
Titin: roles in cardiac function
and diseases

Dawson Stroik1,2, Zachery R. Gregorich2, Farhan Raza3, Ying Ge4

and Wei Guo1,2*
1Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School
of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,
2Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of
Wisconsin-Madison, Madison, WI, United States, 3Department of Medicine, School of Medicine and
Public Health, University of Wisconsin-Madison, Madison, WI, United States, 4Department of Cell and
Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison,
WI, United States

The giant protein titin is an essential component of muscle sarcomeres. A single
titin molecule spans half a sarcomere and mediates diverse functions along its
length by virtue of its unique domains. The A-band of titin functions as a
molecular blueprint that defines the length of the thick filaments, the I-band
constitutes a molecular spring that determines cell-based passive stiffness, and
various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for
stretch-sensing signaling pathways that mediate mechanotransduction. This
review aims to discuss recent insights into titin’s functional roles and their
relationship to cardiac function. The role of titin in heart diseases, such as
dilated cardiomyopathy and heart failure with preserved ejection fraction, as
well as its potential as a therapeutic target, is also discussed.
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1 Introduction

Titin (also known as connectin) constitutes the so-called third filament component of
muscle sarcomeres (Maruyama, 1976;Wang et al., 1979).With amolecular weight of ~3–4MDa
(in humans), titin is the largest protein expressed in mammals, extending from the Z-disk to the
M-band where the N- and C-termini are anchored, respectively. Titin is divided into four
portions based on the orientation of the molecule within the half sarcomere. These portions,
which include the Z-disk, A-band, I-band, and M-line, determine titin’s functional roles. Titin’s
A-band serves as amolecular blueprint that determines the length of the thick filament and helps
to properly orient it within the sarcomere (Whiting et al., 1989; Tonino et al., 2017; Bennett et al.,
2020). Titin functions as a molecular spring that gives rise to passive tension mainly through
three extensible segments located in the I-band: the tandem immunoglobulin (Ig)-like domain,
the repeating PEVK [proline (P), glutamate (E), valine (V) and lysine (K)] domain, and N2B
domain (Labeit and Kolmerer, 1995). In addition to these segments, the binding of chaperones
to the N2A domain also regulates its spring-like properties directly through binding to this
domain and indirectly viamodulation of N2Aphosphorylation (Lun et al., 2014; Lanzicher et al.,
2020). These elastic segments function as a spring that supports early diastolic recoil and late
diastolic resistance to stretch (Granzier and Labeit, 2002; Granzier and Labeit, 2004; Hamdani
and Paulus, 2013; Guo and Sun, 2018). In effect, titin generates a stretch-resisting force that
functions to restore sarcomere resting or “slack” length (Linke et al., 1996). Several different
mechanisms regulate titin-based passive stiffness, chief among which is alterative splicing in the
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I-band portion of titin (Forbes et al., 2005). In the heart, splicing in this
portion of the molecule produces two cardiac-specific N2BA and N2B
(arise from alternative splicing) titin isoforms that have been studied in
great depth and will be the focus of this review (Zou et al., 2015; Chen
et al., 2018). Splicing has also been shown to produce smaller Novex-1-
3 isoforms while the Cronos isoform is produced from a unique
promoter (Bang et al., 2001; Zou et al., 2015). However, the
function(s) of these isoforms in cardiac structure and function,
particularly in cardiomyopathy, is presently unclear. Titin also serves
as a molecular signaling mediator that activates stretch-sensitive
signaling pathways to reshape the myocardium in response to
sarcomere stress through protein complexes tethered in its Z-disk,
I-band, and M-line portions (Granzier and Labeit, 2002; Granzier and
Labeit, 2004; Granzier and Labeit, 2006; Linke, 2008; Linke and Krüger,
2010; Hamdani and Paulus, 2013; Linke and Hamdani, 2014; Guo and
Sun, 2018). The aim of this review is to discuss the structure and
functions of titin’s various domains, as well as how titin splicing and
post-translational modifications (PTMs) contribute to these functions.
We also discuss heart diseases in which titin plays a role, such as dilated
cardiomyopathy (DCM), heart failure with preserved ejection fraction
(HFpEF), and diabetic cardiomyopathy (DbCM) (Herman et al., 2012;
Zile et al., 2015; Hopf et al., 2018). Lastly, we discuss the potential
therapeutic approaches for the treatment of heart diseases by
targeting titin.

2 Structure and localization of cardiac
titin in the sarcomere

The titin gene (TTN) is located on chromosome 2q31 in
humans and encompasses 364 exons (a single non-coding exon
followed by 363 coding exons) (Bang et al., 2001). This paper will
only refer to the 363 coding exons. One titin protein molecule
spans one-half of a sarcomere, transversing the Z-disk, I-band,
A-band, and M-line with its N- and C-terminal portions
anchored in the Z-disk and M-line, respectively (Figure 1)
(Wang et al., 1979).

Z-disk and Z-disk/I-band junction of titin is encoded by coding
exons 1–28 and anchors the N-terminus of the protein in the Z-disk.
This portion of the molecule consists primarily of consecutive
immunoglobulin-like (Ig) domains and 45-residue repeat motifs
termed Z-repeats (Figures 1, 2) (Gautel et al., 1996). The Ig-like
domains are made of eight β-strands arranged in two sheets packed
face-to-face making their structure similar to traditional Ig domains
(Pfuhl and Pastore, 1995; Improta et al., 1996). The first and second
Z-disk Ig-like domains (Z1 and Z2) in titin interact with telethonin (also
known as T-cap) (Gregorio et al., 1998), which crosslinks titin
molecules from adjacent sarcomeres in an anti-parallel arrangement
(Zou et al., 2006). In addition, the Z-repeats have been shown to
mediate interactions with the C-terminal domain of the actin-
crosslinking protein α-actinin (Ohtsuka et al., 1997; Sorimachi et al.,
1997; Joseph et al., 2001) (Figure 1). The interaction between titin and
α-actinin provides strong anchoring of titin within the Z-disk through
multiple Z-repeat/α-actinin bonds (Grison et al., 2017). Recentwork has
added to this list of Z-disk titin-interacting proteins, although many
of these interactions remain to be validated and their functional
significance is unclear (Rudolph et al., 2020; Filomena et al., 2021).

I-band titin represents the extensible portion of the molecule and is
encoded by exons 28–251, with the I/A-band junction encoded by
exons 251–269 (Labeit and Kolmerer, 1995). The I-band portion of titin
can be separated into six distinct regions: the proximal Ig-like domain
(exons 29–47), cardiac-specific N2B segment (exon 49), middle Ig
segment (exons 50–101), N2A segment (exons 102–111), PEVK region
(exons 112–225), and distal Ig-like domain (exons 226–251) (Figures 1,
2) (Labeit and Kolmerer, 1995). As the names indicate, the proximal,
middle, and distal Ig-like domains encode series of tandemly arranged
Ig-like domains (Labeit and Kolmerer, 1995). On the other hand, the
N2B and N2A segments are comprised of three and four Ig-like
domains, respectively, each with additional unique sequences
(572 amino acids in human N2B and 104 amino acids in human
N2A) (Labeit and Kolmerer, 1995).

Titin’s A-band (encoded by exons 270–357) uniquely contains
fibronectin-type III-like (fn3) domains that account for approximately
70% of the A-band portion (Figure 2) (Labeit et al., 1990; Labeit and

FIGURE 1
Sarcomere structure at slack length with full length titin.
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Kolmerer, 1995). Together with the Ig-like domains, the fn3 domains
form two distinct types of super-repeats that define two disparate zones
in the A-band: the distal (D)- and central (C)-zones (Labeit and
Kolmerer, 1995). The I/A-band junction and P-zone (exons
355–358) also contain fn3 domains, however, this zone does not
follow the super-repeat structure found in the D- and C-zones
(Labeit et al., 1997). The D-zone co-localizes with the tips of the
myosin filaments at the border of the A-band and is composed of
6 repeats of Ig-fn3-fn3-Ig-fn3-fn3-fn3 (Figures 2, 3) (Labeit and
Kolmerer, 1995). On the other hand, the C-zone has the pattern Ig-
fn3-fn3-Ig-fn3-fn3-fn3-Ig-fn3-fn3-fn3 repeated 11 times and extends
from the C-zone to the bare zone (Figures 2, 3) (Labeit and Kolmerer,
1995). The fn3 domains in titin consist of seven β-strands comprising
two sheets forming a β-sandwich structure (Goll et al., 1998). It has been
shown that the fn3 domain sequences in the A-band can be separated
into three distinct fn3 sequence types, the arrangement of which defines

distinct repeat units in the D- and C-zones, respectively (Fleming et al.,
2023). Critically, these super-repeats serve as a template that regulates
the length of the thick filament (Tonino et al., 2017), which will be
discussed in greater detail in a later section.

M-line titin is encoded by exons 358–363 (known as Mex1-Mex6)
and tethers the C-terminus of the protein to the M-line (Kolmerer et al.,
1996). In the M-line, titin molecules from adjacent half sarcomeres
overlap, forming a continuous filament that stabilizes the sarcomere
(Figure 1). A large proportion of cardiac titin expresses all six exons,
Mex1-Mex6, unlike skeletal muscle, which often lacks Mex5 (Kolmerer
et al., 1996). If Mex5 is not expressed in cardiac tissue, pathogenic
phenotypes often develop (Marcello et al., 2022). Mex 1 encodes the titin
kinase (TK), which is responsible for binding multiple different proteins
(Kolmerer et al., 1996; Puchner et al., 2008). The role of these M-line
regions change throughout development, and the absence of these exons
results in embryonic lethality (Gotthardt et al., 2003). Under mechanical

FIGURE 2
Full-length titin domain map with exons, sites of common I-band PTMs and A-band super-repeats noted.
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load, sarcomeres initially assemble but fail to grow laterally in the absence
of a continuous titin filament and eventually disassemble, underscoring
the important structural function of this portion in the beating heart
(Mayans et al., 1998).

3 Functional roles of titin in
cardiac muscle

Titin is a functionally pleiotropic protein with specific functions
mediated by its unique regions. Proper sarcomere formation
requires titin, as myosin uses it as a blueprint that determines
the length of the thick filament (Tonino et al., 2017). Titin also
contains spring-like domains that grant it elasticity. These elastic

properties allow titin to act as a molecular spring that contributes
significantly to the passive stiffness of the myocardium (Gautel and
Goulding, 1996; Linke et al., 1996; Tskhovrebova and Trinick, 1997;
Linke et al., 1998; Trombitás et al., 1998). Titin also plays a role in
mechanosignaling by serving as a scaffold for stretch-sensing
protein complexes located in the Z-disk, I-band, and M-line
(Linke and Krüger, 2010; Kötter et al., 2014a; van der Pijl et al.,
2021). These functions will be discussed in greater detail below.

3.1 Function as a molecular blueprint

Early study of purified myosin assembled into “synthetic thick
filaments” revealed that these filaments lacked the homogeneous

FIGURE 3
Domain map of cardiac titin isoforms—N2BA and N2B.
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length exhibited by thick filaments purified from muscle (HUXLEY,
1963). Observations such as this raised the question of how thick
filament length is regulated in vivo. A critical finding came in
1989 when it was shown that the length of the large super-
repeats in the C-zone of A-band titin matched the ~43 nm
spacing of myosin heads in the corresponding portion of the
thick filament (Fürst et al., 1989). This finding, together with
data providing evidence of interactions between titin and myosin
(Murayama et al., 1989), lead to the hypothesis that titin determines
the length of thick filaments (Whiting et al., 1989). Although this
hypothesis remained contentious for many years, more recent
evidence has confirmed that this is, in fact, the case (Tonino
et al., 2017). Tonino et al. (2017) generated a novel mouse model
in which the first two super-repeats of the C-zone were deleted.
Structural studies confirmed that the length of the sarcomeric
A-band was reduced in both cardiac and skeletal muscles from
these mice (Tonino et al., 2017). Further support has been provided
by analysis of the axial disposition of titin on the thick filament
using super-resolution microscopy (Bennett et al., 2020). Thus, it
can be concluded that A-band titin serves as a molecular blueprint
for the sarcomeric A-band, thereby controlling the length of the
thick filaments.

3.2 Function as a molecular spring

Passive stiffness/tension is the resistance to stretching that
muscles exhibit when not actively contracting. In the heart,
passive stiffness is determined by a variety of factors, including
the cytoskeletal filaments, extracellular matrix (e.g., collagen), and
titin, with the latter two contributing the greatest in the working
range of cardiac sarcomeres (Linke et al., 1994; Granzier and Irving,
1995; Loescher et al., 2023). In particular, it has been shown that in
the working range of cardiac sarcomeres (~1.9–2.2 µm) titin-based
stiffness predominates in the lower end of the working range and
collagen-based stiffness at the higher end and beyond (Granzier and
Irving, 1995). Titin-based stiffness arises from the reversible
straightening of extensible domains in titin’s I-band (Gautel and
Goulding, 1996; Linke et al., 1996; Tskhovrebova and Trinick, 1997;
Linke et al., 1998; Trombitás et al., 1998). These extensible domains
include the Ig and PEVK domains, as well as the N2B and N2A
domains (Figure 1).

3.2.1 Spring-like domain: Ig-like domains
When the sarcomeres are at slack length, titin’s I-band exists in a

folded conformation with the tandem Ig-like domains in a
contracted configuration (Trombitás et al., 1995; Granzier et al.,
1996). When stretched, the connecting segments between Ig-like
domains straighten first, followed by extension of the PEVK domain
(Gautel and Goulding, 1996; Linke et al., 1996; Tskhovrebova and
Trinick, 1997; Linke et al., 1998; Trombitás et al., 1998) and N2B
unique sequence (N2Bus) (Trombitás et al., 1999). Extension of the
tandem Ig-like domains contributes to passive stiffness at the lower
end of the working range of cardiac sarcomeres (<2.0 µm)
(Trombitás et al., 1999). An early mechanism proposed to
explain titin elasticity posited that the Ig-like domains themselves
unfold, as was observed in isolated titin molecules (Erickson, 1994;
Lu et al., 1998). A series of papers published in the late 1990s

suggested that such unfolding in vivo would require non-
physiological levels of force (Kellermayer et al., 1997; Rief et al.,
1997; Tskhovrebova et al., 1997) and, thus, for many years it was
thought that unfolding of the Ig-like domains did not occur
naturally. However, the findings of a recent study suggest that Ig-
like domain unfolding may occur at physiological sarcomere lengths
and forces of 6–8 pN (Rivas-Pardo et al., 2016). These findings not
only again raise the possibility that Ig-like domain unfolding occurs,
but also put forward that refolding of these domains actively
contributes to contraction (Rivas-Pardo et al., 2016). Additional
studies will be necessary to confirm these findings.

The major mechanism regulating titin-based stiffness is
alternative splicing of exons encoding Ig-like domains in the
middle Ig segment (discussed in greater detail below) (Freiburg
et al., 2000; Guo et al., 2010), however it has been found that the
extensibility of domains such as the Ig-like domains can also be
regulated by PTMs. For example, it has been shown that cryptic
(i.e., buried) cysteine residues in the Ig-like domains can undergo
reversible S-glutathionylation, which decreases titin-based passive
stiffness by hindering refolding of these domains following stretch
(Alegre-Cebollada et al., 2014; Loescher et al., 2020). Several
CaMKII phosphorylation sites have been identified within Ig-like
domains and the linker sequences between such domains in the
I-band (Hamdani et al., 2013a). It has been proposed that
phosphorylation of these sites may affect passive stiffness through
a similar mechanism to oxidation (Hamdani et al., 2017), although
whether this is the case remains to be determined. Besides PTMs,
protein-protein interactions involving titin’s Ig-like domains have
also been found to impact titin-based stiffness. Under stretching
conditions, heat shock protein (HSP) 27 and αB-crystallin can bind
to Ig-like domains and decrease passive stiffness (Kötter et al.,
2014b). This interaction is believed to occur only upon unfolding
of the Ig-like domains as HSP27 and αB-crystallin rarely localized to
Ig-like domains in the longer and more compliant N2BA titin
isoform, which consists of Ig-like domains that are less likely to
unfold (Kötter et al., 2014b).

3.2.2 Spring-like domain: PEVK
The PEVK region of titin is encoded by exons 112–225 in the

I-band and is highly extensible (Gautel and Goulding, 1996; Linke
et al., 1996). Extension of the PEVK is a major determinant of
passive stiffness at cardiac sarcomere lengths greater than 2.0 µm
(Trombitás et al., 1999). The elasticity of the PEVK domain is due, at
least in part, to this domain acting as an entropic string (Linke et al.,
2002). However, there are also charge contributions that impact
stiffness, meaning that the spring-like feature of the region is not
entirely entropically driven (Forbes et al., 2005). If regions of the
PEVK are treated with an ionic solution, persistence length increases
while Debye–Hückel length decreases, providing evidence that
electrostatic interactions in this region also play an important
part in determining the stiffness of the PEVK domain (Forbes
et al., 2005).

Similar to the Ig-like domains of the middle Ig segment, control
of PEVK stiffness can be regulated by alternative splicing of the
exons encoding this domain (discussed below) (Freiburg et al., 2000;
Guo et al., 2010), as well as through PTMs. Phosphorylation sites in
the PEVK region of human titin include S11878 and S12022, which
can both be phosphorylated by PKCα (Hidalgo et al., 2009)
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(Figure 4). PKCα-mediated phosphorylation of these sites increases
passive tension (Hidalgo et al., 2009). Phosphorylation of additional
residues in the PEVK domain, including T12869, S12871, and
S12884 in mouse [corresponding to T12007, S12009, and
S12022 in human titin, respectively (Figures 2, 3)], by CaMKII
isoforms has also been described (Hamdani et al., 2013a).
Intriguingly, treatment of single skinned mouse cardiomyocytes
isolated from CaMKIIδ/γ double knockout mice with CaMKIIδ
decreased titin-based passive stiffness (Hamdani et al., 2013a).
Additional sites of CaMKII phosphorylation were also identified
in other parts of the I-band, such as the N2Bus (Hamdani et al.,
2013a). Given that the experimental design did not permit for the
relative contributions of PEVK and N2B phosphorylation to passive
stiffness to be assessed (Hamdani et al., 2013a), it is unclear whether
the decrease was due to a dominant effect of N2B phosphorylation
(discussed in the next section) or if the modulation of PEVK-
associated titin stiffness is site-dependent.

Recent evidence indicates that acetylation of residues within the
PEVK segment also modulates passive stiffness (Lin et al., 2022).
Initially it was found that myofibril resting tension was elevated in
mice deficient in histone deacetylase 6 (HDAC6) (Lin et al., 2022).
Importantly, decreased titin stiffness following incubation with
recombinant HDAC6 did not occur in isolated myofibril

preparations from mice lacking 282 amino acids of the PEVK/Ig-
like region of titin, indicating that acetylation of this region is
responsible for acetylation-associated modulation of titin stiffness
(Lin et al., 2022). Subsequently, mass spectrometry identified
K13013 and K13597 as sites of acetylation downstream of the
PEVK domain (Lin et al., 2022). Hdac6 deficient mice develop
greater diastolic dysfunction in response to hypertension and aging,
suggesting that HDAC6-mediated control of titin phosphorylation
could be important for normal cardiac function and in response to
stress and normal aging (Lin et al., 2022).

3.2.3 Spring-like domains: N2B and N2A
The cardiac specific N2B domain is encoded by exon 49 and

contains three Ig-like domains and a 572 amino acid sequence
unique to the domain (Figure 3) (Labeit and Kolmerer, 1995).
Studies have shown the N2Bus contributes to passive stiffness via
unfolding near the upper end of the physiological cardiac sarcomere
length range (~2.2 µm) (Helmes et al., 1999; Trombitás et al., 1999).
The importance of N2B domain extensibility is underscored by the
finding that deletion of the domain in mice leads to diastolic
dysfunction secondary to increased extension of the remaining
extensible elements (tandem Ig and PEVK domains) and
increased titin stiffness (Radke et al., 2007). The N2A domain of

FIGURE 4
Titin modifications and signaling pathways, including promotion of transcription factors, altered gene expression, and cardiac hypertrophy.

Frontiers in Physiology frontiersin.org06

Stroik et al. 10.3389/fphys.2024.1385821

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1385821


the N2BA cardiac titin isoform (also expressed in the skeletal muscle
N2A titin isoform) is another region of titin with elastic properties,
characterized by four Ig-like domains and a 104 amino acid unique
sequence (Labeit and Kolmerer, 1995). This domains unique α-
helices surrounded by disordered region allow it to act as an entropic
spring like the N2B domain (Lanzicher et al., 2020; van der Pijl
et al., 2021).

The N2Bus is a well-known target for a variety of kinases.
Common phosphorylation sites in the N2Bus include S3991,
S4010, S4062, S4099, and S4185, among others (Figure 3). Each
site can be phosphorylated by multiple different protein kinases such
as PKA (Yamasaki et al., 2002), PKG (Krüger et al., 2009), PKD
(Herwig et al., 2020), ERK2 (Perkin et al., 2015), and/or CaMKII
(Hamdani et al., 2013a; Perkin et al., 2015) and dephosphorylated
by the serine/threonine phosphotase PP5 (Krysiak et al., 2018).
Phosphorylation of N2Bus by these different kinases decreases
titin-based stiffness while dephosphorylation increases it
(Yamasaki et al., 2002; Krüger et al., 2009; Perkin et al., 2015;
Krysiak et al., 2018; Herwig et al., 2020). Although the mechanism
whereby the phosphorylation of sites in the N2Bus produces a
decrease in passive stiffness remains to be determined, it has
been postulated that the introduction of a negatively charged
group to the already negatively charged N2Bus improves
extensibility by reducing the force required to extend this
segment through increased intramolecular electrostatic repulsion
(Koser et al., 2019). The N2A domain is also able to be
phosphorylated by PKA at S9895, however it does not appear to
contribute much, if at all, to titin’s passive stiffness. Instead,
phosphorylation of the region helps mediate its protein
interactions, which will be discussed in further detail in Section
3.4.2 (Lanzicher et al., 2020).

Stiffness of the N2Bus is also regulated by oxidative
modifications. For example, it has been shown that disulfide
bridges may form between cysteine residues in the N2Bus
(Grützner et al., 2009). Although direct evidence for the
formation of these disulfide bonds in the heart is lacking,
treatment of isolated human heart myofibrils with the reducing
agent thioredoxin reduced titin-based stiffness to a degree consistent
with increased extensibility of the N2Bus (Grützner et al., 2009),
providing circumstantial evidence for their existence.

3.3 Control of I-band extensibility through
alternative splicing

As mentioned above, the most well-studied mechanism
regulating titin extensibility involves alternative splicing in titin’s
I-band region (Freiburg et al., 2000; Guo et al., 2010). The inclusion
or exclusion of many exons in the middle Ig and PEVK domains
dramatically affects the length of titin and, thus, its extensibility. The
heart expresses two major classes of titin isoforms: a smaller and
stiffer N2B isoform and larger more compliant N2BA isoforms
(Figure 3) (Cazorla et al., 2000; Freiburg et al., 2000). The N2B
isoform is stiffer due to exclusion of a greater number of exons in the
middle Ig and PEVK domains while N2BA isoforms have greater
extensibility because of inclusion of these exons and
correspondingly longer Ig and PEVK domains. In a healthy adult
human heart, the N2BA isoform comprises 30%–50% of titin

proteins, while the N2B isoform makes up 50%–70% of titin
proteins (Cazorla et al., 2000; Neagoe et al., 2002). The
expression of cardiac titin isoforms has been shown to change
during development and in pathological conditions (Bell et al.,
2000; Neagoe et al., 2002; Wu et al., 2002; Warren et al., 2003;
Makarenko et al., 2004; Nagueh et al., 2004; Opitz et al., 2004;
Warren et al., 2004; Shapiro et al., 2007; Borbély et al., 2009; Hudson
et al., 2011; Hamdani et al., 2013b; Zhu et al., 2017).

In 2012, we identified deletion of the gene encoding RNA
binding motif protein 20 (RBM20) as the cause of altered titin
splicing in rats deficient in titin splicing (Guo et al., 2012). This
discovery made RBM20 the first factor known to regulate titin size
through alternative splicing. In a follow up study, we determined
that RBM20-mediated control of titin size occurs predominantly via
exon exclusion although this was exon-dependent (Li et al., 2013).
When present, RBM20 promotes exclusion of exons between 51 and
218 encoding the middle Ig and PEVK segments, thereby favoring
the production of N2B titin (Figure 3) (Li et al., 2013). On the other
hand, at reduced levels, or when RBM20 is absent, inclusion of these
exons is favored, leading to the production of more compliant N2BA
titin isoforms with longer middle Ig and PEVK segments (Figure 3)
(Guo et al., 2012; Li et al., 2013). In the absence of RBM20, a giant
N2BA isoform of titin is expressed (Borbély et al., 2009).
Mechanistically, RBM20 promotes exon skipping by binding to
sites downstream of target exons (Dauksaite and Gotthardt,
2018), although the precise mechanism has not been determined.

A growing list of additional splicing factors have been identified
that can also regulate titin splicing in the heart. These factors include
RBM24 (Liu et al., 2019), PTB4 (Dauksaite and Gotthardt, 2018),
SLM2 (Boeckel et al., 2022), and RBPMS (Gan et al., 2023).
Importantly, studies have only provided evidence for the regulation
of select exons in titin for each of these factors and, apart from RBPMS
(Gan et al., 2023), none of these factors have been shown to significantly
switch titin size (Dauksaite andGotthardt, 2018; Liu et al., 2019; Boeckel
et al., 2022). RBPMS is involved in the inclusion of the N2B exon and
loss of this protein in mice produced an apparent decrease in the size of
both N2B and N2BA titin isoforms (Gan et al., 2023). This size change
produces titin isoforms similar in size to those produced via N2B
deletion (Gan et al., 2023). Other confirmed exon skipping events
associated with loss of RBPMS were restricted to exons outside the
I-band (Gan et al., 2023), which are generally constitutively expressed in
cardiac titin. Thus, although exclusion of these exons produced a
DCM-like phenotype in Rbpms deficient mice, the physiological
significance of RBPMS-regulated titin splicing in the healthy heart is
unclear at the present time. Therefore, RBM20 remains themajor factor
regulating alternative splicing of the TTN gene in health and disease.

3.4 Function as a mediator of
mechanical signaling

Beyond titin’s role as a blueprint for the sarcomeric A-band and
as a molecular spring responsible for myocardial passive stiffness, it
also has an important role as an integrator and transducer of
mechanical signals (Linke and Krüger, 2010; Kötter et al., 2014a;
van der Pijl et al., 2021). Titin serves as a scaffold for a variety of
mechano-sensitive signaling complexes localized in the Z-disk,
I-band, and M-line. In addition, titin is also a substrate for
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signaling pathways enabling the refinement of passive stiffness
through PTMs in regions such as the N2Bus and PEVK segment
as discussed above (Figure 4).

3.4.1 Z-disk signaling
The Z-disk of titin serves as a hub for pro-hypertrophic signaling

pathways. Hypertrophic signaling at the Z-disk is regulated by the
stress sensor MLP, which has been shown to bind to the titin-T-cap
complex (Knöll et al., 2002). Study of mice lacking a single copy
of the Mlp gene revealed that MLP plays an important role
in localization of the phosphatase calcineurin to the Z-disk
(Heineke et al., 2005). Moreover, transcriptional activation of
NFAT was blunted in these mice following myocardial infarction
demonstrating that the Z-disk-localized MLP-calcineurin complex
is required for the stress-induced activation of the pro-hypertrophic
calcineurin-NFAT signaling pathway (Heineke et al., 2005). In
addition to activation of calcineurin-NFAT signaling, MLP itself
can also translocate to the nucleus (Boateng et al., 2007). The finding
that treatment with cell-permeable synthetic peptides containing the
putative nuclear localization signal of MLP blocked not only nuclear
translocation of the protein, but also increased protein accumulation
in response to phenylephrine, suggests that nuclear shuttling ofMLP
is also important for adaptation to hypertrophic stimuli (Boateng
et al., 2009). Interestingly, MLP and Ankrd1 together can transport
PKCα to intercalated discs, which is often seen in DCM, and deletion
of both proteins restores proper PKCα localization and function
(Lange et al., 2016).

3.4.2 I-band signaling
Beyond determining extensibility, titin’s I-band segments also

serve as docking sites for protein complexes that mediate critical
signaling events. The spring-like N2B domain interacts with FHL1,
FHL2, and FHL3 (four and a half LIM protein 1, 2, and 3, respectively)
(Lange et al., 2002; Sheikh et al., 2008). Interestingly, FHL1-mediated
signaling has been shown to promote the activation of the pro-
hypertrophic MAPK signaling cascade (Sheikh et al., 2008), while
FHL2 opposes the hypertrophic response (Figure 4) (Kong et al.,
2001). The functional role of FHL3 in cardiac muscle is not well
understood, however, it has been shown to localize to titin’s N2B
region and expression is severely deregulated in cardiomyopathies
(Puchner et al., 2008). In addition to FHL proteins, I-band titin has
also been shown to interact with proteins belonging to the muscle
ankyrin repeat protein (MARP) family (Miller et al., 2003). One
member of the MARP family, ANKRD1 (also known as CARP), has
been implicated in cardiac hypertrophy due to upregulation during
cardiogenesis and in response to hypertrophy stimuli (Kuo et al., 1999;
Aihara et al., 2000). Similar toMLP, mechanical stimulation promotes
translocation of ANKRD1 from the sarcomeres (where it co-localizes
with the N2A domain of titin) to the nucleus (Miller et al., 2003).
While a number of I-band protein interactors and signaling pathways
are consistent between cardiac and skeletal muscle titin, there are
some proteins, such as calpain-3, that only interact with the skeletal
muscle titin N2A domain (Ojima et al., 2014).

3.4.3 M-line signaling
A portion of M-line titin encodes a kinase, TK, that is located

near the A-band/M-line junction (Labeit et al., 1992). Evidence from
early studies suggested that TK plays an important role during

muscle development (Mayans et al., 1998). Additional data
suggested that this kinase could also be activated in response to
mechanical strain making it a putative stress sensor (Puchner et al.,
2008). However, more recent studies indicated that TK is a
pseudokinase (Puchner et al., 2008), making it unlikely that the
kinase activity of this domain is required for signal transduction in
response to strain. Nevertheless, there is evidence that a portion of
this domain can undergo reversible unfolding in response to stretch
(Puchner et al., 2008), and TK does serve as an important scaffold for
a variety of signaling proteins. In particular, the autophagy receptor
Nbr1 has been shown to recruit p62 and MuRF2 to the TK domain
(Lange et al., 2005). The E3 ubiquitin ligase MuRF1 can also interact
with a sequence near the TK domain (Centner et al., 2001).
Bogomolovas et al. showed that MuRF1 can ubiquitinate the TK
domain in a stretch-dependent manner and this ubiquitination is
required for recruitment of Nbr1 and p62 (Bogomolovas et al.,
2021). Another location for E3 ubiquitin ligase binding on titin is at
the C-terminal portion of the A-band at Ig141/Ig142/Fn3-132
(A168-170), which can bind MURF1, 2, and 3 (Müller et al.,
2021). These pathways are currently thought to be important for
breakdown of the sarcomeres (Bogomolovas et al., 2021), although
further investigation will be required to determine whether this
is the case.

4 Titin and heart diseases

Due to titin’s myriad functional roles in the heart, it is not
surprising that disruption of these functions by things such as
mutations is associated with the development of heart diseases.
Indeed, titin has been implicated in a variety of heart muscle diseases
among which dilated cardiomyopathy (DCM) and heart failure with
preserved ejection fraction (HFpEF)/diabetic cardiomyopathy
(DbCM) are the most prominent (Table 1) (Herman et al., 2012;
Zile et al., 2015; Hopf et al., 2018). In the following section we will
briefly discuss the contribution of titin to these diseases and provide
updates regarding mechanism based on recently published studies.

4.1 Titin in DCM

Titin truncating variants (TTNtvs) represent the most common
cause of familial and sporadic DCM, accounting for upwards of 25%
of familial cases and ~15% of sporadic cases (Herman et al., 2012;
Pugh et al., 2014; Roberts et al., 2015; Haggerty et al., 2019;
Mazzarotto et al., 2020). Surprisingly, TTNtvs are also found in
~1–2% of the general population (Pugh et al., 2014; Roberts et al.,
2015; Schafer et al., 2017). Pathogenic TTNtvs are typically carried
in the heterozygous state and are overrepresented in the A-band
(Herman et al., 2012; Pugh et al., 2014; Roberts et al., 2015). This
phenomenon is thought to be because exons encoding the A-band
are constitutively expressed (Roberts et al., 2015). Over the years, a
variety of hypotheses have been proposed to explain the
pathogenicity of TTNtvs; however, the two most popular have
been haploinsufficiency and the poison peptide hypothesis (Yotti
et al., 2019). In the case of the former, titin production from the
single unaffected allele is insufficient to maintain appropriate
cardiac function, while the latter posits that the truncated protein
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acts in a manner that disrupts normal heart function. The findings of
recent studies indicate that both mechanisms contribute to the
development of DCM in TTNtv carriers.

One of the primary issues that has hindered acceptance of the
poison peptide hypothesis has been the inability to detect truncated
titin proteins in the hearts of DCM patients with TTNtvs (Roberts
et al., 2015; Vikhorev et al., 2017). However, using a combination of
gel electrophoresis and antibodies against the N- and C-termini of
titin, McAfee et al. (2021) were able to detect appropriately sized
TTNtvs in heart samples from patients with DCM caused by
TTNtvs. An independent study from the Linke lab published at
the same time made similar findings using similar methods (Fomin
et al., 2021). Additionally, TTNtv cannot be properly ubiquitinated
for degradation due to the M-line portion of titin not being
expressed and have been detected in insoluble granules
containing TTNtv in human iPSC-CMs (Huang et al., 2023). In
addition to the poison peptide theory, Fomin et al. (2021) detected a
decrease in total titin expression that correlated with decreased left
ventricular ejection fraction, indicating that haploinsufficiency also
plays a role in disease severity. Interestingly, they also found no
difference in the ratio of M-band versus Z-disk titin based on
immunofluorescence staining (Fomin et al., 2021), suggesting that
the truncated proteins, which would be labeled by the Z-disk but not
M-line antibodies, are not incorporated into the sarcomeres.
Conversely, truncated titin proteins precipitated with skinned
myofibril preparations from human DCM hearts as determined
by gel electrophoresis (McAfee et al., 2021; Kellermayer et al., 2024).
Moreover, using super-resolution microscopy, Kellermayer et al.
(2024) detected reduced titin signal based on immunofluorescence
staining of titin with N- and C-terminal antibodies however when
TTNtv does assemble within the sarcomere, there is a 49-fold
increase in disassembly (Bogomolovas et al., 2021). Considering
this conflicting data, the question of whether truncated titin proteins
are incorporated into the sarcomeres or if they exist in intracellular
aggregates (Fomin et al., 2021) requires further investigation.

In addition to TTNtvs, a long list of missense variants in titin
have also been identified in association with DCM, as well as
peripartum cardiomyopathy (PPCM) (Merlo et al., 2013; Pugh
et al., 2014; van Spaendonck-Zwarts et al., 2014; Begay et al.,
2015; Akinrinade et al., 2019); however, evidence indicating a
causal association between these variants and disease has been
largely lacking. Recently, Domínguez et al. (2023) identified a

case of familial DCM in a Spanish family carrying substitution of
a highly conserved cysteine at position 3892 to serine. Linkage
analysis produced a family-specific 2-point logarithm of the odds
score of 3.96, which strongly supports that the variant is related to
the phenotype (Domínguez et al., 2023). While prior studies of
families carrying TTNtvs have implicated titin missense variants in
disease (Gerull et al., 2002), this study provides the strongest
evidence to date that missense variants in titin can cause DCM.
Although the mechanism will require further investigation, limited
evidence from circular dichroism spectroscopy suggests that this
variant may destabilize the protein at physiological temperatures
potentially causing disease through haploinsufficiency (Domínguez
et al., 2023). Other missense mutations in titin have been associated
with PPCM inmothers during late pregnancy and early post-partum
(van Spaendonck-Zwarts et al., 2014). While there are many
phenotypic similarities between DCM and PPCM, they differ in
disease onset and the fact that a proportion of PPCM patients are
able to fully recover, while DCM can only be managed (van
Spaendonck-Zwarts et al., 2014). The mechanisms leading to the
development of PPCM are not fully understood, but there are many
similarities with DCM. Prior studies have shown that N2BA titin is
increased in PPCM, similar to what has been shown in DCM,
however the impact on passive force/tension is contradictory in
the literature (van Spaendonck-Zwarts et al., 2014; Bollen et al.,
2017). Also impacting passive tension, PKA- and PKC-mediated
phosphorylation of titin at S4010 and S12022 are both significantly
reduced in PPCM patients, while S12022 is unaffected in DCM
patients (Bollen et al., 2017). Another titin contribution to PPCM is
that the increased oxidative stress caused by pregnancy also
contributes to the pathogenic phenotype (Bollen et al., 2014).

4.2 Titin in HFpEF/DbCM

HFpEF and DbCM produce very similar cardiac phenotypes
with cardiac hypertrophy, increased cardiac stiffness, and impaired
diastolic function. Understanding the physiological mechanisms of
HFpEF is one of the greatest unmet needs in cardiovascular disease
due to a lack of effective treatments. Within 4 years of HFpEF
diagnosis, the mortality rate is over 30% (Burkhoff, 2012). One of the
biggest risk factors for HFpEF development is hypertension (Tam
et al., 2017; Tadic et al., 2018). Granzier et al. showed that

TABLE 1 Cardiac diseases associated with titin.

TTNtv Missense DCM HFpEF DbCM

Sources 22, 122–132 125, 133–135, 137–138 23, 141–146 23, 24, 74, 79, 93

Cardiac changes Enlarged left ventricle with
thin cardiac walls

Enlarged left ventricle with
thin cardiac walls

Left ventricular hypertrophy and diastolic
dysfunction

Left ventricular hypertrophy and diastolic
dysfunction

Mutation
location

Most commonly titin’s
A-band or M-line

Titin C3575S—in I21 of
I-band

None reported None reported

Titin PTM
changes

None reported None reported Decreased I- and A-band acetylation
Increased PEVK phosphorylation

Decreased N2B phosphorylation
Increased PEVK phosphorylation

Titin isoform
changes

Increased exon usage None reported Favors N2B Favors N2BA
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hypertensive mouse models favored the N2B titin isoform over the
N2BA compared to control mice, which increases titin-based
myocardial stiffness and decreases diastolic function (Hutchinson
et al., 2015). As HFpEF develops, PTMs in titin’s elastic domains
change to increase the overall titin-based myocardial stiffness.
Patients with HFpEF often have increased PEVK phosphorylation
at S11878 and decreased I- and A-band acetylation (Zile et al.,
2015; Koser et al., 2022). There is also reduced N2B
phosphorylation at S3991, S4080, and S4185 causing increased
stiffness (see previous sections) (Zile et al., 2015; Koser et al.,
2022). Further supporting altered titin PTMs, treatment of
skinned cardiomyocytes isolated from a patient with HFpEF
with PKA was able to restore passive force to near the healthy
range (Borbély et al., 2005). Both titin isoform switching and
altered PTMs play major roles in the increased titin-based
myocardial stiffness found in HFpEF patients.

Like HFpEF, people suffering from DbCM often have impaired
diastolic function because of altered PTMs in titin’s elastic I-band
domains. Contrary to HFpEF, DbCM patients have the opposite
effect in terms of titin isoform switching and promote N2BA
expression (Hopf et al., 2018). The major alternative splicing
factor RBM20 has increased expression in the presence of
insulin, meaning that people who are insulin resistant have
decreased RBM20 levels (Zhu et al., 2017). In turn, this
promotes the expression of the N2BA titin isoform over N2B,
decreasing titin-based myocardial stiffness. On the other hand,
biopsies reveal those suffering from DbCM have altered N2B and
I-band PTMs (Krüger et al., 2009; Zile et al., 2015; Lin et al., 2022).
Patients with type 2 diabetes had decreased phosphorylation of
S4099 (phosphorylated by PKG) in the N2B region and increased
phosphorylation of S11878 (phosphorylated by PKCα) in the
PEVK region (Krüger et al., 2009; Zile et al., 2015; Lin et al.,
2022). The result of these altered PTMs is increased titin-based
stiffness. Improving insulin sensitivity to modulate titin stiffness
through targeting NRG-1 or via treatment with metformin
reverses the altered PTMs of the N2B and PEVK domains
found in diabetes patients, showing its therapeutic potential for
diastolic dysfunction (Hopf et al., 2018).

5 Future perspectives: targeting titin in
heart disease

Titin’s status as a causative agent in diseases such as DCM, as
well as its role as an important modulator of myocardial passive
stiffness (and by extension diastolic function), make it an
appealing therapeutic target. In the case of DCM caused by
variants in titin, two therapeutic strategies are currently being
explored to target titin. The first is the use of antisense
oligonucleotides (ASOs) to promote skipping of variant-
containing exons has been explored as a potential strategy to
treat pathogenic variants in titin that cause DCM (Gramlich
et al., 2015). ASO-mediated strategies have shown promise in
both mice and cultured cells (Gramlich et al., 2015; Hahn et al.,
2019). Given that ASOs have already been approved for the
treatment of other diseases (Crooke et al., 2021), such as
Duchenne’s muscular dystrophy, ASO-based exon skipping
strategies represent an accessible strategy to treat DCM caused

by certain disruptive variants in titin. It has been predicted that
upwards of 94 exons in titin may be suitable for therapeutic
deletion to treat DCM-associated titin variants (Rodriguez-Polo
and Behr, 2022). More recently, CRISPR-Cas9 genome editing
was used to correct TTNtvs in human iPSC-CMs (Romano et al.,
2022). Expansion of these results to model organisms such as
mice will be an important step towards demonstrating the
therapeutic potential of this strategy. In the case of idiopathic
DCM, potential therapeutic approaches could involve targeting
RBM20. Most people suffering from DCM have a shift in titin
isoforms to favor the longer N2BA isoform paired with decreased
ventricular passive stiffness and systolic dysfunction (LeWinter
and Granzier, 2014). By increasing RBM20 expression through
regulation of transcriptional factors, it would shift titin to favor
the N2B isoform, restoring titin-based myocardial passive
stiffness (Guo et al., 2012).

Diastolic dysfunction is a key element of heart diseases such
as HFpEF and DbCM (Borlaug, 2014; Jia et al., 2016). Titin size
changes resulting from alternative splicing plays a major role in
myocardial stiffness, while PTMs in titin’s spring-like domain
fine-tune myocardial stiffness, as discussed above (Forbes et al.,
2005; Krüger et al., 2009; Raskin et al., 2012; Hamdani et al.,
2013a; Hamdani et al., 2013b; Hidalgo et al., 2013; Kötter et al.,
2013; Perkin et al., 2015; Krysiak et al., 2018; Herwig et al., 2020;
Michel et al., 2020; Loescher et al., 2022). Thus, either
manipulating titin size switching or altering PTMs in titin
could reduce diastolic stiffness and, therefore, dysfunction.
Given that RBM20 is the primary regulator of titin size
through alternative splicing (Guo et al., 2012), this protein is
an attractive target to modulate titin size and improve diastolic
function. Reducing RBM20 expression through genetic editing or
ASO-mediated RNA degradation has provided proof-of-concept
evidence that increasing the expression of larger titin isoforms
improves diastolic function in rodent models of HFpEF
(Hutchinson et al., 2015; Hinze et al., 2016; Methawasin et al.,
2016; Radke et al., 2021). It is important to point out that
RBM20 also controls the splicing genes related to Ca2+-
handling (Guo et al., 2012; Guo et al., 2018) and loss of
RBM20-dependent splicing of these genes predisposes the
heart to arrhythmia (Guo et al., 2012). Thus, targeting
RBM20 expression to modulate titin size may have
detrimental effects. The consensus sequence containing the
core element UCUU has been shown to be the binding motif
for RBM20 in titin mRNA (Maatz et al., 2014). Therefore, an
alternative therapeutic option would be to design ASOs targeting
the RBM20 binding sites on the titin pre-mRNA. Theoretically,
such a strategy could reduce diastolic stiffness in HFpEF/DbCM
by promoting exon inclusion and the expression of larger titin
isoforms without affecting the splicing of other RBM20 target
genes. Another option would be to combine both approaches.
RBM20 binds many locations on titin and so designing ASO’s to
inhibit RBM20 binding to titin mRNA poses difficulties. By
reducing RBM20 expression, the titin ASO’s may lead to a
greater increase in N2BA titin isoform expression.
Nevertheless, the reduction in RBM20 expression must be
highly regulated to prevent severe alterations in RBM20-
mediated alternative splicing of other mRNA targets such as
Ca2+-handling genes (Guo et al., 2012).
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In addition to titin isoform switching, the modulation of titin-
based stiffness through PTMs represents another potential
treatment strategy to reduce diastolic stiffness in HFpEF and
DbCM or increased diastolic stiffness in DCM. Studies show that
patients with DbCM often display cardiac stiffening despite
increased expression of more compliant N2BA titin (van
Heerebeek et al., 2008). The potential mechanisms could be the
increased phosphorylation in N2Bus and decreased phosphorylation
in PEVK region (Yamasaki et al., 2002; Hidalgo et al., 2009; Krüger
et al., 2009; Perkin et al., 2015; Krysiak et al., 2018; Herwig et al.,
2020). Examination of titin phosphorylation in the hearts of diabetic
patients revealed reduced phosphorylation of S4099 (in N2Bus) and
increased phosphorylation of S11878 (in PEVK) that can account for
increased passive stiffness (Hopf et al., 2018). Treating diabetic rats
with NRG-1 (drug that improves glucose tolerance) restored
diastolic function and titin phosphorylation to similar levels to
wildtype through PKG- and PKCα-mediated phosphorylation
(Hopf et al., 2018). NRG-1 treated rats also had an improvement
in PKA-mediated phosphorylation, however not to the same extent
(Hopf et al., 2018). Interestingly, diabetic rats treated with
metformin (increases insulin sensitivity) have increased
phosphorylation of titin S11878 in the PEVK (Hopf et al., 2018).
It is noteworthy that there is conflicting data in the literature
regarding the effect of metformin treatment on titin PTMs as
others have shown little to no effect on PEVK phosphorylation
but increased phosphorylation of PKA sites in the N2Bus (Slater
et al., 2019). Studies also reveal that histone deacetylase 6 (HDAC6)
can deacetylate K13013 and K13597 near the PEVK region
(Figure 4) (Lin et al., 2022). Lack of HDAC6 or treated with
HDAC6 inhibitors in mice increases myocardial stiffness (Lin
et al., 2022). In addition to HDAC6, study found that deacetylase
SIRT1 can reduce stiffness in rat cardiomyocytes (Abdellatif et al.,
2021). Overall, these studies show that targeting PTMs in titin
represents another therapeutic option to reduce diastolic stiffness
in HFpEF/DbCM. Modulating titin stiffness through PTM’s may
also be valuable as a supplement for other treatments. For example,
regulation of titin PTMs and favored production of more compliant
N2BA titin isoforms through ASOs could be used to synergistically
decrease titin-based stiffeness in diseases with diastolic dysfunction,
such as in DbCM. Therefore, it would be logical to conclude that
regulating titin PTM’s could be especially beneficial in combination
with therapies that also increase titin N2BA expression.
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