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A simple and effective deep
neural network based QRS
complex detection method on
ECG signal

Wei Zhao*, Zhenqi Li, Jing Hu and Yunju Ma

Central Research Institute, Guangzhou Shiyuan Electronics Co., Ltd., Guangzhou, China

Introduction: The QRS complex is the most prominent waveform within the
electrocardiograph (ECG) signal. The accurate detection of the QRS complex is
an essential step in the ECG analysis algorithm, which can provide fundamental
information for the monitoring and diagnosis of the cardiovascular diseases.

Methods: Seven public ECG datasets were used in the experiments. A simple
and effective QRS complex detection algorithm based on the deep neural
network (DNN) was proposed. The DNN model was composed of two parts:
a feature pyramid network (FPN) based backbone with dual input channels to
generate the feature maps, and a location head to predict the probability of
point belonging to the QRS complex. The depthwise convolution was applied
to reduce the parameters of the DNN model. Furthermore, a novel training
strategy was developed. The target of the DNN model was generated by using
the points within 75 milliseconds and beyond 150 milliseconds from the closest
annotated QRS complexes, and artificial simulated ECG segments with high
heart rates were generated in the data augmentation. The number of parameters
and floating point operations (FLOPs) of our model was 26976 and 9.90M,
respectively.

Results: The proposed method was evaluated through a cross-dataset test
and compared with the sophisticated state-of-the-art methods. On the MITBIH
NST, the proposed method demonstrated slightly better sensitivity (95.59%
vs. 95.55%) and lower presicion (91.03% vs. 92.93%). On the CPSC 2019, the
proposedmethod have similar sensitivity (95.15% vs.95.13%) and better precision
(91.75% vs. 82.03%).

Discussion: Experimental results show the proposed algorithm achieved a
comparable performance with only a few parameters and FLOPs, which would
be useful for the application of ECG analysis on the wearable device.

KEYWORDS

electrocardiogram (ECG), QRS complex, Qrs complex detection, deep learning, QRS
complex boundary

1 Introduction

The electrocardiograph (ECG) represents the electrical activity of heartbeat. It is a
widely-used tool for examining the cardiovascular diseases (CVDs) due to the characteristic
of low-cost and painless. A typical ECG waveform of heartbeat is composed of several
characteristic waveforms, such as the Pwave, QRS complex and Twave. It is thought that the
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amplitude, duration, contour and number of the waveforms, and
the interval between the peak of waveforms provide fundamental
information for the monitoring and diagnosis of CVDs (Taylor,
2008). Because the QRS complex is the most prominent waveform,
accurate detection of the QRS complex is essential in the ECG
analysis algorithms (Kohler et al., 2002).

Many algorithms for the QRS complex detection have been
proposed since the last several decades. Most of detectors can be
divided into two fundamental parts, the preprocessing and the
identification (Kohler et al., 2002). In the preprocessing stage, the
QRS complex was enhanced and the noise was attenuated. In
the identification stage, the QRS complex was determined and
the false posive were removed. For example, in the P&T method
(Pan and Tompkins, 1985), one of the most popular algorithms,
after bandpass filtering of the ECG signal, the QRS complex was
highlighted via the procedure of five-point derivative, squaring
and moving window integration. Eventually the QRS complex
was determined by adaptively thresholding on the preprocessed
signal and filtered ECG signal. Hamilton et al. (Hamilton and
Tompkins, 1986) slightly modified the preprocessing technique of
P&T’smethod, which determine theQRS complex bymore complex
rules. It is reported (Liu F. et al., 2018) that although the traditional
signal processing based methods can accurately locate the QRS
complex on the noise-free ECG signal, the performance of such
algorithms significantly decreases on the ECG segments with severe
artifacts.

Recently, the deep learning (DL) techniques have been widely
used to improve the performance of QRS comple detection. The
powerful representation ability of the DLmodel, combined with the

end-to-end training process enable it to more effectively enhance
and identify the QRS complex. In the work (Zahid et al., 2022) the
detection of QRS complex was formulated as a 1D segmentation
task, and the U-Net, a popular medical image segmention approach,
was used to enhance the QRS complex. The model produce
a high response at the location of QRS complex, and a low
response elsewhere. The QRS complex were determined by a given
threshold. Furthermore, considering that the bidirectional Long
Short Term Memory (BLSTM) can extract features during a long
period, in work (He et al., 2021), the QRS complex were enhanced
by the DNNmodel by combining the U-net with BLSTM.

It is reported that the size of receptive field is a crucial
issue in the visual tasks, and enlarging the receptive field
can improve the accuracy of the location method (Liu Y. et al.,
2018). The work (Lee et al., 2019) demonstrated the DL model
with a sufficiently large-sized receptive field that can cover adjacent
heartbeats achieved good performance on the capacity ECG signal.
A similar sized receptive field would also be required for the
detectors applied on the ECG signal. However, most traditional
CNN based QRS complex detectors were derived from image
processing techniques, and adopted small-sized kernel (about 3 or 5
samples). Although several convolutional layers and pooling layers
were used to build the model, the receptive field of model was still
relatively small. The LSTM-based method can extract features over
a long period, but it has a large number of parameters, which would
be disadvantageous for the generalization ability of detector.

On the other hand, although the accurate identification of the
endpoints of the object is critical in the segmentation task, it would
be unnecessary for the QRS complex detection, especially in the

TABLE 1 The datasets used in experiments.

Dataset Record Beat Lead Length Sampling rate (Hz)

AR_DS1 (19) 22 51021 2 30 min 360

AR_DS2 (19) 22 49712 2 30 min 360

NST (21) 12 25590 2 30 min 360

SV(20) 78 184583 2 30 min 128

CPSC 2019 (24) 2000 29447 1 10 s 500

ST-T (Taddei et al., 1992) 89 783244 2 2 h 250

STC (P, 1983) 27 73192 1–2 784–4032 s 360

HIE (De Giovanni et al., 2023) 20 5691 1 80–100 s 250

FIGURE 1
The flowchart of proposed method.
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FIGURE 2
The result of preprocessed, the QRS complexes were marked by red
circles. (A) Original ECG signal. (B) Preprocessed ECG signal.

training stage. Since most ECG datasets lack annotations of QRS
complex fiducial points, a common approach for generating the
target vector is to define the QRS complex region with a fixed range
around the location of annotated QRS complex, where the samples
within the region are labeled as positive and those outside the region
as negative. However, the durations of QRS complex vary among
different individuals, especially for patients with CVDs. Therefore,
the fixed range is difficult to precisely delineate the QRS complex.
This leads to assigning labels to adjacent samples with similar
presence, which could degrade the performance of the detector.

In order to address the above problems, a simple QRS
detectionmethodwas developed and an innovative training strategy
was designed in the work. The DNN model is based on fully
convolutional network (FCN) architecture, without the application
of sophisticated modules such as LSTM.Themodel has a kernel size
of 19 samples and operates at a sample rate of 250 Hz. This allows
the model to have a maximal receptive field of approximately 2 s,
which covers the longest interval betweennormal heartbeats (Taylor,

2008). Additionally, considering that the joint analysis of multi-lead
signal will provide better robustness in the presence of noise in any
single lead, themodel is designed to have dual input channels.When
the model was operated on the ECG signal with single lead, the dat
in the second channel of the model is replicated of the data from
the first channel. In the training, the points on the boundary of the
QRS complex were excluded to generate the target vector for the
DNN model. Besides, due to the limited availability of high heart
rate segments in the existing datasets, the artificially simulated ECG
segments of fast heart rates generated in the data augmentation,
Seven public ECG datasets were used to evaluate the proposed
methods, and experimental results show that the proposed method
achieved a good performance on the cross-dataset test, making it
useful for wearable ECG devices. The main contributions of this
work were as follows: 1. A FCN based model with a large-sized
kernel, allowing for a maximal receptive field of approximately 2 s
2. Incorporation of dual-lead ECG signal analysis. 3. Elimination of
the border points of the QRS complex in the generation of the target
vector. 4. Inclusion of artificially simulated ECG segments with fast
heart rates in the data augmentation.

The rest of this paper is organized as follows. Section 2
introduced the recent QRS complex detection method. Section 3
presents the proposed QRS complex detection method. Section 4
gives the experimental results of developed method and several
existing state-of-the-art detectors. Section 5 discusses the
method. And Section 6 concludes the work.

2 Recent work

The enhancement and determination of the QRS complex are
the two primary stages in QRS complex detection, and several
advancements have been made in these approaches. For the
traditional signal processing-based detectors, the QRS complex
was enhanced by using linear or non-linear filters and determined
based on sophisticated decision rules. In the work (Khamis et al.,
2016), the feature signal of the QRS complex was generated by
multiplying the signal derivative and amplitude envelope, and the
threshold was calculated using a morphological closing operation
with maximum and minimum filters. A signal quality mask was
also utilized to eliminate false positives. In the study (Orlandic et al.,
2019), an enhancement filter based on relative-energy, which is the
ratio between the energies of a long sliding window and a short
sliding window, was designed, and the QRS complex was identified
using a hysteresis comparator with two adaptive thresholds. In
the work (Rodrigues et al., 2021), a double derivative-based pre-
processing method was employed to enhance the QRS complex,
and the thresholds were determined using the finite state machine
approach. In the study (De Giovanni et al., 2023), a Bayesian filter
integrated with clustering techniques was applied to compute the
expected position of the QRS complex.

Due to the power representation of deep learning model, the
deep learning technique was applied to detect the QRS complex.
Some researchers have designed detector based on ECG segments.
In these study, the ECG signals are divided into several segments of
fixed length, which are then fed to a deep model. In the publication
(Šarlija et al., 2017), the ECG signal was splitting into segments
of 400 milliseconds. The model consisted of two convolutional
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FIGURE 3
The architecture of proposed deep learning model.

layer and two fully connected layers. Similarly, in the publication
(Wang and Zou, 2019) the ECG signal was also divided into 400
milliseconds segments. The model utilized two parallel residual
networks with kernel sizes of 7 samples and 3 samples respectively.
In the work (Xiang et al., 2018), the ECG signal was segmented
into slices of 56 samples. After averaging and difference operation,
a two-level convolutional neural network (CNN) was designed to
learn the features at the part-level and object-level of the QRS
complex, The resulting features were concatenated and passed
through a multi-layer perceptron (MLP) for the classification. The
slice-based method can capture the local characteristic of QRS
complex. However, the contextual information of segments is lost
for these approaches.

In order to further improve the performance, the utilization
of medical image segmentation technique and LSTM-based
approaches has become increasingly popular. In the work
(Zahid et al., 2022) The U-Net was employed to segment the QRS
complex. Cai et al. (Cai and Hu, 2020) utilized the BLSTM after the
multiple parallel dilated convolutional blocks to predict the QRS
complex. In the work (He et al., 2021), The DNN model enhanced
the QRS complex by combining the U-Net with BLSTM.

3 Materials and methods

Seven public datasets were used in the experiments, five of which
from the PhysioNet (Goldberger et al., 2000): MIT-BIHArrhythmia
(Moody and Mark, 2001) (AR), MIT-BIH Supraventricular
Arrhythmia Database (SV) (Greenwald, 1990), MIT-BIH Noise
Stress Test (GB et al., 1984) (NST), MIT-BIH ST Change (STC) (P,
1983) and European ST-T (ST-T) (Taddei et al., 1992). Additionally,
the High Intensity Exercise (HIE) (De Giovanni et al., 2023)
and the dataset of 2nd China Physiological Signal Challenge
(CPSC 2019) (Hongxiang et al., 2019) were include. For the AR

dataset, 44 non-pace records were separated into two subsets
(AR_DS1 and AR_DS2), according to the division scheme
proposed by the work (de Chazal et al., 2004). The NST dataset
was created by adding calibrated amplitude of noise on the
two clean records (118 and 119) from the AR dataset, with the
SNRs of −6 db, 0 db, 6 db, 12 db, 18 db and 24 db for the noisy
segments. Record 315 in STC and Record e0204 in ST-T were
not used in the experiment. The information of these datasets was
summarized in Table 1.

The flowchart of our method is illustrated in Figure 1. First,
the raw ECG signal was preprocessed. Then, the signal was fed
into the DNN model and the heat maps were generated, which
indicated the probability of each point belonging to the QRS
complex. Finally, QRS complexes were determined based on the
heat maps, and the locations of the predicted QRS complex
were saved.

In the preprocessing stage, the input ECG signal was resampled
to 250Hz, and the noise was attenuated using a butterworth filter
with a band-pass range of 0.5–35 Hz. At last, Z-score normalization
was performed on each lead. For the raw ECG signal with
a single lead, the second input channel of the DNN model
was created by duplicating the preprocessed signal. Figures 2A, B
illustrate the original ECG signal and the preprocessed result,
respectively. In both figures, the QRS complexes are indicated by the
red circles.

The proposed DNN model was composed of two modules, a
feature pyramid network (FPN) (Lin et al., 2017)-based backbone
for extracting features maps at three resolutions, and a location
head for predicting the probability of each points belonging to
the QRS complex. Figure 3 gives the structure of our model. In
the FPN, there were six residual blocks and six convolutional
layers. The convolutional layers following the residual blocks were
used to adjust the channels, so their kernel size were 1 (k = 1),
while the kernel size for other convolutional layers was 19 (k =
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FIGURE 4
The heat maps generated by proposed DNN model, the annotated
QRS complexes were marked by red circle. (A) Heat map 1st. (B) Heat
map 2nd. (C) Heat map 3rd.

19). The number of channels in the residual blocks were 32 (c =
32), 64 (c = 64), and 128 (c = 128). The instance normalization
(IN) and linear rectification function (relu) were used as the
normalization and activation function, respectively. Downsampling
was performed using convolution with a kernel size of 1 and stride
of 2, and upsampling was achieved through the nearest neighbour
interporation. In order to reduce the number of parameters,

FIGURE 5
The result of QRS complex detection on ECG signal, the predicted and
annotated QRS complex were marked by the red vertical dashed line
and red circle respectively.

depthwise convolution was employed in the convolutional layers
with the kernel size of 19 except the first one.

The location head consisted of a convolutional layer with kernel
size of 5 and a single channel, a sigmoid layer and an average pooling
layer with size of 9. Let the size of input ECG signal be l× 2, where l
represents the length.The length of three heat maps were l, (l/2) and
(l/4) respectively. The three heat maps are shown in Figures 4A–C,
where the QRS complexes are indicated by the red circles.The DNN
model generated a high response (close to 1.0) for the points near the
QRS complexes. In total, the number of parameters and the floating
point operations (FLOPs) of proposed model was 26976 and 9.90
million respectively.

In the determination of the QRS complex, local maximal
points with a response greater than the given threshold (0.5 in
the experiment) were initially considered as the location of QRS
complex candidates. Next, the process of non-maximal suppression
(NMS) was performed to remove the false positives, as follows: 1.
A check-list was generated by sorting the candidates in descending
order based on their probability. 2. The candidate with the highest
probability in the check-list was marked as the true positive, and
its location was saved. 3. Other candidates close to the current
candidate within the threshold (200milliseconds in the experiment)
were marked as false positives. 4. The true positive and false
positives were removed from the check-list. 5. Steps 2-4 were
repeated until the check-list was empty. Figure 5 illustrates the
result of QRS complex detection on the ECG signal. The annotated
QRS complexes and the predicted results were marked with red
circles and red dashed vertical lines, respectively. The proposed
method can accurately detect the QRS complex on the noisy
ECG segment.

In the training, the targets of the DNN model were created
by relabeling the annotations on vectors with the same size as the
heat maps. For points between the first QRS complex and the last
QRS complex on the target vectors, if the distance to the closest
QRS complex was less than 75 milliseconds, its value was set to 1
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FIGURE 6
The target of DNN model, the QRS complexes were marked by the
red circle.

(positive).Otherwise, if the interval wasmore than 150milliseconds,
the value of the point was set to 0 (negative). The points that were
neither positive nor negative were set to −1. Additionally, in order
to avoid the influence of incomplete QRS complexes on training,
for the points located in the initially 200 milliseconds and the last
200 milliseconds, their values were also set to −1. The points whose
value was −1 were ignored when calculating the loss. The target of
the DNNmodel is shown in Figure 6, where the QRS complexes are
indicated by red circles.

The data augmention was performed from the three aspects.
Firstly, artificially simulated ECG signals were generated, with
BPM (beats per minute) ranging from 200 to 280. The range
of amplitude and duration of the QRS complex was from 3 to
5 mV and from 50 to 100 milliseconds, respectively. The white
noise with a signal-to-noise ratio (SNR) ranging from 4 db to
12 db were mixed with the generated ECG signals. Figure 7 gives
a simulated ECG segment with a BPM of 240 and SNR of 6 db.
The amplitude and duration of the QRS complex were 5 mV and
80 millisecond, respectively. Secondly, the ECG signal was mixed
with three types of noise: baseline wandering (BW), muscle artifact
(MA) and electrode motion artifact (EM). The sinusoidal function
was used as BW, with its frequency determined by random sampling
from three Gaussian distributions. The centers of the Gaussian
distribution were 0.05, 0.15 and 0.25, respectively, and the standard
deviations were one-third of center. The white noise was used as
MA, and the EM was created by filtering the MA with a band-
pass filter ranging from 5 Hz to 15 Hz. Thirdly, the signal from any
channel was flipping, and the order of the channels in the signal
was changed.

4 Experimental results

The proposed DNN model was developed using
the PyTorch (Paszke et al., 2019), a popular deep learning library.
The BCE (binary cross entropy) was calculated as the loss function,
and the Adam optimizer was selected with a learning rate of 1e-3.
The model was trained for 5 epochs using a batch size of 32 and
weight decay of 1e-8, and the model that achieved the lowest error

FIGURE 7
Simulated ECG segment with a bpm of 240 and SNR of 6 db, the
amplitude and duration of the QRS complex were 5 mV and
80 millisecond.

on the validation data was saved as the best model and used for test.
The algorithm was implemented on the workstation with an Intel
Xeon CPU E5-2650 and a GeForce GTX 1080 Ti.

In the experiments, our algorithm was trained and validated on
the AR_DS2 dataset and tested on other datasets. The records used
for the training and validation were 100, 103, 105, 111, 113, 117, 121,
123, 200, 202, 210, 212, 213, 214, 219 and 221, 222, 228, 231, 232, 233,
234, respectively. The signals from the training and validation data
were sliced into segments with a length of 60 s, and the signals from
test data was directly fed to the algorithm without being segmented.

According to the EC57 standard (AAMI, 2012), the beats can be
categorized into five types: N (beat that does not fall into the types of
S, V, F orQ), S (supraventricular ectopic beat), V (ventricular ectopic
beat), F (fusion of a ventricular and a normal beat) and Q (pace,
fusion of a pace and a normal beat, or beat cannot be classified). If
the distance of the predicted QRS complex to the closest annotated
beat (QRS complex) is less than ±0.15 s, it is treated as the true
positive (TP). Otherwise, it is considered as a false positive (FP),
and the missed annotated beat is marked as a false negative (FN).
The sensitivity (Sen), presion (Pre), error rate (Err), false negative
rate (Fnr) of each type of beat, as well as the margin of TP to
the closest annotated beat (mean±std) were calculated to assess the
performance, as shown by Eq. 1.

Sen = TP
TP+ FN

× 100

Pre = TP
TP+ FP

× 100

Err = FP+ FN
TP+ FN+ FP

× 100

Fnr = FN
TP+ FN

× 100

(1)

Table 2 summarizes the performance of the proposedmethod on
the test datasets. The Sen, Pre, Err were 99.57%, 99.59% and 0.83%
on AR_DS1, 99.88%, 99.63% and 0.48% on SV, 99.91%, 99.43% and
0.66% on ST-T, 99.94%, 99.47% and 0.59% on STC, 94.78%, 94.30%
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TABLE 2 The performance of proposed method.

Dataset TP FP FN Sen(%) Pre(%) Err (%) Fnr (%) Margin (milliseconds)

N S V F Q

AR_DS1 50803 208 218 99.57 99.59 0.83 0.34 0.10 1.56 0 0 23.03±18.51

SV 184366 679 217 99.88 99.63 0.48 0.08 0.11 0.67 0 11.39 21.22±16.50

ST-T 778424 4498 669 99.91 99.43 0.66 0.07 2.38 2.33 0.85 18.18 35.67±23.18

STC 72855 387 46 99.94 99.47 0.59 0.04 0 5.61 - - 31.54±19.16

NST 24253 1466 1337 94.78 94.30 10.36 5.32 5.56 4.31 - - 25.04±20.58

CPSC2019 28299 1696 1148 96.10 94.35 9.13 - - - - - 31.31±24.14

HIE 5596 4 95 98.33 99.93 1.74 - - - - - 34.33±17.66

TABLE 3 Comparison of the QRS complex detection performance on the CPSC 2019 (with of tolerance of 0.075s).

Method TP FP FN Sen(%) Pre(%) Err (%)

Ours (trained on AR_DS1) 28020 2521 1427 95.15 91.75 12.35

He (He et al., 2021) 28003 6140 1434 95.13 82.03 21.28

Hamilton (Hamilton, 2002) 25403 7350 4064 86.21 77.56 31.0

Pan (Pan and Tompkins, 1985) 24549 5939 4918 83.31 80.52 30.66

and 10.36% on NST, 98.33%, 99.93% and 1.74% on HIE, 96.10%,
94.35% and 9.13% on CPSC 2019. The proposed method achieved
good results on the cross-dataset test. The Fnr for N type of beats
was 0.34% on AR_DS1, 5.32% on NST, and less than 0.1% on the
other datasets. For S type of beats, Fnr was approximately 0.1% on
both AR_DS1 and SV, 2.4% on ST-T and 5.56% on NST. All S type
of beats were successfully detected on STC. The Fnr for V type of
beats was 1.56% on AR_DS1, 0.67% on SV, 2.33% on ST-T, 5.61%
on STC, and 4.34% on NST.The datasets of CPSC2019 and HIE did
not provide the annotations for beat types, and no F or Q type beats
were found in STC and NST.The range of average distance between
predicted and annotated heartbeat was from 21 milliseconds to 35
milliseconds, with a standard deviation of less than 25 milliseconds.

In order to compared with existing methods, the proposed
method was retrained on the AR_DS1 and tested on the CPSC2019
dataset (with the tolerance 0.075 s), and retrained on the CPSC2019
and tested on NST datasets. The results were given on Table 3 and
Table 4 respectively. On the CPSC 2019, compared with the state-of-
the-art He’s method (He et al., 2021) the proposed method achieved
a similar Sen (95.15% vs. 95.13%) and better Pre (91.75% vs. 82.03%)
and Err (12.35% vs. 21.28%). On the NST, the performance of
proposed detector was comparable to the best Cai’s method (Cai
and Hu, 2020). The Sen of the proposed method was slightly better
(95.59% vs. 95.55%), while the Pre and Err were slightly lower
(91.03% vs. 92.93%, 12.64% vs. 10.92%, respectively).

The ablation experiments were performed to evaluate the
effectiveness of the improvements. A larger convolutional kernel

TABLE 4 Comparison of the QRS complex detection performance
on the NST.

Method Sen(%) Pre(%) Err (%)

Ours (trained on CPSC 2019) 95.59 91.03 12.64

Cai (Cai and Hu, 2020) CNN 95.55 92.93 10.92

CRNN 95.18 92.62 11.53

Khamis (Khamis et al., 2016) 86.21 77.56 69.0

Pan (Pan and Tompkins, 1985) 94.99 81.83 21.56

size of 29 samples (MWLK) and a smaller convolutional kernel
size of 9 samples (MWSK) were used to respectively replace the
kernel size of 19 samples in the convolutional layers. And the
model with single input channel (MWSC) was used to performed
the detection on the first lead ECG-signal, similar to the work
(Cai and Hu, 2020). In the training stage, the proposed model
was trained with the border points of QRS complex (TWBP) and
trained without simulated data (TWoSD) respectively. Additionally,
it was reported that Fourier decomposition method based discrete
Fourier transform (FDM-DFT) and discrete cosine transform
(FDM-DCT) can effectively remove the baseline wander and power-
line interference (Singhal et al., 2020), these two methods were
adopted as alternatives for the butterworth filter. The Nemenyi
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TABLE 5 Result of Sen in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

AR_DS1

Proposed 99.57 99.53±1.56 -

MWLK 99.78 99.82±0.45 0.9

MWSK 99.88 99.89±0.23 0.9

MWSC 99.81 99.82±0.33 0.9

TWBP 99.96 99.97±0.09 0.67

TWoSD 99.46 99.42±1.91 0.9

FDM-DCT 99.87 99.89±0.26 0.9

FDM-DFT 99.89 99.89±0.26 0.9

SV

Proposed 99.88 99.90±0.28 -

MWLK 99.89 99.90±0.23 0.9

MWSK 99.96 99.97±0.06 0.60

MWSC 99.91 99.92±0.22 0.82

TWBP 99.95 99.96±0.11 0.009

TWoSD 99.81 99.87±0.57 0.90

FDM-DCT 99.91 99.93±0.21 0.89

FDM-DFT 99.93 99.94±0.16 0.60

ST-T

Proposed 99.91 99.89±0.37 -

MWLK 99.96 99.95±0.15 0.28

MWSK 99.97 99.97±0.08 0.13

MWSC 99.77 99.77±0.84 0.18

TWBP 99.62 99.55±1.47 0.004

TWoSD 99.89 99.88±0.26 0.76

FDM-DCT 99.97 99.97±0.07 0.016

FDM-DFT 99.98 99.97±0.06 0.074

STC

Proposed 99.94 99.89±0.40 -

MWLK 99.94 99.93±0.13 0.9

MWSK 99.99 99.98±0.04 0.61

MWSC 99.97 99.94±0.18 0.9

TWBP 99.97 99.97±0.10 0.9

TWoSD 99.82 99.83±0.31 0.88

FDM-DCT 99.93 99.92±0.30 0.9

FDM-DFT 99.95 99.94±0.15 0.9

(Continued on the following page)
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TABLE 5 (Continued) Result of Sen in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

NST

Proposed 94.78 94.77±8.98 -

MWLK 96.66 96.63±5.99 0.5

MWSK 97.49 97.52±4.66 0.22

MWSC 96.63 96.67±5.73 0.69

TWBP 97.96 97.97±4.24 0.05

TWoSD 95.76 95.76±6.82 0.9

FDM-DCT 95.44 95.45±7.75 0.9

FDM-DFT 94.54 94.53±9.83 0.9

CPSC2019

Proposed 96.10 96.51±7.86 -

MWLK 96.89 97.33±6.77 0.097

MWSK 97.89 98.12±5.65 0.001

MWSC 98.32 98.48±4.73 0.001

TWBP 97.47 98.13±5.12 0.001

TWoSD 93.54 95.11±10.16 0.001

FDM-DCT 95.54 96.03±8.85 0.58

FDM-DFT 96.68 97.08±7.00 0.62

HIE

Proposed 98.33 98.43±3.61 -

MWLK 98.88 98.93±3.24 0.32

MWSK 98.96 99.00±1.65 0.9

MWSC 99.49 99.51±1.04 0.045

TWBP 98.21 98.33±3.90 0.90

TWoSD 86.98 87.75±15.86 0.001

FDM-DCT 98.88 98.92±2.41 0.89

FDM-DFT 98.95 98.99±2.31 0.71

test was applied to determine whether there were statistically
significant differences in performance.The results were summarized
in Tables 5–7.

5 Discussion

In this work, a simple and effective method was designed
to detect the QRS complex on the ECG signal. A large-sized
convolutional kernel was used in the convolutional layers, and the
model was designed to have dual input channels. Furthermore, a
novel training strategy was developed. The points on the border

of the QRS complex were removed, and the artificially generated
ECG segments with a high heart rate were included in the data
augmentation. The proposed method achieved good results on
the cross-dataset testing. The He’s method (He et al., 2021) and
Cai’s method (Cai and Hu, 2020) are two state-of-the-art methods
andhave excellent performance.TheHe’smethod adopted theU-Net
combinedwith the Bidirectional LSTMmodules.TheCai’s approach
involves two models, one based on CNN and another based on
CRNN. The CNN model composed of three parallel CNN blocks, a
squeeze-and-excitation network (SENet) and three fully connected
layers. The structure of the CRNN model was similar to the CNN
model, with the addition of two LSTM layers before the SENet. Due
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TABLE 6 Result of Pre in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

AR_DS1

Proposed 99.59 99.51±1.62 -

MWLK 99.76 99.74±0.57 0.9

MWSK 99.23 99.16±2.06 0.9

MWSC 99.20 99.11±3.28 0.9

TWBP 98.25 98.23±4.30 0.08

TWoSD 99.57 99.46±2.20 0.62

FDM-DCT 99.49 99.43±1.32 0.9

FDM-DFT 99.76 99.73±0.56 0.9

SV

Proposed 99.63 99.65±1.90 -

MWLK 99.91 99.90±0.39 0.07

MWSK 99.78 99.78±0.58 0.9

MWSC 99.52 99.55±1.22 0.4

TWBP 99.24 99.23±2.18 0.001

TWoSD 99.85 99.84±0.54 0.15

FDM-DCT 99.89 99.88±0.29 0.54

FDM-DFT 99.59 99.63±2.41 0.03

ST-T

Proposed 99.43 99.28±3.25 -

MWLK 99.37 99.30±4.71 0.06

MWSK 98.91 98.77±4.63 0.003

MWSC 96.49 97.0±8.18 0.12

TWBP 98.39 98.26±5.62 0.001

TWoSD 99.29 99.13±4.22 0.04

FDM-DCT 98.93 98.82±5.01 0.81

FDM-DFT 99.50 99.41±4.12 0.003

STC

Proposed 99.47 99.47±2.06 -

MWLK 99.50 99.51±2.03 0.9

MWSK 99.07 98.94±2.63 0.001

MWSC 99.30 99.16±2.13 0.02

TWBP 98.77 98.60±2.44 0.001

TWoSD 99.60 99.58±1.57 0.9

FDM-DCT 99.49 99.45±1.86 0.9

FDM-DFT 99.49 99.47±1.97 0.9

(Continued on the following page)

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2024.1384356
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhao et al. 10.3389/fphys.2024.1384356

TABLE 6 (Continued) Result of Pre in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

NST

Proposed 94.30 94.09±5.45 -

MWLK 93.30 93.39±7.79 0.9

MWSK 89.87 90.30±8.61 0.3

MWSC 83.71 84.57±10.94 0.001

TWBP 89.60 90.30±9.68 0.43

TWoSD 92.60 92.60±7.46 0.9

FDM-DCT 93.83 93.72±6.33 0.9

FDM-DFT 95.78 95.51±4.57 0.66

CPSC2019

Proposed 94.35 94.50±11.47 -

MWLK 94.63 94.80±10.95 0.1

MWSK 91.05 91.94±13.96 0.001

MWSC 89.56 91.14±14.81 0.001

TWBP 91.71 92.54±12.21 0.001

TWoSD 97.06 96.79±7.97 0.001

FDM-DCT 90.63 91.61±14.38 0.001

FDM-DFT 95.13 95.35±10.22 0.11

HIE

Proposed 99.93 99.93±0.45 -

MWLK 99.98 99.98±0.22 0.9

MWSK 100.0 100.00±0.0 0.9

MWSC 99.93 99.93±0.33 0.9

TWBP 99.15 99.20±1.97 0.22

TWoSD 99.92 99.88±0.64 0.9

FDM-DCT 99.91 99.91±0.66 0.9

FDM-DFT 99.96 99.96±0.25 0.9

to the use of sophisticated modules like LSTM and fully connected
layers, these two methods have a large number of parameters
(4,466,339 parameters in He’s method, 218,969 parameters and
2,708,417 parameters in Cai’s method). Compared with these state-
of-the-art models, the proposed detector has fewer parameters and
comparable results.

The QRS complex represents a short-duration electrical activity
of the heartbeat and has clear differences fromotherwaveforms.Due
to the good ability of capturing the local feature, we thought that the
CNNwith a sufficiently sized receptive field can effectively learn the
QRS complex features and identify the QRS complex, without the
need for application of other sophisticated module. Consequently,

the size of convolutional kernel becomes an essential issue in the
for the FCN based model. The traditional CNN based algorithms
with small-sized kernels can extract features that represent the
detailed variations of QRS complex, which is advantageous to detect
the QRS waves contaminated by noise. However, it increases the
likelihood of misclassifying noise or other non-QRS waves with
similar patterns as QRS complex, leading to more false positives.
With the increased of kernel size, the model tend to overlook
subtle variations in the QRS complex and instead focuses on a
broader range of ECG waveforms.The model exhibits a tendency to
enhance ECG waves that closely resemble the QRS complex, while
effectively suppressing ECG waves with different shapes, such as
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TABLE 7 Result of Err in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

AR_DS1

Proposed 0.83 0.92±2.92 -

MWLK 0.45 0.44±0.77 0.9

MWSK 0.89 0.95±2.08 0.9

MWSC 0.99 1.06±3.39 0.9

TWBP 1.79 1.80±4.31 0.33

TWoSD 0.96 1.05±3.70 0.9

FDM-DCT 0.63 0.67±1.37 0.9

FDM-DFT 0.36 0.37±0.65 0.83

SV

Proposed 0.48 0.44±1.91 -

MWLK 0.21 0.20±0.46 0.34

MWSK 0.26 0.26±0.60 0.9

MWSC 0.57 0.53±1.25 0.83

TWBP 0.80 0.80±2.18 0.001

TWoSD 0.34 0.29±0.78 0.58

FDM-DCT 0.20 0.19±0.36 0.21

FDM-DFT 0.48 0.43±2.42 0.007

ST-T

Proposed 0.66 0.82±3.37 -

MWLK 0.68 0.74±4.73 0.04

MWSK 1.12 1.26±4.65 0.02

MWSC 3.72 3.16±8.38 0.08

TWBP 1.97 2.12±6.04 0.001

TWoSD 0.82 0.99±4.28 0.46

FDM-DCT 1.10 1.20±5.02 0.55

FDM-DFT 0.52 0.62±4.13 0.001

STC

Proposed 0.59 0.64±2.12 -

MWLK 0.56 0.56±2.09 0.9

MWSK 0.94 1.08±2.64 0.02

MWSC 0.73 0.89±2.21 0.17

TWBP 1.26 1.42±2.48 0.001

TWoSD 0.58 0.59±1.74 0.9

FDM-DCT 0.58 0.62±2.09 0.9

FDM-DFT 0.56 0.59±2.00 0.9

(Continued on the following page)
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TABLE 7 (Continued) Result of Err in ablation experiments.

Dataset Algorithm Overall per record p values of nemenyi test
(with proposed method)

NST

Proposed 10.36 9.99±11.54 -

MWLK 9.61 8.86±11.48 0.3

MWSK 12.17 11.27±10.92 0.9

MWSC 18.67 17.19±13.22 0.004

TWBP 12.04 10.93±11.55 0.9

TWoSD 11.04 10.33±11.71 0.9

FDM-DCT 10.19 9.62±11.52 0.9

FDM-DFT 9.25 8.97±11.83 0.76

CPSC2019

Proposed 9.13 8.16±13.35 -

MWLK 8.16 7.29±12.42 0.07

MWSK 10.70 9.43±14.57 0.11

MWSC 11.79 9.99±15.24 0.001

TWBP 10.42 9.04±12.82 0.001

TWoSD 9.03 7.45±12.22 0.9

FDM-DCT 13.05 11.19±15.98 0.001

FDM-DFT 7.87 7.02±12.06 0.008

HIE

Proposed 1.74 1.61±3.85 -

MWLK 1.14 1.08±3.34 0.9

MWSK 1.04 1.0±1.65 0.9

MWSC 0.58 0.56±1.22 0.09

TWBP 2.61 2.35±4.98 0.9

TWoSD 13.08 12.28±15.91 0.001

FDM-DCT 1.21 1.15±2.81 0.9

FDM-DFT 1.09 1.05±2.30 0.79

QRS complexes contaminated by noise. As a result, the Pre increased
and Sen decreased. In the experiments, compared to the MWSK,
the MWLK has a lower Sen and a greater Pre, especially in the two
dataset with relatively more number of noisy segments (CPSC2019
and NST). The Sen of MWLK and MWSK were 96.66% and 97.49%
respectively onNST, 96.89% and 97.89% respectively on CPSC 2019,
And the Pre ofMWLK andMWSKwere 94.63% and 91.05% inNST,
93.3% and 89.87% respectively in CPSC 2019. To achieve a balance
between the Sen and Pre, an intermediate size of 19 samples was
selected in the study, which has significantly lower Err on the ST-T
and STC dataset, and no significant difference on other datasets.

Most of existing methods were designed to detect the QRS
complex on the ECG signal with a single lead. Although some
methods used dual input channels, the information of the second
channel was extracted from the first channel. For instance, in the
work (He et al., 2021), the ECG signal from the first channel was
inverted and used as the second channel. In the work (Yuen et al.,
2019), the gradient of the ECG signal from the first channel was
used as the second channel. For the ECG signal with multiple
input channels, we thought that when the noise was present on one
channel of the multi-channel ECG signal, the DL-based detector
can automatically utilize the information from other channels.
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This is advantageous in reducing the false positives. For the ECG
signal with single-channel, as the signal of second channel was
generated through signal replication, therewould not be a significant
increased in the Err, although the Sen and Pre may undergo
some changes. The experimental results indicate that our method
is helpful in improving performance. For the detection on the
signals with two noisy dataset, although the Sen of MWSC was
slightly higher (96.63% vs. 94.78% on NST, 98.32% vs. 96.10%
on CPSC 2019), but the Pre (83.71% vs. 94.30% on NST, 89.56%
vs.94.35% on CPSC 2019) and Err (18.67% vs. 10.36% on NST,
11.79% vs. 9.13% on CPSC 2019) were fundamental lower than
proposed method.

In the training, the target of the DL model was generated by
marking a binary label to the points on the ECG signal, and the label
value was determined to the interval to the closest annotated QRS
complexes. So, the different labels would be assigned to adjacent
points with a similar presence on the border of QRS complex. It
would confuse the model and consequently increase the number
of false positives. Following the concept of CenterNet (Zhou et al.,
2019), the QRS complex can be represented by a single point
at the center of a bounding box, Hence, the points around the
endpoints of the bounding box could be ignored in the training.
It is reported that the duration of QRS comples is less than 150
milliseconds (Taylor, 2008), and the predicted QRS complex was
considered as false positive if its distance to the closest annotated
QRS complex is longer than 150 milliseconds. Consequently, the
points whose interval to the closest annotated QRS complex from
75 milliseconds to 150 milliseconds can be removed in the training.
Experimental results shows that TWBP had a lower Pre and higher
Err compared to the proposed on all datasets. For the detection
on the signals with two noisy dataset, although the Sen of MWSC
was slightly higher (97.96% vs. 94.78% on NST, 97.47% vs. 96.10%
on CPSC 2019), but the Pre (89.60% vs. 94.30% on NST, 91.71%
vs.94.35% on CPSC 2019) and Err (12.04% vs. 10.36% on NST,
10.42% vs. 9.13% on CPSC 2019) were fundamental lower than
proposed method.

During high-intensity exercise, the heart rate can reach a high
level. However, most datasets contain only a small number of
high heart rate segments. This may have a detrimental impact
on the performance of the DNN model as it may miss many
QRS complexes in the application. When the simulated segments
were excluded from the training (TWoSD), the Sen reduced from
98.33% to 86.98%, and Err increased from 1.76% to 13.08%
on the HIE. Experimental results show that the application of
simulation data with a high heart rate is beneficial to train
the model.

Noise attenuation plays a crucial role as a preprocessing
step in QRS complex detection. While the noise suppression
capability of the butterworth filter may not be as robust as
Fourier-based methods, it can be effectively compensated for
by utilizing a DNN model. This is attributed to the powerful
representation capabilities of the DNN model, which enables
it to overcome the limitations of the butterworth filter. The
experimental results demonstrate that the proposed method
maintains a comparable level with FDM-DCT and FDM-FFT on
most datasets, without significant reduction.

The N, S and V are three primary types of beats, and the Fnr
of S and V type of beats is lower than N type of beats. It can be
attributed to several factors. Firstly, the rhythm of S and V type of
beats deviates from the normal sinus rhythm and tends to be more
unstable. Secondly, the morphology of S and V type of beats is more
variable compared to N beats. Lastly, the volume of training data
associatedwith S andVbeats is substantially less than that ofNbeats.
Therefore, it is more challenging to accurately detect S and V type of
beats, resulting in a higher Fnr.

In the experiments, several hyperparameters and strategies
were employed to prevent the overfitting. Firstly, the model was
trained for a limited number of epochs, specifically 5 epochs,
with early stopping based on validation error. This decision was
made to strike a balance between allowing the model to learn
meaningful patterns in the data and avoiding excessive training.
Furthermore, a batch size of 32 was utilized during the training
process. This choice of batch size ensures a sufficient number
of samples are processed in each iteration, while simultaneously
introducing more noise into the optimization process to prevent
overfitting and avoid memorizing the training data. Additionally,
a weight decay of 1e-8 was applied to the model’s parameters.
This regularization technique encouraging the model to have
smaller weights, resuling in preventing the model from becoming
too complex.

The main limitation of proposed detector is the fixed threshold
used for the determination of the QRS complex and without
the search-back strategy. On the noisy segments, the response of
the DNN model may be relative low. So many QRS complexes
would be missed. It is generally thought the err-predicted is better
than the miss detected (Cai et al., 2020). Therefore, an adapatively
adjusted threshold with a search-back strategy can be applied, if no
QRS complex was detected during a specific interval. Besides, the
positional differences between predicted and annotated heartbeats
were relatively large. In subsequent analyses, the impact of positional
offsets can be mitigated by using a wider analysis window for
heartbeat analysis, and by calculating the heart rate based on
multiple heartbeat intervals.

6 Conclusion

In the paper, a DNN based algorithm with a novel training
strategy was developed to detect the QRS complex on the ECG
signal. After preprocessing the ECG signal, the DNN model was
used to predict the probability of each point belonging to the
QRS complex. Then local maximal points on the heat maps with
the probability exceeding than the specified threshold were treated
as the candidates. Finally, the NMS based post-preprocessing was
performed to remove the false positives. The proposed method
had a small number of parameters and achieved a good result on
several public ECG datasets, indicating that it may be applicable to
wearable ECG devices. The limitation of the work is the utilization
of a fixed response threshold without the search back strategy.
In the future work, we will try to address this limitation and
increase the prediction heads of classification and delineation for
the further analysis of heartbeats.
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