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Introduction: Artistic gymnastics is one of themost demanding sports disciplines,
with the athletes demonstrating extremely high levels of explosive power and
strength. Currently, knowledge of the effect of gymnastic training adaptation on
exercise-induced inflammatory response is limited. The study aimed to evaluate
inflammatory response following lower- and upper-body high-intensity exercise
in relation to the iron status in gymnasts and non-athletes.

Methods: Fourteen elite male artistic gymnasts (EAG, 20.6 ± 3.3 years old) and
14 physically active men (PAM, 19.9 ± 1.0 years old) participated in the study.
Venous blood samples were taken before and 5min and 60min after two variants
of Wingate anaerobic test (WAnT), upper-body and lower-body WAnT. Basal iron
metabolism (serum iron and ferritin) and acute responses of selected
inflammatory response markers [interleukin (IL) 6, IL-10, and tumour necrosis
factor α] were analysed.

Results: EAG performed significantly better during upper-body WAnT than PAM
regarding relative mean and peak power. The increase in IL-6 levels after upper-
body WAnT was higher in EAG than in PAM; the opposite was observed after
lower-body WAnT. IL-10 levels were higher in EAG than in PAM, and tumour
necrosis factor α levels were higher in PAM than those in EAG only after lower-
body WAnT. The changes in IL-10 correlated with baseline serum iron and ferritin
in PAM.

Discussion:Overall, gymnastic training is associated with the attenuation of iron-
dependent post-exercise anti-inflammatory cytokine secretion.
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Introduction

Artistic gymnastics is one of the most demanding sports
disciplines. To stay competitive, the sports activity of elite
professional gymnasts during the gymnastics season entails 5–6 h
of gymnastic training per day, 6 days per week. The target training
rigour starts at the early stages of the gymnast’s career (5–6 years old),
with the training volume increasing yearly. In this scenario, gymnastic
training exerts great physiological stress associated with
neuromuscular and central fatigue, affecting body homeostasis and
function. Multiple physiological and biochemical changes are induced
in response to training, as evidenced by the associated inflammatory
adaptation, metabolic changes, and recovery process kinetics
(Alshammari et al., 2010). This type of adaptation is critical for
realising such a demanding physical activity and is directly related
to post-exercise stress tolerance (Kochanowicz et al., 2017).

In sports physiology, several biomarkers reflect the biochemical
and physiological mechanisms underlying the physical stress induced
by professional training (Marqués-Jiménez et al., 2016; Waldziński
et al., 2023). For instance, determining myoglobin, creatine kinase,
and lactate dehydrogenase serum levels is a golden standard for
muscle damage analysis. Further, interleukin (IL) 1, IL-6,
C-reactive protein, and tumour necrosis factor α (TNF-α) are
considered specific inflammatory state markers (Pyne, 1994;
Mieszkowski et al., 2021a; Waldziński et al., 2023). Their
measurements are useful for obtaining a holistic overview of body
function and muscle activity during competition and assessing an
athlete’s body adaptation to specific exercise (Pyne, 1994) or training
conditions (Ziemann et al., 2014). Every professional sports training
event and sport activity is associated with increased inflammation and
skeletal muscle tissue damage (Mieszkowski et al., 2021a). In addition
to inflammation, oxidative stress markers, such as lipid and protein
oxidation, are detected (Sohail et al., 2020). The excessive
inflammatory response induced by exercise and driving the
secretion of proinflammatory cytokines is considered one of the
factors limiting sports performance (Fatouros et al., 2010).

Iron status profoundly influences inflammation, as systemic iron
levels and homeostasis alterations affect the inflammatory response.
Increased iron stores are associated with oxidative stress and
inflammation (Kell, 2009). Interestingly, it has been observed that
regular exercise reduces body iron stores and lowers oxidative stress
and inflammation (Kortas et al., 2017).

One of the many factors that can influence exercise-induced
inflammation may be serum iron and iron stored in human tissues.
However, data on this subject are very limited; for example, iron
status influences exercise-induced changes in adiponectin and
myostatin (Kortas et al., 2020).

Acute exercise can induce a stress response in skeletal muscle
and other tissue, which is manifested by the activation of stress-
activated protein kinases (SAPK) (Parker et al., 2017). In vitro,
experimental models demonstrated that activation of SAPK can lead
to ferritin degradation, iron-dependent oxidative stress and
proinflammatory response (Kell, 2009; Borkowska et al., 2011).
Thus, it became reasonable to analyse whether iron status can
influence inflammatory response after acute exercise tests.

The post-exercise iron homeostasis is regulated by several
factors, but an essential role plays changes in the interleukin-6
(IL-6). This cytokine plays a regulator role in inflammation response

and hepcidin secretion (Lee et al., 2005). Hepcidin is an amino acid
peptide released by hepatocytes that is the predominant negative
regulator of iron absorption in the small intestine and iron release
from macrophages (Ganz, 2003). Moreover, its changes contribute
to the regulation of inflammation, and many cytokines can stimulate
hepcidin biosynthesis, leading to a decrease in serum iron. On the
other hand, an increase in the labile iron pool within a cell can
augment the activity of NfKB, which can lead to increased
expression of proinflammatory cytokines (Kell, 2009).

In many sports disciplines, the physiological and biomechanical
involvement of different body parts (e.g., the upper- and lower-body
muscles) in physical activity is not the same (Bassa et al., 2002).
Unfortunately, data on the associated differences are limited, as are
those on the differences in the response to exercise of the upper and
lower body (Kochanowicz et al., 2017). In the case of gymnasts, the
overwhelming majority of exercise and training routines involve the
upper body, e.g., activities involving supports, hanging, pushing,
pulling up, or giving momentum to the rest of the body (Jemni et al.,
2006; Sawicki et al., 2018; Kochanowicz et al., 2019). It was
previously shown (Mieszkowski et al., 2021b) that in gymnasts,
the upper-body anaerobic performance output is higher than that of
the lower body compared to the untrained population and, thus,
different biochemical adaptations in terms of the intensity of the
inflammatory response and changes in iron metabolism elicited by
the upper and lower body exercise could be expected.
Demonstrating such relationships would verify whether the
predominant gymnastic training methods, focused on using
upper body parts, also affect systemic adaptive changes. Of note,
any effort exclusively involving the upper parts of the body is often
thought to induce only local adaptations because of the muscle
body content.

The aim of the current study was to evaluate the changes in
inflammatory response following lower- and upper-body high-
intensity exercise in relation to the iron status in gymnasts and
non-athletes.

Materials and methods

Experimental overview

In the current study, two study groups, athletes (elite gymnasts)
and physically active controls, performed two variants of the
maximal anaerobic effort: lower-limb and upper-limb exercises.
Before and after exercise, the participants’ blood was collected,
and inflammatory marker levels were analysed in the context of
iron status.

Participants

A group of 14 elite male artistic gymnasts (EAG, 20.12 ±
3.36 years old) and 14 physically active men (PAM, 20.18 ±
1.1 years old) participated in the study. The EAG group
consisted of Polish professional gymnasts (training 6 times per
week, 5–6 h per session) who compete on a senior level and are
ranked in the International Gymnastics Federation classification.
The PAM group consisted of volunteers (students) who declared
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regular participation in recreational sports, such as running,
swimming, and team sports (on average, 2–3 times per week,
45–60 min per session).

All participants were considered healthy 6 months before the
beginning of the study. Specifically, no bone or muscle tissue injuries
were reported; with negative medical history regarding the
cardiovascular, autonomic nervous system, or mental disorders,
and any other condition that might have directly or indirectly
affected the results. Further, no drugs or any other supplements
were taken during the study.

Descriptive physical characteristics and basal (resting) levels of
iron metabolism markers are presented in Table 1.

Experimental protocol

Before the experiment, the participants attended an orientation
session to ensure they were familiar with the testing equipment and
procedures. Their basic anthropometric characteristics were then
measured. At least 3 months before the start of the study, all study
participants refrain from taking any drugs and supplements that could
influence obtained results (including preparations that could improve
exercise capacity). Two days before the experiment, all participants were
asked to refrain from extensive exercise, stay hydrated, and maintain
their regular dietary habits, excluding any drugs and stimulants.

The experimental protocol comprised the measurement of
maximal anaerobic effort using the Wingate anaerobic test
(WAnT) to assess the adaptation of lower and upper limbs, with
the load adjusted individually. All participants began with lower-
body WAnT, and after a week’s break, they performed upper-limb
WAnT. Before and after each WAnT session, blood samples were
taken for further analysis. For each participant, the time of day,
room temperature and other measurable variables were adequate
during both WAnT performances (morning hours from 9 till
12 a.m., room temperature from 20 to 23°C, relative humidity:
≤70%, atmospheric pressure: 86 kPa–106 kPa).

Lower-body and upper-body WAnT

The lower-body WAnT was conducted using a cycle ergometer
(Monark 894E, Peak Bike, Sweden) according to the Bar-Or (Bar-
Or, 1987). Each participant’s saddle height was adjusted individually

(with the knee slightly flexed and with the final knee angle of
approximately 170°–175°). Before any testing, each individual
completed a standardised warm-up on the cycle ergometer
(5 min at 60 rpm, 1 W/kg). During the testing, each participant
was required to pedal for 30 s with a maximum effort against a fixed
resistive load of 75 g/kg of total body mass.

The upper-body WAnT was conducted using a hand cycle
ergometer (Monark 891E, Peak Bike) (Sawicki et al., 2018).
Participants were seated in a chair, with the seat height and backrest
adjusted individually. For the hand grasping the handles, the elbow joint
was almost fully extended (140°–155°) (Kochanowicz et al., 2017).
Similar to the lower-body WAnT, before any testing, the participants
completed a warm-up that involved 5 min of arm cranking using a
power output of 1 W/kg and a crank rate of 60 rpm. During the testing,
each participant was required to pedal for 30 s with a maximum effort
against a standard resistive load equivalent to 50 g/kg of total bodymass.
In both WAnTs, the procedure started without prior spinning of the
flywheel due to the fact that in the specific nature of physical excesses,
especially like gymnastics, the generation of maximum force values,
regardless of the performed exercises, takes place always from a
basic—static position. In a way, this seems to be much more
reflected in the specificity of the physical effort than in the
continuation of the effort that is already in progress.

During testing, verbal encouragement was given from the
beginning until the end of the test to maintain the highest
possible cadence throughout both WAnTs. Cycle ergometers
were connected to a personal computer running the MCE
5.1 software (Staniak et al., 1994). The following WAnT variables
were measured: peak power (W) and relative peak power (W/kg),
calculated as the highest single point of power output (recorded at
0.2 s intervals), and mean power (W) and relative mean power
(W/kg), calculated as the average power output during the 30 s test.

Sample collection and measurements of
inflammatory markers

Blood samples were collected at three time points by a medical
diagnostic professional, according to the experimental protocol,
i.e., before the test, immediately after (no more than 5 min after
the test) and 60 min after the test. The blood was collected into 5 mL
BD Vacutainer Clot Activator Tubes (Becton Dickinson and
Company, NJ, United States). The serum was separated by

TABLE 1 Physical characteristics and basal values of iron metabolism markers.

Variable Physically active men (n = 14) Elite artistic gymnasts (n = 14) p-value PAM/EAG

Mean ± SD (95% CI) Mean ± SD (95% CI)

Body height (cm) 176.62 ± 4.87 174.56–180.10 170.44 ± 3.36* 168.10–172.25 <0.01

Body mass (kg) 72.24 ± 8.80 66.20–77.67 68.21 ± 5.80 64.78–72.12 0.16

BMI (kg × m-2) 23.34 ± 3.36 21.85–25.16 22.73 ± 1.76 21.54–24.05 0.54

Percent body fat (%) 10.88 ± 4.81 8.31–13.45 6.48 ± 2.97* 5.12–8.43 <0.01

Iron (μmol/L) 32.51 ± 7.85 27.97–37.05 26.51 ± 10.56 20.41–32.60 0.10

Ferritin (ng/mL) 134.72 ± 20.32 122.99–146.45 147.52 ± 33.96 127.92–167.13 0.23

Note: PAM, physically active men; EAG, elite artistic gymnasts; * significant difference between PAM, and EAG groups at p < 0.01.
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centrifugation at 4,000 g for 10 min and aliquoted into 500 μL
portions. The samples were frozen and stored (no longer than
6 months) at −80°C until further analysis.

Biochemical analysis of serum ferritin, IL-6, IL-10, and TNF-α
levels were performed using high-sensitivity commercially available
enzyme-linked immunosorbent assay kits (DRG International, Inc.,
Springfield, NJ, United States) and Thermo Fisher Scientific Elisa
Analyzer (Thermo Fisher Scientific Waltham, MA, United States).

To assess baseline and changes in iron (FE) levels, plasma
was collected into the lithium heparin tubes (Becton Dickinson
and Company, NJ, United States) and tested using in vitro IRON
2 (Roche/Hitachi Cobas c.) systems using a Cobas C
analyser 501.

Serum ferritin and iron levels were analysed only at baseline, as
their concentrations are stable up to 24 h even after three repetitions
of WAnT over a short period (Antosiewicz et al., 2013).

Statistical analysis

Descriptive statistics included mean ± SD for all measured
variables. The normality of distribution was checked using the
Shapiro–Wilk’s test and Levene’s test was used to check the
homogeneity of variance. As the assumptions of normality and
homogeneity of variance were met, the analysis of variance
(ANOVA) tests were used. One-way ANOVA was used to
determine the difference in WAnT performance characteristics
between the EAG and PAM groups.

To evaluate the changes in biochemical markers of inflammation
and muscle damage before and after WAnT, two-way (2 × 3)
ANOVA of repeated measures was performed, where group (GR)
was the between-subject factor (EAG, PAM) and repeated measure
(RM) was the within-subject factor (pre-WAnT, 5 min post WAnT,
60 min postWAnT). Pearson’s correlation coefficient was calculated
between the baseline serum iron and ferritin levels and the changes
(5 min vs. baseline; 60 min vs. baseline) in inflammatory
marker levels.

The effect size of the participants’ characteristics (Cohen’s
d-value) and biomarkers were determined using eta-squared
statistics (ƞ2). In the analysis, ƞ2 values equal to or greater than
0.01 (d = 0.2; r = 0.1), 0.06 (d = 0.6; r = 0.3), and 0.14 (d = 0.8; r = 0.5)
were the threshold values for a small, moderate, and large effect size,
respectively (Cohen, 1988).

Power analysis for the interactions between the effects was
performed using GPower ver. 3.1.9.2 to determine the
appropriate sample size (Faul et al., 2007). Accordingly, for a
medium effect size and test power of 0.80, the minimal required
sample size was 28 participants.

All calculations and graphics were generated using GraphPad
Prism 6.0 (GraphPad Software, MA, United States). All calculations
were done using Statistica 12 (StatSoft, OK, United States). The level
of significance was set at α = 0.05.

Ethics

The study was approved by the Bioethics Committee for Clinical
Research at the Regional Medical Chamber in Gdansk (decision no.

KB-24/16) and carried out in accordance with the Declaration of
Helsinki. All participants were informed about the purpose and test
procedures, as well as the possibility of withdrawing consent at any
time and for any reason. All participants gave written informed
consent prior to the study.

Results

In the current study, the body height and percent body fat of
gymnasts were significantly lower than those of the controls
(Table 1). However, body mass and resting iron and ferritin
levels were not significantly different between the two
groups (Table 1).

The results of one-way ANOVA of the absolute and relative peak
power of lower- and upper-body WAnTs are presented in Figure 1.
A significantly better performance of EAG was observed only for the
relative mean (16.7%, p < 0.01) and peak power (15.5%, p < 0.05)
generated during upper-body WAnT. Lower-body WAnT results
for both groups were not statistically different (Figure 1).

Two-way ANOVA with repeated measures of exercise-induced
inflammation during lower- and upper-body anaerobic exercise is
shown in Table 2. The analysis of lower- and upper-body WAnT
data revealed a significant effect of RM on each tested
inflammatory marker. The GR effect of the tested markers was
also significant for both types of WAnT, except for the effect on
changes in IL-10 levels after lower-body WAnT. Of note, IL-6 and
TNF-α levels after lower-body WAnT in EAG were significantly
lower than those in PAM; on the other hand, upper-body WAnT
induced significantly higher levels of IL-6 and TNF-α in EAG than
in PAM. Post-hoc analysis of changes in IL-10 levels induced by
upper-body WAnT also revealed significantly higher readings in
EAG. Considering the interaction of GR and RM factors, while the
IL-6 and TNF-α levels in EAG were significantly lower than those
in PAM 5 min (IL-6, 29.7%, p < 0.01; TNF- α, 37.3%, p < 0.01) and
60 min (IL-6, 29.7%, p < 0.01; TNF-α, 51.3%, p < 0.01) after lower-
body WAnT, the IL-10 levels 60 min after exercise were
significantly higher in EAG than those in PAM (27.7%, p <
0.05) (Figure 2). On the other hand, the IL-6 levels 5 min after
upper-body WAnT were significantly higher in EAG than those in
PAM (55.17%, p < 0.01).

The results of the correlation analysis of changes in the IL-6, IL-
10, and TNF-α levels induced by the upper- and lower-body
anaerobic exercise with the baseline (resting) serum levels of iron
and ferritin are presented in Tables 3, 4, accordingly. The resting
iron levels showed a significant positive correlation with changes in
the IL-10 levels in PAM (Table 3). Similarly, the correlation analysis
of baseline ferritin levels revealed a significant positive correlation
with the change in IL-10 levels 60 min after lower-body WAnT
in PAM only.

Discussion

The aim of the current study was to evaluate and compare the
inflammatory response (i.e., changes in IL-6, IL-10, and TNF-α
levels) after lower- and upper-body high-intensity exercise in
gymnasts and non-athletes in relation to iron status.

Frontiers in Physiology frontiersin.org04

Kochanowicz et al. 10.3389/fphys.2024.1383141

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1383141


To the best of our knowledge, this is the first study in which the
effect of upper- and lower-body anaerobic exercise on the
inflammatory state markers was compared in professional
athletes and non-athletes in the context of iron status. The main
outcome of the study is that the lower- and upper-body maximal
exercise in the form of WAnT elicited different responses of
inflammatory markers depending on the training status.
Specifically, the increase in IL-6 levels was more pronounced in
EAG after upper-body WAnT, while it was more pronounced in
PAM after lower-body WAnT. The other observed differences,
i.e., relatively higher IL-10 levels in EAG and relatively higher
TNF-α levels in PAM, were only associated with lower-bodyWAnT.

The study revealed that the relative peak (15.46%) and mean
(16.72%) power of the upper body during WAnT are significantly
higher in EAG than those in PAM. That is mainly because of the
specific adaptation induced by and observed in professional
gymnastic training. Namely, gymnasts mainly engage the upper
body muscles to perform most of their exercises during the
competition (e.g., floor exercises, parallel bars, horizontal bars,
and others), with the lower body mainly engaged in short,

explosive efforts (e.g., jumping). Such discrepancy in the upper-
and lower-body WAnT performance in gymnasts has been reported
before (Jemni et al., 2006). This may help to explain the lack of
differences in the relative peak and mean power between EAG and
PAM observed for lower-body WAnT and could be a starting point
for understanding the differences in the response of inflammatory
markers in the two groups.

Exercise initiates a cascade of inflammatory events, which affect
human health in the long term. During and after acute exercise of the
skeletal muscle, interactions between immune cells, cytokines, and
other intracellular components create an inflammatory milieu
responsible for the recovery from an adaption to an exercise
bout. One of the main cytokines responsible for regulating the
inflammatory process is IL-6, essential in initiating and
controlling the post-exercise inflammatory process. Typically,
physical exercise is accompanied by increased IL-6 levels due to
the onset of inflammation (Aaseth and Birketvedt, 2012;
Antosiewicz et al., 2013).

In the current study, analysis of the tested inflammatory markers
revealed that considering the nature of the maximal anaerobic

FIGURE 1
Lower and upper body Wingate Anaerobic Test (WAnT) characteristics in elite artistic gymnasts (blue, n = 14) and physically active men (red, n = 14).
(A)mean power, (B) relative mean power, (C) peak power, (D) relative peak power. The data are presented as the mean and standard deviation; *p < 0.01,
difference between elite artistic gymnasts and physically active men.
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exercise, the IL-6 and TNF-α levels after lower-body WAnT in
gymnasts were significantly lower than those in the controls. In
comparison, the IL-6 levels induced by upper-body anaerobic
exercise were significantly higher in gymnasts than in the
controls. Typical physical training-induced adaptation leads to a
decrease in basal and acute post-exercise IL-6 production is
observed. This is related to the counteractive effects of several
potential stimuli of IL-6 (Keller et al., 2001; Pedersen et al., 2001;
Fischer, 2006). In the current study, we observed that the resting
(before worm up) IL-6 levels, especially in the case of lower-body
WAnT in EAG, were increased. This may be associated with two
factors. First, the gymnasts are professionals, training 6 times per
week, 5–6 h per session. Second, the emotional reaction to the test
performance should be considered. As mentioned, gymnasts are
very well prepared for upper body testing because of the specificity of
their training. However, lower-body WAnT is not the type of
physical effort characteristic for their sports training. It may be
associated with excessive adrenergic activation, which also increases
IL-6 levels (Rodas et al., 2020). The observed differences were not
statistically significant in meters of maximal and mean power
achievements. Furthermore, the analysis of IL-10 levels induced
by upper-body anaerobic exercise revealed significantly higher
readings among gymnasts. IL-10 is an anti-inflammatory
cytokine whose blood levels mainly increase after exercise
(Stankiewicz et al., 2023). Accordingly, while we observed a
significant increase in the IL-10 levels after upper- and lower-
body WAnT in EAG and PAM, the increase was more
pronounced for the former. This may suggest that the anti-
inflammatory response in gymnasts is more pronounced than

that in non-athletes because of their long-term training
(Marciniak et al., 2009; Kajaia et al., 2018). Finally, it has been
reported that the IL-6 level increase in response to exercise prevents
a subsequent increase in the levels of pro-inflammatory cytokines,
such as TNF-α (Petersen and Pedersen, 2005) and induces the
production of IL-10 (Steensberg et al., 2003), conferring anti-
inflammatory properties to that response (Pedersen et al., 2003).
This aligns with the observations in the current study.

Inflammation is profoundly influenced by iron status, as
alterations of systemic iron levels and homeostasis affect the
inflammatory response. Increased iron stores are correlated with
increased secretion of inflammatory response markers (Kell, 2009).
However, we are unaware of any study that has studied the role of
iron in acute exercise-induced inflammation.

The current study analysed iron status, interleukin (IL-6 and IL-
10), and TNF-α secretion revealed differences in PAM and EAG
upon lower- and upper-body exercise. Each type of intensive
exercise induces physiological stress that can contribute to an
increased formation of free radicals. Body iron stores can
modulate this process. One of the training adaptations associated
with systemic radical formation and iron metabolism is the
reduction of ferritin levels (body iron stores) (Lakka et al., 1994;
Kortas et al., 2017). This type of adaptation may be related to lower
oxidative stress caused by decreased iron-dependent free radical
formation (Nemeth et al., 2004; Kortas et al., 2017). Furthermore, it
has been shown that oxidative stress (which can be iron-dependent)
induced during intensive exercise leads to increased levels of pro-
inflammatory cytokines, such as IL-6 and TNF-α (Suzuki, 2018).
This may explain why a reduction in body iron stores, which may be

TABLE 2 Two-way (two groups × three repeatedmeasurements) ANOVA of the secretion of specific cytokines induced by lower- and upper-body anaerobic
exercise in elite artistic gymnasts and physically active men.

Variable Exercise Effect F Df p Effect size (η2) Post-hoc outcome

IL-6

Lower GR 6.83 1, 26 0.01* 0.20 EAG < PAM

body RM 402.10 2, 52 0.01** 0.93 III > II > I

WAnT GR × RM 106.05 2, 52 0.01** 0.80 IIEAG < IIPAM;

IIIEAG < IIIPAM

Upper GR 16.25 1, 26 0.67 0.01 EAG > PAM

body RM 300.97 2, 52 0.01** 0.91 III > II > I

WAnT GR × RM 10.25 2, 52 0.01** 0.27 IIEAG > IIPAM

IL-10

Lower GR 3.67 1, 26 0.07 0.11

body RM 150.78 2, 52 0.01** 0.85 III > II > I

WAnT GR × RM 8.35 2, 52 0.01** 0.24 IIIEAG > IIIPAM

Upper GR 0.83 1, 26 0.36 0.03 EAG > PAM

body RM 75.28 2, 52 0.01** 0.73 III > II > I

WAnT GR × RM 2.45 2, 52 0.09 0.08

TNF-α

Lower GR 61.96 1, 26 0.01* 0.70 EAG < PAM

body RM 613.68 2, 52 0.01** 0.95 III > II > I

WAnT GR × RM 207.48 2, 52 0.01** 0.88 IIEAG < IIPAM;

IIIEAG < IIIPAM

Upper GR 8.52 1, 26 0.01** 0.24 EAG > PAM

body RM 112.75 2, 52 0.01** 0.81 III > II > I

WAnT GR × RM 0.72 2, 52 0.48 0.02

Note: IL-6, interleukin 6; IL-10, interleukin 10; TNF-α, tumour necrosis factor α; Df, degrees of freedom, where a first and second number are variability between and withing groups,

respectively; GR, group; RM, repeatedmeasure; PAM, physically active men (n = 14); EAG, elite artistic gymnasts (n = 14); I, resting value; II, 5 min after 30 s upper- or lower-body, as indicated,

Wingate anerobic test (WAnT); III, 60 min after 30 s upper- or lower-body, as indicated, WAnT; * significant differences at p < 0.05, ** significant differences at p < 0.01.
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FIGURE 2
Changes in the levels of interleukin (IL) 6, IL-10, and tumor necrosis factor alpha (TNF-α) induced by lower (A, C, E) an upper-body (B, D, F)Wingate
anaerobic test (WAnT) in elite artistic gymnasts (blue, n = 14) and physically active men (red, n = 14). Vertical bars, mean and standard deviation; I, resting
value; II, 5 min after WAnT; III, 60 min after WAnT. Statistical analysis: * difference between elite artistic gymnasts and physically active men at particular
time point at p < 0.01; # significant difference vs. rest value in particular group at p < 0.01, ## significant difference vs. rest value and 5 min after the
WAnT in particular group at p < 0.01.

TABLE 3 Correlation of changes in specific cytokine levels induced by upper- and lower-body Wingate anaerobic test with baseline iron serum levels.

Variable Time point (min) Lower-body Wingate anaerobic test Upper-body Wingate anaerobic test

PAM EAG All PAM EAG All

IL-6 Delta 5 −0.39 0.01 0.22 0.01 −0.02 −0.19

Delta 60 −0.50 0.14 0.24 0.09 0.15 0.19

IL-10 Delta 5 0.83* −0.12 0.06 0.45 0.29 0.27

Delta 60 0.78* −0.19 −0.06 0.29 0.17 0.23

TNF-α Delta 5 0.03 0.14 0.32 0.36 −0.20 0.07

Delta 60 −0.13 0.51 0.35 0.31 −0.20 0.02

Note: PAM, physically active men (n = 14); EAG, elite artistic gymnasts (n = 14); IL-6, interleukin 6; IL-10, interleukin 10; TNF-α, tumor necrosis factor α; * significant correlation at p < 0.05.
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observed as a training adaptation, would contribute to reducing
oxidative stress and inflammation caused by physical activity
(Kortas et al., 2017).

In the present study, the basal serum-iron levels in EAGwere lower
than in PAM (26.51 ± 10.56 vs. 32.51 ± 7.85 (μmol/L)). While the
difference was not statistically significant, it may be associated with
long-term gymnastic training. Further, we observed that in PAM, the
baseline serum levels of iron and ferritin were highly correlated with the
changes in IL-10 levels induced by lower-body WAnT. In addition to
higher IL-6 and TNF-α levels, it indicates a higher post-exercise
inflammation in non-athletes and a possible modulatory role of iron
in this process (Stankiewicz et al., 2023). Serum iron can have signalling
properties as it can enter cells through the transferrin receptor, which
can lead to an increase in the labile iron pool (LIP). An increase in LIP
can lead to the activation of NFKB, a transcriptional factor that can
augment the transcription of genes encoding proinflammatory
cytokines like IL-6 and TNF. Conversely, IL-6 has been proposed to
induce the expression of antiinflammatory cytokines, including Il-10.
Here, we observed that lower-body exercise test-induced changes in IL-
10 are strongly correlated with serum iron, confirming its signalling
role. Similarly, we observed that ferritin concentration correlates with
exercise-induced changes in IL-10. Ferritin iron is considered inert as it
does not stimulate free radicals’ formation. However, studies on cell
culture demonstrated that during stress conditions, part of ferritin
undergoes ferritin degradation, which can lead to an increase in LIP
(Borkowska et al., 2011). The degradation process depends on c-jun
terminal kinase (JNK), which belongs to stress-activated protein kinases
(Antosiewicz et al., 2007). If we consider that JNK activation can be
blunted by heat shock proteins (HSP), their higher levels can influence
the reaction to exercise. Regular exercise has been shown to upregulate
HSP (Febbraio and Koukoulas, 2000). Thus, we can speculate that our
athletes are much more resistant to exercise-induced activation of JNK.
Fewer possibilities can increase LIP in skeletal muscle and other tissue.
This can be a likely explanation for why, in EAG, there is no correlation
between ferritin and changes in serum cytokines.

The current study has some limitations. Specifically, although
we evaluated the acute inflammatory response induced by upper-
and lower-body WAnT, we focused on only a few well-known
parameters contributing to the inflammatory status. This
approach may not fully reflect the complexity of the adaptation
process induced by many years of training, especially considering
the molecular and physiological aspects of the process. On the other
hand, we have previously reported that gymnastic training may

induce some adaptations on the molecular level, impacting the
expression of inflammatory genes (those encoding IL-6 and IL-
10) and genes encoding heat-shock proteins HSPA1A and HSPB1
(Kochanowicz et al., 2017; Zychowska et al., 2017). In the current
study, we confirmed the observed molecular adaptations,
manifesting as changing serum levels of the related
inflammatory markers.

Conclusion

We here showed that gymnastic training significantly affects
the post-exercise inflammatory response and that the response
is lower- and upper-body WAnT-dependent. This effect is
most likely a result of many years of specific training focused
on various upper-body muscle groups and the explosive muscle
strength of the lower body, which induces physiological
and biochemical adaptations to exercise. Further, the
presented findings suggest that exercise-induced pro- and
anti-inflammatory cytokine production, essential for
body homeostasis, may depend on body iron storage
and serum iron.

Analysis and evaluation of post-exercise secretion of pro- and
anti-inflammatory cytokines in relation to iron status may be a
useful indicator of exercise adaptation, and showing the health
benefits of sports training and complexity of the body’s response
to exercises.
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TABLE 4 Correlation of changes in specific cytokine levels induced by upper- and lower-body Wingate anaerobic test with baseline ferritin serum levels.

Variable Time point (min) Lower-body Wingate anaerobic test Upper-body Wingate anaerobic test

PAM EAG All PAM EAG All

IL-6 Delta 5 −0.22 −0.22 −0.30 0.24 0.29 0.35

Delta 60 −0.17 −0.32 −0.32 −0.08 0.20 0.09

IL-10 Delta 5 0.50 −0.04 0.03 0.19 −0.34 −0.16

Delta 60 0.76* 0.11 0.36 0.12 −0.24 −0.18

TNF-α Delta 5 0.47 0.12 −0.14 0.18 −0.04 0.01

Delta 60 −0.14 −0.16 −0.26 0.30 −0.05 0.12

Note: PAM, physically active men (n = 14); EAG, elite artistic gymnasts (n = 14); IL-6, interleukin 6; IL-10, interleukin 10; TNF-α, tumor necrosis factor α; * significant correlation at p < 0.05.
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