.4818, precision of 0.5230, accuracy of 0.6604,
and an F1 score of 0.6779. When compared to previous research
(Henry et al., 2015; Liu et al., 2019), which reported sensitivities of
0.85 and 0.88, and specificities of 0.67 and 0.84, respectively, TEW3S’s
predictive performance aligned closelywith these prior approaches. It is
worthnoting that althoughTEW3Swasprimarily designed for superior
timeliness rather than optimal screening performance, its effectiveness
was comparable to these established models. This suggests that our
proposedmethodology allows for the development of an early warning
system proficient not only in generating timely continuous warnings
but also in effectively screening high-risk cohorts.

We further carried out failure case analysis, examining both
false alarms and instances where timely alarms were absent. Several
rational causes of failures were identified. First, for false alarms, we
found that 95% of false alarms were associated with vasopressor,
fluid administration, ormechanical ventilationwithin a 3-h interval.
This suggests that most false alarms adequately reflected real
patient risk, but subsequent septic shock onsets could have been
prevented due to timely treatment by clinicians. Second, for the
false negative cases, we observed that 13% of stays without timely
warnings experienced a rapid onset of septic shock within 12 h
after admission. This indicates that TEW3S may not have had
sufficient time to generate timely predictions in these instances.
Third, we compared the average values of clinical variables for each
failure case: those with false negative cases versus false positive
cases (refer to Table 4). The comparison revealed that false warning
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TABLE 5 Misalignment proportions of conventional metrics.

Type of metric Metric Proportion of discrepancy Max TER Max TAR

Cohort Based AUROC 1 0.92 0.21

Cohort Based F1-Score 0.91 0.92 0.21

Time Point Based AUPRC 0.70 0.91 0.21

Time Point Based F1-Score 0.70 0.91 0.21

cases exhibited a worse health state on average than no warning
cases.This difference was particularly notable in lactate levels, where
the average lactate value for no warning cases was 1.36, whereas for
false warning cases, it was 2.42.The proportion of false negative stays
with lactate value below2, 1.5, and 1.1were 85.7%, 73.5%, and 26.5%,
respectively, implying the predictive capability of TEW3S heavily
relies on lactate value. Lastly, we extended the timely adequate ranges
used in our evaluation criteria. Given that patient risk of septic
shock may extend beyond the current 8-h window prior to onset,
we evaluated warnings within 24, 48, and 96 h before septic shock
onset.This adjustment led to a decline in the ratios of false negatives
and false alarms from 4.2% to 42.4%–2.3% and 36.8%, 2.0% and
33.2%, and 1.6% and 30.0%, respectively. Notably, when considering
all warnings prior to septic shock as true positives, consistent
with the evaluation criteria of previous early warning systems, the
proportions of false negatives and false positives dropped to 1.3%
and 24.9%, respectively. This finding underscores the importance
of incorporating timeliness metrics into the evaluation process
and conducting a comprehensive review of the model’s predictive
capabilities. In conclusion, the majority of failure cases of TEW3S
may be attributed to the mitigation of risk due to timely treatment,
the intractability of temporal relationships due to insufficient time
before septic shock onsets, and the evaluation criteria that accepts
alarms only within 8 h window prior to septic shock onset.

3.2 Misalignment of cohort, time point, and
event-based metrics

As aforementioned, disparities can exist between event-based
timeliness measures and time point or cohort-based metrics due to
their inherent differences, emphasizing the importance of selecting
adequate evaluation metrics. To explore this incongruity across
various training settings, we conducted a range of analyses.

During the initial phase of the training and validation process,
we observed an intriguing pattern: training settings demonstrating
clinically applicable prediction timeliness did not necessarily yield
commendable performanceswhen assessedusing timepoint or cohort-
based metrics. This observation is summarized in Table 5, which
outlines the proportion of training settings exhibiting this discrepancy.
The proportion was calculated as the ratio of settings in which
time point or cohort-based performance ranked lower than the
percentile corresponding to clinically acceptable prediction timeliness.
This analysis revealed that 70% of clinically applicable settings would
not be retained if time point-based metrics or cohort-based metrics
were the sole criteria for evaluation. This incongruity was particularly

pronounced when considering cohort-based metrics, accounting for
100% of clinically applicable settings. Moreover, the maximum event-
basedmetric value achievable among themisaligned settings, indicated
bymaximumTERor TAR, underscores the potential pitfalls associated
with evaluating earlywarning systems solely based on time point-based
metrics or cohort-based metrics.

To further illustrate the misalignment between timeliness
measured by event-based metrics and performance measured
by cohort or time point-based metrics, we visualized the
correlation of event-based metrics with the other two metrics,
as depicted in Figure 5. From the variation of the mean TER in
relation to the time point metric, we observed an almost flat or
even declining trend in the middle bins, while the mean TAR
in relation to the cohort-based metric demonstrated fluctuations
at positive predictive values (PPV) lower than 0.4. Additionally,
the shaded areas within the figures, indicating the minimum and
maximum values of the corresponding TER or TAR, demonstrated
a large dispersion of TER and TAR for each binned metric.
Overall, the disparity between event-based metrics and other
customary metrics was substantial and exhibited considerable
variations.

3.3 Variation of prediction timeliness by
data-task engineering

Based on several hypotheses regarding the impact of data-
task engineering schemes and auxiliary techniques on prediction
timeliness, we systematically integrated these factors into the system
development process. Initially, we conjectured that factors leading
to an increase in positive samples would elevate TER but decrease
TAR, given their influence on augmenting the probability of positive
instances within the model input distribution. Furthermore, we
anticipated that data-task engineering schemes could enhance
prediction timeliness while potentially introducing a trade-off
between TER and TAR. For example, expanding the prediction
window could broaden the model’s foresight, potentially leading to
heightened overall risk assessment before shock onset. Similarly,
extending the training window to include samples during septic
shock prolongationmight enable the model to discern physiological
cues indicative of critical health states, but this could also induce
overreliance on these cues. Additionally, training the model using
information encompassing the dynamics around every septic shock
event might render the model sensitive to predicting all septic
shock onsets but less so to first shock events. These scenarios
could result in higher TER but reduced TAR, while the last
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FIGURE 5
Visualized discrepancy between event based metrics and customary
metrics. The plots illustrate the average event based performance
corresponding to each binned intervals of time point based measures
or cohort based measures, where plot (A) and (B) demonstrate TER
and TAR variation with respect to time point based metrics while plot
(C) and (D) show those in relation to cohort based metrics. TER is
depicted in blue line and shaded area while TAR is depicted with
orange line and shaded area. Line indicates average TER and TAR of
each bins and shaded area shows maximum and minimum values of
TER and TAR of the corresponding bins.

data engineering scheme can also provoke a trade-off of system
performance on early prediction of all shock onsets versus initial
onsets.

To numerically validate these hypotheses, we computed the
average TER and TAR of each data-task engineering scheme,
focusing on the prediction of all shocks within the evaluation

window of −8 to 0. Figure 6 presents the average TER (6a, 6b, 5c) and
TAR (6d, 6e, 6f) variations along the risk threshold for each setting of
the prediction window, training window, and restrictive data usage
around septic shock, respectively. The visualized results support
our hypotheses regarding the impact of data-task engineering
schemes on TER and TAR. Overall, the plots depict a tendency
where wider prediction windows and training windows, as well
as using all septic shock events as training samples, tend to raise
TER but decrease TAR. Moreover, the TAR variation averaged by
predictionwindowpeaked at higher thresholds as the corresponding
prediction window increased, aligning with the conjecture that
widening prediction windows would lead to an increase in risk
scores before septic shock onset. Lastly, restricting the training set to
the data entries around the first shock onset only enhanced system
performances. These results suggest the existence of a trade-off for
each data engineering scheme, emphasizing the need for a deliberate
exploration of these schemes to achieve an optimal-performing
system.

Furthermore, to demonstrate the necessity of data-task
engineering, we investigated training settings that achieved high
timeliness (TER 0.9 and TAR 0.2 in the evaluation window −8 to 0)
using conventional early warning system development approaches.
In standard development approaches without considering data-task
engineering, the most commonly utilized settings would involve
employing the same prediction window as the evaluation window
(prediction window of eight when evaluating −8 to 0), using all data
samples as the training set including those during shock duration
(training window ‘all’) or not using at all (training window 0),
and not differentiating between first and recurring septic shock
events (first shock focus 0). Notably, there were no training settings
that achieved high timeliness with conventional approaches. Even
when the TER criterion was reduced to 0.85, only 1.9% of the
settings comprised standard schemes. These results underscore
the substantial enhancement in timeliness achieved by employing
data-task engineering schemes, which were scarcely employed in
previous approaches.

4 Discussion

In this study, we developed TEW3S, a continuous early warning
system designed to timely identify septic shock by utilizing
variousmachine learning techniques and carefully selecting training
samples from theMIMIC-IV dataset. TEW3S successfully predicted
94.1% of all septic shock onsets and 93.1% of first septic shock
onsets, providing a lead time of up to 8 hours at a ratio of four false
warnings for every true warning. Notably, TEW3S demonstrated a
high predictive sensitivity even within highly restricted windows
of early warnings, managing to predict more than 75% of septic
shock events 2 hours in advance and 91% of septic shock events
within a 4-h window. The strong performance of TEW3S under the
constraints of a timely adequate range emphasizes the effectiveness
of our development approach in constructing a clinically applicable
septic shock early warning system. Furthermore, despite TEW3S
not originally being designed for screening high-risk patients,
it achieved comparable results to previous research studies in
this regard. While our system showed significant sensitivity in
anticipating septic shock events, a notable number of false warnings
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FIGURE 6
Variation of timeliness averaged by data task engineering schemes (pw: prediction window, tw: training window, fsf: first shock focus). The plot (A), (B)
and (C) show TER variation while plot (D), (E), and (F) indicate TAR variation. Each line in the plots indicates the average TER and TAR of corresponding
data task engineering scheme configuration. The color of the line becomes brighter when corresponding scheme configuration increases.
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were generated. However,many of these false alarmswere associated
with the initiation of interventions such as the administration of
vasopressors and fluids, indicating an existing risk at the time
of the alarm.

Our study introduced a novel approach focusing on timeliness
in early warning system development by incorporating data-
task engineering schemes and novel metrics for timeliness
assessment. Analyses of timeliness metrics and the impact
of data-task engineering on timeliness emphasized the
importance of precise metrics for measuring the timeliness of
such systems. Therefore, future efforts in developing timely
early warning systems should consider data-task engineering
schemes and appropriate timeliness metrics as essential
components.

The primary limitations of our study stem from the
architecture of the TEW3S prediction models and the absence
of external validation. Although we employed a diverse array
of machine learning models for prediction, we did not explore
deep learning models, potentially overlooking architectures
that could enhance predictive performance. Furthermore, our
system was solely validated using the MIMIC-IV dataset,
lacking validation on external databases which is crucial for
ensuring the generalizability of our system. Additionally, as this
system utilized an ensemble approach to maximize predictive
performance, implementing the model in clinical practice
may be burdensome. However, it is important to note that
our study’s primary focus was to propose an approach for
constructing a timely early warning system by emphasizing
the impact of data-task engineering schemes on timeliness.
Future research endeavors could delve deeper into optimizing
model architectures specifically geared towards maximizing
timeliness, and validate such architectures on external datasets
to ensure their robustness and generalizability. Additionally,
our analysis of TEW3S failure cases highlighted the association
of interventions with false alarms. This suggests potential
areas for future research, such as mitigating false alarms by
considering intervention information. For instance, one avenue
could involve suppressing alarms triggered by moderate risk levels
immediately following interventions, thereby refining the system’s
predictive accuracy.

Despite these limitations, our study remains novel as the first
successful approach to building a timely early warning system
by implementing prerequisites for timeliness and introducing
data-task engineering methods. Our comprehensive analysis of
timeliness sheds light on its unique characteristics compared to
other types of performance metrics, highlighting the relationship
between timeliness and data and task manipulation. Based on
these promising results, we believe that our approach holds the
potential to become a clinically applicable method for addressing
acute deterioration in hospitals, potentially becoming routine
clinical practice.
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