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The spatial segmental location of motoneurons in the human spinal cord is
influenced by both evolutionary and functional principles tending to optimize
motor control, reflex integration, and adaptation to the demands of movement.
Bearing in mind the biomechanics of limb muscles, it is logical to examine how
motoneuron activity clusters functionally during typical daily activities like
walking. This article provides a summary of advancements in the study of
spinal maps of motoneuron activation during human locomotion by reviewing
data gathered over ~20 years. The effects of child development, aging, and
neurological disorders show the salient characteristics of spinal segmental
activity during different human locomotor tasks and conditions. By exploiting
the neuromechanics of the spinal motor circuits, that is, the link between
motoneuron activity and gait mechanics, neuroprosthetics and other focused
treatments may better help individuals with locomotor impairments.
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Introduction

The central nervous system orchestrates intricate patterns of muscle activation through
motoneurons (MNs) constituting the “final common pathway” (Sherrington, 1906). The
organization of the evolutionary ancient spinal cord motor apparatus is tightly related to the
executive function of the spinal circuitry, which is close to the periphery. Since locomotion
is a typical activity in daily life, it makes sense to consider the anatomical and functional
clustering of motoneurons in the context of biomechanical features of limb muscles and
underlying neuromechanics of locomotor movements. Human locomotion is a remarkable
feat, characterized by the seamless coordination of numerous muscles and joints to
accomplish movement with precision and efficiency. Understanding the neural
mechanisms that underlie this intricate control is a fundamental pursuit in
neuroscience, biomechanics, and rehabilitation sciences. Traditionally, neuroimaging
and investigations into motor control focused on the cortical regions of the brain, with
an emphasis on the primary motor cortex and descending pathways to the spinal cord.
However, recent advances in neuroimaging and neurophysiological techniques have opened
up new avenues to explore the neural circuitry at the spinal level, providing insights into the
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recruitment and organization of motoneurons during locomotion.
This approach is of particular interest for modulating neuronal
circuits enacting locomotion, because the executive component of
the locomotor pattern generation circuitry and the common final
pathway, that is the motoneurons, are located in the spinal cord
(Grillner and El Manira, 2015). Moreover, as we will argue in a later
section, whether or not motoneurons are an integral part of the
Central Pattern Generators (CPGs) of locomotion, they most likely
contribute to shaping the rhythm and patterns specified by CPGs.
To date, non-invasive electrophysiological recordings have made
significant contributions to the temporal and spatial data on
motoneuron recruitment during normal human locomotion.
These data provided insights into the evolutionary adopted
neuromechanics of motor pool activity in the human spinal cord
and the adaptive plasticity of spinal maps under various conditions.

In this review, we consider the main advancements in the study
of spinal maps of motoneuron activation during human locomotion,
drawing on data collected over about 20 years and concentrating on
the functional properties of motor pool activity in both health and
disease. The topographical (anatomical) arrangement of the motor
pools in the human spinal cord will be examined first, followed by a
complementing comparative study in animals. After that, we shall
discuss the neuromechanics and experimental evaluation of motor
pool activity in various human gaits, as well as how it reorganizes
with age as infants mature and learn to move around. Finally, we
explore the application of spinal maps to monitoring and
stimulation of the spinal locomotor circuitry to assist patients
with locomotor deficits in returning to their normal
movement patterns.

Muscles innervation and motor pool
arrangements in the lumbosacral
spinal cord

We start with brief historical notes on seminal work on the
anatomical and connection structure of the spinal motor system.
Although the problem of muscle innervation had been previously
investigated by several authors, the first rigorous study of the
muscle innervation by the lumbo-sacral plexus was made by
Sherrington (1906) in an extraordinary, scholarly paper of
152 pages plus 12 Plates, comparing frog, rat, rabbit, cat, dog,
and monkey (Macacus). The anatomical localization of motor
neurons in the ventral spinal cord was thoroughly studied by
George Romanes, who first described the cephalo-caudal
development of cell columns in rabbit embryos (Romanes,
1941), and then described the multilayered topographic
columnar system that links the spatial arrangement and
biomechanical features of limb muscles to the settling location
and clustering of motor cells in the spinal cord of the cat (Romanes,
1951). A little later Sharrard arrived at the same general plan by
using comparable procedures to the lumbosacral region of the
human spinal cord (Sharrard, 1955). These early pioneering works
laid the foundation for subsequent, more recent research and
insights into the molecular programs that determine the
position of the motor pools and how the position of motor
neurons shapes circuit assembly (Jessell et al., 2011). They also
shed light on the ways that neuronal placement affects sensory-

motor connections and may be relevant to the structure of circuits
in other parts of the central nervous system.

Figure 1 illustrates the organization of motor pools in the
lumbosacral spinal cord of the cat (top) and human (bottom),
showing the position of the motor cell groups and the muscles
they supply. Motoneurons in the spinal cord innervating limb
muscles are clustered into spatial pools that occupy well defined
locations in the anterior horns. The set of motor pools that
innervates muscles exerting synergistic functions are grouped
together, forming mini-columns or columels, positioned along
the rostrocaudal axis of the lumbar spinal cord. Motor columels
exhibit a positional plan; in general, cell columns lying ventrally
in the anterior horn supply the muscles in the proximal part of
the lower limb, whereas those lying dorsally supply the more
distal muscles (Romanes, 1951). Even though these and other
animal studies have been helpful in offering a parallel for the
exploration of human limb innervation, they cannot provide the
whole answer for humans. In contrast to animal studies,
experimental studies of the innervation of muscles segments in
the human lower limbs were largely limited, until Sharrard’s
research. The findings derived from the investigations about the
stimulation of motor nerve roots and motor root lesions made
possible the reconstruction of the innervation of the lower limb
muscles in humans (Sharrard, 1964). These results agree (except
for minor differences) with the findings derived from an
investigation about the distribution of paresis and paralysis in
the human lower limb muscles, as resulting from the loss of
motoneurons in the lumbo-sacral spinal cord both in children
(Sharrard, 1955) and adults (Routal and Pal, 1999; Kendall
et al., 2005).

Instead of being dispersed randomly throughout the ventral
horn, the spinal motoneurons responsible for innervating a single
limb muscle are grouped into spatially coherent “pools”. In
humans, the central L3, L4, L5, and S1 segments of the
lumbosacral enlargement have more motor cells overall
(Tomlinson and Irving, 1977). In contrast, the boundary
segments L1 and S3 have 10–20 times fewer MNs overall than
L3, L4, L5, and S1 segments, and the L2 and S2 segments have
two–three times fewer MNs overall than those segments. The slight
variations in the relative locations of MNs between humans and
cats (Figure 1) can be attributed in part to differences in the shape
of the ventral horns between the two species. Additionally,
Sharrard notes more distinct groups in humans than those seen
in cats, which could possibly point to a higher level of cell group
separation in humans. There is additional evidence from more
recent human research that the cell groups in the lumbosacral
region are more distinct than those in the cervical region. Thus,
neuronal groups were fewer, larger, and, on many levels, better
defined in the lumbosacral region than in the cervical region,
where they were more numerous but smaller and less distinct
(Routal and Pal, 1999). Nevertheless, overall, both human and cat
data show a similar general topographic plan of muscle
innervation. An essential feature of anatomical maps of MN
location is their muscle-specific location along the rostrocadual,
mediolateral, and dorsoventral axes of the lumbar spinal cord. In
general, each muscle is innervated by several spinal segments, and
each segment supplies several muscles (Sharrard, 1964; Kendall
et al., 2005).
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The vast majority of neurons in the spinal cord are involved in
sensory-motor processing, interneurons that facilitate
communication between different levels of the spinal cord and
supraspinal centres, and various other functions essential for
coordinating movement, reflexes, and autonomic functions.
Motoneurons represent a relatively small proportion of the overall
neuronal population in the lumbosacral spinal cord. However, they
play a critical role as the final common pathway formotor control. For
locomotion, they may have additional roles, as we will argue later. It is
also worth stressing that, in the developing spinal cord, motoneurons
are the first active neurons, and form local patterned ensembles with
neighbouring neurons (Hanson and Landmesser, 2003; Warp et al.,
2012; Wan et al., 2019). Moreover, motoneuron positioning is tightly
related to sensory-motor connectivity and the assembly of spinal
motor circuits (Jessell et al., 2011; Arber, 2012; Kiehn, 2016). The
reconstruction of the innervation of human lower limb muscles
(Figure 1B) and registration of muscle activity during locomotion
and other tasks have allowed many researchers to investigate the
spatiotemporal activity of the spinal motor pools, as measured by
spinal topography. These findings will be discussed in more detail in
the following sections.

Spinal maps assessed by mapping
muscle activity onto the rostrocaudal
location of MNs

The method for assessing the spatiotemporal maps of alpha-
MNs activation during locomotion was first developed for cats
(Yakovenko et al., 2002), and the technique was then applied to
humans (Grasso et al., 2004; Ivanenko et al., 2006). It consists of
simultaneous kinematic and electromyographic (EMG) recordings
in several muscles (that provide an indirect measure of the net firing
of MNs of those muscle in the spinal cord at any particular
moment), and mapping the recorded patterns of muscle activity
onto the approximate rostrocaudal location of the MN pools within
the spinal grey matter in the spinal cord. Yakovenko et al. (2002)
constructed the maps from anatomical data on MN localization
obtained by Vanderhorst and Holstege (1997) and from records of
EMG activity of 27 hindlimb muscles during locomotion of intact
cats to characterize the spatiotemporal migration of motor pool
activity in the cat spinal cord during normal locomotion
(Figure 2A). A rostrocaudal oscillation of activity in hindlimb
MN pools emerged from these maps (see centre-of-activity,

FIGURE 1
The organization of motor pools in the lumbosacral spinal cord of the cat (A) and human (B). Diagrams show the position of the motor cell groups
and the muscles they supply (reproduced from Romanes, 1964, with permission from Elsevier). The cat’s motor pool layout is derived from Romanes
(1951), while the human data are constructed from Sharrard (1955).

Frontiers in Physiology frontiersin.org03

Avaltroni et al. 10.3389/fphys.2024.1389436

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1389436


Figure 2A). During the stance phase of locomotion, there was
significant motor neuron activity in the caudal part of the
lumbosacral enlargement. At the stance-to-swing transition, a
transient focus of activity developed in the most caudal region,
and during the swing phase the activation’s focal point moved to the
rostral region of the lumbosacral enlargement. The developed model
of the spinal cord generated from these digitized data sets
(Figure 2A) proved to be a valuable, non-invasive technique for
similar applications in humans.

The utilization of non-invasive neuroimaging modalities, such
as functional magnetic resonance imaging (fMRI), has significantly
advanced our ability to visualize andmap the neuronal activity of the

human spinal cord and its impairment (Lawrence et al., 2008;
Powers et al., 2018; Landelle et al., 2021; Hemmerling et al.,
2023; Kaptan et al., 2023; Stroman et al., 2014). The recent
advancements in fMRI sequences that can simultaneously target
the brain and spinal cord have opened up new avenues for studying
the neural mechanisms at multiple levels of the CNS (Vahdat et al.,
2015; Kinany et al., 2023). fMRI of the lumbosacral spinal cord can
also be used to detect neuronal activity during some lower limb
movement tasks (Kornelsen and Stroman, 2004; Kornelsen and
Stroman, 2007). However, comparable functional imaging of
motor pool activity in the human spinal cord remains difficult to
apply to walking. Apart from technical challenges like movement

FIGURE 2
Spinal maps of MN activation during locomotion assessed by mapping muscle activity onto the rostrocaudal location of MNs. (A) Spatiotemporal
map in the cat (adapted from Yakovenko et al., 2002with permission). On the top: anatomical model of the organization of theMN pools. On the bottom:
intramuscular EMG activity of vastus lateralis (VL) and lateral gastrocnemius (LG) muscles (redrawn from Smith et al., 1998). (B) A similar diagram in the
human spinal cord (modified from Ivanenko et al., 2006). The upper panel: a sketch ofmotor cells for S2–L2 segments (adapted from Sharrard, 1955;
Sharrard, 1964). Columns that display their major activity during the stance and swing phases of the right (R) leg aremarked in red. The centre of activity in
the spinal maps is shown by the black lines. Pattern is plotted vs. normalized gait cycle.
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artefacts, etc., it is unclear which neural structures in the spinal cord
can be evaluated by functional magnetic resonance imaging, and it is
challenging to discern between MN activations and interneuron
activations related also to the sensory inputs that always accompany
movement. Therefore, the approach developed for cats (Yakovenko
et al., 2002) represents a viable and perhaps unique alternative for
documenting the spatiotemporal maps of alpha-MNs during human
locomotor tasks. Despite limitations in the experimental assessment
of motor pool activity, the study of spinal maps of motoneuron
activation represents a promising avenue of research, bridging the
gap between the brain and the spinal cord in the context of the
control of human locomotion in both health and disease (Scivoletto
et al., 2007).

By employing this technique, Figure 2B shows a diagram of
spinal MN activation during human walking. The lumbosacral map
of MN activation obtained in healthy humans using this method has
some of the same features as that of Yakovenko et al. (2002). In both
sets of maps (Figure 2), the locus of maximum concentration of MN
activity (computed as Centre of Activity, CoA) oscillates rostro-
caudally in the spinal cord during swing and stance, and spinal
activity jumps from one region to the other. However, there are
some differences between the two species. In humans, the first
activation component is centred near the origin (time of heel
strike) at ~10% of the cycle. It appears primarily in the mid and
upper lumbar segments (L4–L2) and extends into the lower thoracic
segments. The next major activation phases are centred at ~45%
(activity in the sacral segments S1, S2, while activity in the lumbar
segments is much reduced), ~60% (activity in mid and upper lumbar
segments occurring around lift-off), and 95% of the cycle (focused
on all spinal segments) (Figure 2B). In our previous studies, we
evaluated the sensitivity of the spinal locomotor output to inter-
stride and inter-individual differences, the number of recorded
muscles and potential crosstalk (Ivanenko et al., 2006; 2013;
Cappellini et al., 2010).

Despite individual variations in the segmental level of spinal
activation, the major features depicted in the stride-averaged maps
are representative of the general trends in individual strides (La
Scaleia et al., 2014a). Also, despite some minor differences apparent
in the colour-scale maps, the segmental motor pool output estimated
from the activity of 18 or 12 ipsilateral muscles is roughly similar,
and captures four major loci of activity in the gait cycle (Ivanenko
et al., 2013) illustrated in Figure 2B. On the one hand, this result
shows that the method is robust, and can be applied even with a
lower number of recorded muscle activity, as would be the case in
some pathological cases. On the other hand, the result indicates that
the method does not provide a sensitive measurement of the
activation of motoneuron pools of different muscles. For the
latter, one would need an extension of high-density muscle fibre
electromyograms (Sartori et al., 2017) to multiple muscles recording
during locomotion, which is currently not feasible.

If we now return to the comparison with spinal maps in cats, we
notice that in the latter species, lower lumbosacral spinal segments
contribute earlier in stance, whereas L4 and L5 activity occurs later
in stance (Figure 2A). This is also seen in the activity of lateral
gastrocnemius (LG). In humans, an activation peak of LG occurs late
in stance at the lower lumbosacral region. In cats, however, it occurs
at the start of stance. The difference in the timing of activity of the
proximal extensors (such as vastus lateralis VL, Figure 2) likely

reflects specific features of locomotion in each animal species,
including the biomechanics of quadrupedal (knee-flexed) versus
bipedal (leg extended) gait.

“Neuromechanics” of motor pool
activity in human gaits

In line of principle, the spatial distribution of motoneurons
might play an important role in embedding musculoskeletal
dynamics and the total assembly of spinal motor circuits. In the
cervical enlargement of macaques, the distances between
motoneuron pools innervating synergistic muscles are the
shortest, followed by those innervating antagonistic muscles
(Jenny and Inukai, 1983; Taitano et al., 2024). This kind of
spatial arrangement is compatible with models of locomotor
central pattern generators (CPG) (Grillner and El Manira, 2015;
Ausborn et al., 2018) involving the co-activation of synergistic
muscles and the reciprocal inhibition of antagonistic muscles
(Taitano et al., 2024). An essential aspect of segmental grouping
of MNs of different muscles is their rostrocaudal distribution. The
rhythmogenic capacity of the CPG is distributed along the lumbar
cord, with a rostrocaudal excitability gradient (Lev-Tov et al., 2000;
Kiehn, 2006). The capacity for segmental rhythmogenesis and the
rostrocaudal propagation of spinal cord activity is possibly
conserved in the course of evolution (Falgairolle et al., 2006). It
is also important to note a similar relative rostrocaudal organization
of both anatomical and functional (e.g., assessed by
microstimulation) spinal maps of the lumbosacral motoneuronal
pools (Toossi et al., 2019). We will consider here the latter aspect
(functional spinal maps of MN activity) in the context of human
bipedal locomotion.

It is important to remark that the spatiotemporal maps of
activity provide only a global view of ensemble alpha-
motoneurons activity, and give indirect information about the
activity of premotor interneurons, which represent the core of
CPGs, at least in animal models (Kiehn, 2016; Grillner and El
Manira, 2020). Nevertheless, the issue of whether or not
motoneurons are directly part of CPGs remains unsettled
(Marder, 1991; O’Donovan et al., 1998; Mentis et al., 2005).
Indeed, while motoneurons are often considered only the last
relay from the central nervous system to the muscles, there is
evidence in several animal species that they can play a role in
shaping the locomotor rhythm and patterns by providing feedback
to upstream circuitry (Barkan and Zornik, 2019). Thus, in
zebrafish, motoneurons are electrically coupled via gap
junctions to excitatory V2a interneurons in the locomotor CPG
(Song et al., 2016). In rodents, motoneurons can modulate
locomotor CPG activity by projecting onto Renshaw cells, other
motor neurons (Bhumbra and Beato, 2018), and V3 interneurons
(Chopek et al., 2018). It is also worth noting that, in mice,
brainstem commands to initiate rhythmic locomotor activity are
tightly channelled to motoneurons via modular pathways
involving an entry point in the spinal cord, an immediate
executor module, and a premotor module (Hsu et al., 2023).
This then shows how motoneurons are an integral part of the
chain of commands leading to locomotor rhythm and pattern
generation.
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FIGURE 3
Evolutionary adopted MN grouping, motor pool activity, and motor wave propagation in the human spinal cord (adapted from Cappellini et al.,
2010). On the left–unilateral maps of MN activity, on the right–bilateral maps (when patterns of each half cord activation were collapsed together to
obtain the total bilateral motor output). Spinal maps are illustrated for different human gaits (normal walking, walking on a slippery surface, and running).
Arrows schematically indicate the resultant ground reaction forces duringweight acceptance and propulsion phases (with corresponding horizontal
and vertical components). Potential (Ep) and kinetic (Ek) energies (±SD) of the centre-of-mass (COM) are also shown on the right. The black curves
correspond to the centre of MN activity (CoA), which is superimposed on the COM kinetic energy curves for each bilateral map on the bottom. Note
systematic oscillations of CoA from S1 to L4 segments (twice per stride) during walking and running and high correspondence of these CoA oscillations to
kinetic energy. In the absence of friction (slippery surface) there is a lack of both motor wave propagation (CoA) and changes in Ek.
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As we noted above, the human spinal maps of activation
(Figure 2B) have some specific features related to the
idiosyncratic gait style involving erect bipedalism. Humans
have many musculoskeletal specializations for bipedalism
(Bramble and Lieberman, 2004), with walking and running
being the most common forms of human locomotion. They
show highly automated rhythmic movements with a relatively
stereotyped pattern of muscle activation, which most likely
reflects both the activity of underlying pattern generators and
proprioceptive feedback. In bipedal humans, keeping the leg fully
extended during midstance helps to reduce joint torques, muscle
forces and energy expenditure during limb loading (Alexander,
1991). This, in turn, calls for a prominent lumbar activity at
midstance (related to the activity of proximal leg extensors), and
a functional separation of the lumbar and sacral segmental
activities (Figure 2).

An essential feature of some schemes of spinal activation is the
pulsatile nature of the major part of the motor output (Cappellini
et al., 2006), consistent with “drive pulse” rhythmic elements in the
spinal circuitry of animals (Giszter et al., 2007). The concept of drive
pulses is germane to the original idea of unit burst generators put
forth by Grillner (1981), Grillner and El Manira (2020). While the
exact mechanisms underlying burst generation in mammals are still
incompletely understood, the picture in an old vertebrate, the
lamprey, has been described in detail (Grillner and Kozlov,
2021). The segmental lamprey network involves a pool of
interacting excitatory interneurons (Buchanan and Grillner,
1987). Burst initiation is triggered when excitatory interneurons
receive excitatory descending drive. Burst termination depends on
an initial increase of the level of intracellular Ca2+ activating
calcium-dependent potassium channels, which gradually
hyperpolarize the excitatory interneurons.

The idea of the spinal circuitry with constraints on the temporal
functional connectivity of hypothetical pulsatile burst generators is
supported by the factorial analysis of multi-muscle EMG activity
patterns (Ivanenko et al., 2004) and by biomechanical modelling
studies (Neptune et al., 2009). It is noteworthy that the main loci of
MN activity during forward locomotion are associated with specific
spinal segments and with specific biomechanical actions (Lacquaniti
et al., 2012).

Figure 3 illustrates such idiosyncratic motor pool activity
during human walking and running. There are two types of
activity maps displayed: the ipsilateral (left panels) and bilateral
(right panels) maps. The ipsilateral maps of the lumbosacral
enlargement, provide an indirect reflection of the primary
spatiotemporal torque patterns that the corresponding limb
exerts. The two major loci of activity, around touchdown and
end of stance, are associated mostly with the activity of proximal
(quadriceps) and distal (ankle plantar-flexors) extensors during
weight acceptance and propulsion, respectively (Figure 3, left
panels). In addition, lateral trunk stabilization may also be
involved during weight acceptance, including the activation of
tensor fascia latae and gluteus medius, which are also innervated
from the lumbar segments. It is also worth noting that extensor
limb muscles have a significantly larger physiological cross-
sectional area than flexor muscles (Ward et al., 2009). During
walking, the two prominent loci of activation occur at ~5 and 45%
of the gait cycle. During running, they are closer to each other, in

parallel with the shorter stance duration (Figure 3, left
lower panel).

Although the activation patterns may be localized at different
spinal segments in a gait-specific manner, the pulsatile nature of
motor pool activity is conserved during other human gaits, such as
skipping, backward walking, and walking on inclined surfaces
(Ivanenko et al., 2008). During skipping, a gait mode frequently
displayed by young children (as well as by astronauts locomoting on
the Moon) and having features of both walking (double support
phase) and running (flight phase), the timing of the major peaks of
sacral activation corresponds perfectly to those during both walking
and running (Ivanenko et al., 2008). Since both sacral temporal
bursts are present (superimposed) during skipping, this result
suggests that walking, running and skipping may share the same
timing generator circuitry. During backward walking, the
propulsion burst at the end of stance is linked to the lumbar
rather than sacral segments as in forward walking, engaging
quadriceps muscle instead of triceps surae (Ivanenko et al.,
2008), while during walking on inclined surface the relative
intensity of lumbar and sacral loci of activity at the onset and
end of stance depends on the slope (Dewolf et al., 2019). While
lumbar motor pools get more engaged when both positive and
negative slopes increase, sacral motor pools become less active at
negative slopes and more active at positive slopes when compared to
level walking. These findings are consistent with ‘drive pulse’
rhythmic elements in the spinal circuitry, though with a
differential involvement of the lumbar and the sacral motor pools
depending on the slope and walking direction, which should likely
be taken into account when using spinal neuroprosthetics for
rehabilitation of adaptive gait (see the section “Spinal maps for
evaluating and neuromodulating disease-related locomotor output”).

The neural substrates that control elasmobranch fins and
mammalian limbs, including a rostrocaudal propagation of motor
waves in the spinal cord, had already evolved millions of years ago
(Falgairolle et al., 2006; Grillner, 2018). The layout of the
motoneurons in the human spinal cord shows a specific
topography (Sharrard, 1964), and this anatomical arrangement
might underlie a way in which leg muscles work when moving
the centre-of-mass (COM) during terrestrial locomotion. However,
this question has not been specifically addressed in prior research,
except for a few studies on a rostrocaudal propagation of motor
waves in trunk muscles (e.g., de Sèze et al., 2008). In our previous
study (Cappellini et al., 2010), we looked at the bilateral maps of MN
activity to address this question. The rationale behind a bilateral
analysis is that coordinated action of all the muscles in both legs,
rather than the muscles of only one leg, determines the motion of the
body COM. The bilateral maps were obtained by collapsing together
the patterns of each half cord activation to characterize the total
bilateral motor output. These maps for different types of human gait
are illustrated in Figure 3 (right panels). During walking and
running, the centre of bilateral motoneuron activity (CoA)
exhibits two major rostrocaudal activation oscillations associated
with the left and right heel strike and shear (friction) forces during
step-to-step transitions. Gravitational potential energy Ep and
forward kinetic energy Ek of the COM show out-of-phase and
in-phase behaviour during human walking and running,
respectively. These behaviours are consistent with an
approximation of walking as vaulting gait (inverted pendulum)
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and running as a bouncing gait (leg spring-loaded during stance)
(Figure 3, upper and lower right panels). Interestingly, the
rostrocaudal displacements of the CoA of bilateral motoneurons
mirror the changes in the kinetic energy of the COM motion
during both walking and running. Moreover, when we examined
walking on a slippery surface, which considerably reduces shear
forces at step-to-step transitions, both the oscillations of the COM
kinetic energy and the CoA caudal and rostral shifts were
significantly smaller than those for normal walking (Figure 3,
right middle panel). A striking correspondence of the
rostrocaudal propagation of spinal cord activity with changes in
the energy of the COMmotion suggests a possible neural correlate
of the biomechanics of bipedal gait related to the underlying
principles of the evolutionary adopted motoneuron grouping.
This idea is tightly related to Taga’s model (Taga, 1995)
predicting walking movements from the dynamic entrainment

among the neural and musculo-skeletal systems and the
environment (see also Lacquaniti et al., 1999).

Spinal maps in locomotor development

Neuroimaging of the spinal cord in animals has become a potent
technique for determining the neurogenesis and evolutionary
origins of the spinal locomotor networks. For instance,
neuroimaging of the developing spinal cord may reveal the
emergence of coordinated activity at single-cell resolution.
Cellular-resolution analysis of population activity in zebrafish
demonstrated that motoneurons form first pattern ensembles
followed by global synchronization based on threshold network
size and then by commissural interneurons that establish left-right
coordination (Warp et al., 2012; Wan et al., 2019). Machado et al.

FIGURE 4
Age-related changes in MN activity maps in developing spinal cord. (A) Unilateral spinal maps in neonates, toddlers, preschoolers, and adults
(adapted from Ivanenko et al., 2013). Note a gradual functional reorganization of motor pool activity from a quasi-simultaneous activation of lumbar and
sacral segments in neonates to a clearly dissociated activity in adults. This aligns once more (as seen in Figure 3) with the close connection between the
biomechanics of COM motion (neonates’ lack of propulsive step-to-step transition activity) and motor wave propagation in the spinal cord. (B)
Impact of aging related to the loss of anticipated COM step-to-step transition strategy in elderly: due to the lack of late push-off prior to toe-off (TO) from
the trailing leg (sacral activity shifts toward an earlier midstance), the down-to-up redirection of the COM velocity starts later in older than in young adults
(adapted from Dewolf et al., 2021).
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(2015) used two-photon imaging coupled with spike inference to
measure locomotor firing in hundreds of motor neurons in isolated
mouse spinal cords. Interestingly, their findings highlighted the
evolutionary primacy of flexor pattern generation, since after
reversion of motor neuron identity in mutant mice, almost all
firing patterns became distinctly flexor-like. Pham et al. (2020)
recorded two stepping bouts and discovered a significant amount
of redundancy among spinal locomotor circuits using
neuroimaging, which involves labelling spinal neurons and
recording population activity in the adult mouse spinal cord.
Overall, neuroimaging studies in animals show that motor
neuron identity directs locomotor circuit wiring and that the
coordinated activity is gradually emerging in the developing
spinal cord. The emergence of locomotor activity and systematic
age-related changes in the spinal activity maps can also be studied in
humans using the non-invasive method originally developed by
Yakovenko et al. (2002) (Figure 2).

Figure 4A provides an example of the results obtained from
these investigations conducted on human participants (Ivanenko
et al., 2013). To this end, the spinal segmental output was examined
during stepping in newborns, toddlers, preschoolers, and adults. A
remarkable feature of newborn stepping is a rostrocaudal
coactivation of motoneurons, which are activated mostly during
the stance phase of the cycle. A higher overall activation of lumbar
versus sacral segments (Figure 4A, upper panel), may reflect a
gradient in rostrocaudal excitability in line with the animal
studies on a greater rhythmogenic capacity of rostral (D7–D10 in
turtles, L1–L3 in rodents, L3–L5 in cats) vs. caudal segments
(Cazalets and Bertrand, 2000; Lev-Tov et al., 2000; Vinay et al.,
2002; Kiehn, 2006). A second burst of activity during neonatal
stepping is observed during swing related to the activation of ankle
dorsiflexors. Notice that flexor activity during swing in neonates is
probably underestimated due to the difficulty of recording from the
main hip flexor, iliopsoas.

In adult humans, the upper lumbar pattern generator activity
may also function as a major pacemaker (Gerasimenko et al., 2010),
whereas the sacral generator could play a subordinate role for
adaptation to specific foot-support interactions (Selionov et al.,
2009). Further insights into the developmental process can be
gained by analysing the segmental structure of motoneuron
activity in older children. In toddlers, motor pool activity shifts
to the sacral cord segments at midstance, while lumbar and sacral
motoneurons are activated around touchdown. Preschoolers show a
roughly similar pattern, but with a greater separation between the
activity at the beginning of stance and the rest of the stance pattern
(Figure 4A). The separation becomes more prominent with further
development with progressively briefer motoneuron activations in
adults, resulting in distinct bursts of activity in the spinal maps
(Figure 4A, lower panel). Thus, the findings suggest a developmental
sequence that begins with a common patterning of motor pool
activity in the entire lumbosacral cord, which later progresses with a
separate patterning of activity in the lumbar and sacral spinal
segments consistent with separate maturation of lumbar and
sacral pattern generators. In sum, development of human
locomotion from the neonate to the adult starts from an overall
rostrocaudal excitability gradient, and entails a progressive
functional remodelling of the pattern generation circuitry.

Spinal maps in the elderly

The process of remodelling and organization of the segmental
structure of motoneuronal activity may restart with ageing. Changes
in gait features of locomotion occur as a result of increased risk of
falling (Maki, 1997) and/or health status in older adults (Studenski
et al., 2011). Factors associated with age-related changes include
decreased grey matter volume (Good et al., 2001), the number of
motor cortical (Henderson et al., 1980) and spinal motor neurons
(Doherty, 2003), synaptic density (Haug and Eggers, 1991), white
matter integrity (Davis et al., 2009), descending inputs (Yue et al.,
1999), changes in the musculoskeletal system (McGibbon, 2003),
and degenerative changes in the central and peripheral nervous
systems (Skinner et al., 1984; Seidler et al., 2010). The resulting
locomotor changes characteristic of ageing are captured by the
spinal topography (Figure 4B). As compared to young adults, the
sacral motoneurons activation is significantly wider in older adults
and shifts toward an earlier midstance, consistent with wider activity
profiles of the muscles innervated by the sacral segments (Monaco
et al., 2010). In addition, the occurrence of the maximal activation of
the lumbar segments occurs significantly earlier in older than in
young adults. This is related to the loss of anticipated COM step-to-
step transition strategy in elderly (Figure 4B). Because of the lack of
late push-off prior to toe-off from the trailing leg, the down-to-up
redirection of the COM velocity starts later in older than in young
adults (Dewolf et al., 2021).

In conclusion, with respect to the overall influence of age on the
neuromechanics of motor pool activity (Figure 4), only in young
adults do we observe the two features of motoneuron activation that
are associated with the most energy-efficient bipedal gait: 1) distinct
bursts of activity in the lumbar and sacral segments at the beginning
and end of stance, respectively, and 2) their short durations relative
to gait cycle duration. The next section discusses how patients with
locomotor impairments may benefit from the restoration of a
normal motor pool activity pattern, which may be related to the
optimal pattern of spinal maps just summarized.

Spinal maps for evaluating and
neuromodulating disease-related spinal
locomotor output

Differences in the spinal locomotor output are expected for
patients who display impaired muscle activity. In recent years,
significant advancements have been made in the development of
multifaceted neurotechnologies, such as wearable powered lower
limb exoskeletons, functional electrical stimulation of muscles, and
spinal cord neuromodulation therapies to aid in walking and
promote motor recovery. The growing interest to restoring and
enhancing gait control in individuals with neurological disabilities
(e.g., spinal cord injury) by applying new technologies has led a
number of researchers to use spinal topography for investigating the
spinal locomotor circuit impairments (Grasso et al., 2004; Scivoletto
et al., 2007; Wagner et al., 2018; Hofstoetter et al., 2021; Zhvansky
et al., 2022). Spinal maps can be used for both monitoring aberrant
motor pool activation and neuromodulating the spinal
locomotor circuitry.
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The usage of the spinal maps of MN activation can be coupled
with complementary statistical analysis of muscle synergies. They
often converge to a similar temporal structure of the locomotor
program consisting in a burst-like activation of groups of muscles,
though the spinal maps additionally reflect the spatial loci of this
activity in the spinal cord (Ivanenko et al., 2008; Yokoyama et al.,
2017). Spinal maps and accurate α-motoneuron discharges across
lumbosacral segments in the human spinal cord can also be assessed
by employing multi-muscle spatial sampling and deconvolution of
high-density muscle fibre electrical activity via 256 EMG channels
simultaneously (Figure 5) (Sartori et al., 2017; Gogeascoechea et al.,
2020). This enables observing causal associations between spinal
motor neuron activity and joint moment control. While this review
focusses on the lumbosacral enlargement innervating lower limb
muscles during locomotion, the spinal maps can also be used to
assess the motor pool activity patterns in the cervical spinal cord
during both locomotor tasks and voluntary contractions, again by
mapping the EMG activity profiles of the upper limb and trunk
muscles onto the location of the motoneuron pools in the cervical

enlargement (Grasso et al., 2004; Ivanenko et al., 2006; Pellegrino
et al., 2021). Given the coupling between the cervical cord
controlling arm muscles and the lumbosacral cord controlling leg
muscles (involvement of the upper limbs, specifically the proximal
armmuscles during walking, La Scaleia et al. (2014b), improvements
in arm-leg coordination and adequate spatiotemporal
neuromodulation of cervical motor pool activity may help
ameliorating abnormal gait and upper limb and trunk control
(Keller et al., 2021; Kaneshige et al., 2022; Oh et al., 2022). For
instance, cervical stimulation of specific segments can potentiate
locomotor output in the lower limbs, likely via augmentation of
descending drive and/or descending propriospinal system
(Gerasimenko Y. et al., 2015; Barss et al., 2020).

One rationale of using spinal maps in patients with locomotor
deficits is to evaluate the naturalness or similarities of the neural
control strategy in patients with respect to normal walking, since an
abnormal spatiotemporal integration of spinal motor activity may
result in a risk for failure or abnormalities in gait recovery. Also, an
important aspect for developing spinal cord modulating therapies is

FIGURE 5
Spatiotemporal patterns of ipsilateral α-motoneuron activity in the spinal cord assessed by multi-muscle spatial sampling of high-density
electromyograms (HD-EMG). The HD-EMG is decomposed to determine cumulative spike trains of theMNs (A)mapped onto the rostrocaudal axis of the
spinal cord lumbosacral segments (B). MN spike trains drive forward an open-loop subject-specific musculoskeletal model (C). This method shows how
the neural drive to muscles is generated by the spinal cord output layers, enabling ankle joint mechanical moment control across different forces
(from Sartori et al., 2017).

Frontiers in Physiology frontiersin.org10

Avaltroni et al. 10.3389/fphys.2024.1389436

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1389436


the physiologically relevant assessment of the state of the spinal
circuitry. Figure 6A shows some examples of notable impairments of
spinal motoneuron activity maps in locomotor-related disorders
such as cerebral palsy (CP), spinal cord injury (SCI), and hereditary
spastic paraplegia (HSP). Notice an impaired lumbar-to-sacral
oscillation pattern during the stance phase in all illustrated
pathological gaits. As described above, the main feature of the
spinal maps in neurologically intact individuals is a prominent
separation of the lumbar and sacral activation bursts (Figure 6A,
left panel). In contrast, the prominent feature of the maps in a child
with CP is a quasi-synchronous involvement of lumbar and sacral
segments during stance and a wider motor pool activation during
stance, reminiscent of the maps of toddlers at the onset of
independent walking (Cappellini et al., 2016). In SCI patients, the
lumbosacral enlargement often shows abnormal loci of activation,
such as an upper lumbar segment activation at midstance (Ivanenko
et al., 2009) (Figure 5A). In HSP patients, the activity timings in
lumbar and sacral segments tend to be quasi-synchronous, because
of a typical progressive widening of the activity involving the sacral
segments (Martino et al., 2018). A widening of spinal locomotor
output spreading from caudal to rostral segments is associated with
the degeneration of the corticospinal tract in HSP. These findings
highlight pathophysiologically relevant differential changes in the

spinal locomotor output in HSP related to the specific innervation of
muscles in the spinal cord. Abnormal spatiotemporal segregation of
spinal motor activity during gait is likewise observed in other
populations, for instance, in stroke patients (Coscia et al., 2015).
Spinal maps have been also used to assess self-sustained rhythmic
spinal myoclonus in the paralyzed lower limbs based on the
segmental innervations of the recruited muscles (Minassian et al.,
2023), showing a complex migration of activity along the lumbar
and upper sacral spinal cord (Figure 6B). Thus, spinal mapsmight be
helpful for identifying patient-specific physiological markers of the
disease, and developing targeted therapeutic strategies.

Another rationale for considering the spinal maps of motor pool
activity is offered by the promising strategy of neuromodulating the
spinal circuitry using spinal cord electrical stimulation (SCES). We
have previously argued that the temporal patterns of MN activation
correlate with global kinematic goals of locomotion, and that they
could be potentially useful to drive neuroprostheses for SCI patients
that utilize spatially distributed stimulators (Ivanenko et al., 2003).
Recent research has effectively used this approach using either
epidural (Angeli et al., 2018; Hofstoetter et al., 2021; Rowald
et al., 2022; Mesbah et al., 2023) or transcutaneous (Gerasimenko
Y. P. et al., 2015; Sayenko et al., 2015; Solopova et al., 2017; Siu et al.,
2022; Bryson et al., 2023) multi-segmental SCES to restore leg motor

FIGURE 6
Spatiotemporal maps of α-MN activity for monitoring and neuromodulating the spinal motor circuitry. (A) Examples of spinal activity maps in a typically
developing child, child with cerebral palsy (CP, from Cappellini et al., 2016), spinal cord injury patient (SCI, from Ivanenko et al., 2009) and patient with
hereditary spastic paraplegia (HSP, fromMartino et al., 2018). Note an impaired lumbar-to-sacral oscillation of motor pool activity during the stance phase in
pathological cases. (B)An example of using spinalmaps formonitoring spinal self-sustained rhythmic activity in SCI (adapted fromMinassian et al., 2023,
with permission from Springer Nature). (C) An example of using spinal maps for designing the spatiotemporal configuration of epidural electrical stimulation
(EES) and monitoring segmental activity in SCI patients (adapted from Wagner et al., 2018, with permission from Springer Nature).
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functions. SCES indirectly activates motor neurons pools located in
the spinal cord segment by recruiting proprioceptive circuits within
the posterior roots of the spinal cord. Figure 6C shows a successful
application of SCES based on the spinal maps in a complete SCI
patient. The mechanism underlying neurostimulation strategies
(Wagner et al., 2018) consists of stimulating the expected
hotspots of MN activation, ensuring weight acceptance,
propulsion and swing. After identifying electrodes position that
should target specific subsets of dorsal roots projecting to the spinal
cord regions associated with extensor or flexor hot spots, targeted
SCES effectively activated the regions embedding these hotspots,
adjusting the onset and duration of each stimulation train to
approach the motor neuron activation maps of healthy
individuals (Wagner et al., 2018). These SCES stimulation
sequences enabled robust EMG activity in otherwise quiescent
muscles of a patient with SCI during stepping on a treadmill
(Figure 6C). Combining SCES with exoskeleton gait training can
have a synergistic rehabilitative effect on restoring walking abilities,
somatic sensation, and cardiovascular and bladder function in
paralyzed individuals (Ivanenko et al., 2023). SCES enables the
modulation of specific leg motor pools (Capogrosso et al., 2013;
Wenger et al., 2014; Moraud et al., 2016; Wenger et al., 2016), and
restores standing and basic walking in human with paralysis due to
SCI (Minassian et al., 2004; Angeli et al., 2014; Angeli et al., 2018;
Formento et al., 2018; Gill et al., 2018) and also in animals (Wenger
et al., 2014; Capogrosso et al., 2016; Wenger et al., 2016; Asboth
et al., 2018; Bonizzato et al., 2021), improving the capacity of the
spinal cord to convert task-specific sensory information into the
locomotor-related muscle activity. Additionally, spatiotemporal
SCES is now included into brain-spine interfaces for walking
(Lorach et al., 2023).

These findings underlie the practical importance of the
spatiotemporal activity patterns of motoneurons as causal drives
leading to clinical improvements. Thus, it has been shown that an
optimal design of the location and timing of epidural SCES tailored
on the individual features of spinal cord topology so as to reproduce
the natural spatiotemporal activation of motoneurons leads to
successful rehabilitation of spinal-cord injured patients with
complete paralysis (Rowald et al., 2022).

The comprehensive understanding of the functional spinal maps
and neural circuits can pave the way for developing targeted
therapeutic strategies and contribute to the advancement of
neuroprosthetics aimed at restoring functional movement
patterns in patients with locomotor deficits. To develop clinical
treatments, a range of factors should be considered, including
abnormalities in the spinal activity maps, individual differences
in spinal cord anatomy, physiology, dosing, personalized CPG-
modulating therapies, as well as long-term effects of this

treatment. All these factors share the same goal: activating
and remodelling the spinal neuronal pathways to get closer to
the typical evolutionary evolved neuromechanics of spinal
locomotor circuitry functioning. The spinal maps may also
have an important application in the emerging field of
interpersonal coordination for interactive locomotion (Sylos-
Labini et al., 2018).
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