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Background: The protocols and therapeutic guidance established for treating
traumatic brain injury (TBI) in neurointensive care focus on managing cerebral
blood flow (CBF) and brain tissue oxygenation based on pressure signals. The
decision support process relies on assumed relationships between cerebral
perfusion pressure (CPP) and blood flow, pressure-flow relationships (PFRs),
and shares this framework of assumptions with mathematical intracranial
hemodynamics models. These foundational assumptions are difficult to verify,
and their violation can impact clinical decision-making and model validity.

Methods: A hypothesis- and model-driven method for verifying and
understanding the foundational intracranial hemodynamic PFRs is developed
and applied to a novel multi-modality monitoring dataset.

Results: Model analysis of joint observations of CPP and CBF validates
the standard PFR when autoregulatory processes are impaired as well as
unmodelable cases dominated by autoregulation. However, it also identifies a
dynamical regime -or behavior pattern-where the PFR assumptions are wrong
in a precise, data-inferable way due to negative CPP-CBF coordination over long
timescales. This regime is of both clinical and research interest: its dynamics
are modelable under modified assumptions while its causal direction and
mechanistic pathway remain unclear.

Conclusion: Motivated by the understanding of mathematical physiology,
the validity of the standard PFR can be assessed a) directly by
analyzing pressure reactivity and mean flow indices (PRx and Mx) or
b) indirectly through the relationship between CBF and other clinical
observables. This approach could potentially help to personalize TBI care
by considering intracranial pressure and CPP in relation to other data,
particularly CBF. The analysis suggests a threshold using clinical indices
of autoregulation jointly generalizes independently set indicators to assess
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CA functionality. These results support the use of increasingly data-
rich environments to develop more robust hybrid physiological-machine
learning models.

KEYWORDS

Intracranial hemodynamics, traumatic brain injury, neurocritical care, Hagen-Poiseuille
flow, cerebral autoregulation

1 Introduction

Clinical management is essential for improving patient
neurological outcome following traumatic brain injury (TBI), an
contributor to tens of thousands of fatalities in the United States
annually (https://wonder.cdc.gov/mcd.html). TBI patients risk
insults such as elevated intracranial pressure (ICP) and cerebral
ischemia, compounding the prospect of secondary injuries such
as hemorrhage and hypoxic tissue death. Potential contributors
to such problems include impaired or overburdened cerebral
autoregulation (CA), a collection of endogenous perfusion control
mechanisms that modify cerebral vessel diameter (Claassen et al.,
2021). Observable pressures–ABP and ICP–play a critical role in
guiding TBI intervention strategies (Stocchetti and Maas, 2014).
Meanwhile, blood transport, as quantified by cerebral perfusion
and cerebral blood flow (CBF), is not typically measured and
does not currently factor in care protocols. This work focuses
on a core tenet of TBI management (Bouzat et al., 2013): the
relationship between commonly observed hemodynamic pressures
and the associated, but typically unobserved, perfusion. Current
TBI protocols set thresholds for ICP or cerebral perfusion pressure
(CPP, the mean ABP-ICP difference) to improve categorical
clinical outcomes (Carney et al., 2017; Kochanek et al., 2019). The
approach is contentious (e.g., Asgeirsson et al., 1994; Helbok et al.,
2018) and lacks personalization (Stroh et al., 2021a) despite
improvements afforded by integrating e.g., brain tissue oxygenation
(PbtO2) (Chesnut et al., 2020), demographics, or disease severity
(Sorrentino et al., 2012). Protocol objectives aim to maintain
adequate perfusion for metabolic processes while minimizing the
risk of secondary insults such as hyperemia and vascular barotrauma
(Haddad and Arabi, 2012; Kirkman and Smith, 2014). Recent
work (Pelah et al., 2023) identified dissociation between optimal
CPP and optimal flow and oxygenation, further highlighting the
insufficiency of pressure-targeted approaches. Directly or indirectly,
pressure-guided protocols address perfusion, broadly referred to
here as cerebral blood flow. Nevertheless, perfusion and CBF are
infrequently observed despite both invasive (Vajkoczy et al., 2000;
Rosenthal et al., 2011) and noninvasive (Schmidt et al., 2001; White
and Venkatesh, 2006) observation methods.

CBF and observable pressures interact with the pressure-
responsive vasocontrol and flow-regulatory mechanisms
(Claassen et al., 2021) of CA that influence the pressure-flow
relationship (PFR). The role of CA is implicit in the pressure
reactivity index (PRx) (Czosnyka et al., 1997; Czosnyka et al.,
2017), a quantification of CA function from ABP and ICP.
Explicitly, the mean flow index (Mx) (Czosnyka et al., 1996)
gauges CA via correlation of middle cerebral artery blood velocity
(or its flow (Blanco and Abdo-Cuza, 2018)) with CPP (or ABP,
assuming ICP is constant). Existing studies associate favorable

FIGURE 1
Hemodynamics relationships associated with ICP In the first
relationship (1.), ABP acts as the system inflow pressure with ICP
opposing outflow pressure when it exceeds central venous pressure
(CVP). In the second (2.), the ABP-ICP difference defines the
background pressure gradient (CPP). The third (3.) is the pressure-flow
relationship: CBF is determined by the pressure gradient subject under
vasoregulation and other influences. The relationship (4.) identifies the
co-dependence of functioning CA and CBF (or available
oxygen/nutrients beyond the scope of this discussion).

patient outcome with Mx or PRx lying below 0.3, establishing
a heuristic indicator of CA functionality (Lang et al., 2002;
Sorrentino et al., 2012; Riemann et al., 2020).

Hemodynamic pressures (ABP, ICP), perfusion (CBF), and
assemblage of CA processes form an inter-dependent system
of intracranial hemodynamics (ICHD, Figure 1). In this system,
Mx and PRx quantify specific aspects of ICHD interaction. A
more complete description of ICHD includes cranial volume
capacity, cranial blood volume, and additional extra-hemodynamic
factors. Cerebrospinal fluid (CSF) and sagittal sinus pressures
are important constituents of intracranial volume (Davson et al.,
1970; Kosteljanetz, 1986; Czosnyka et al., 2004; Czosnyka et al.,
2012) within the classical Monro-Kellie framework (Wilson, 2016).
This investigation omits the dynamical contributions of these
extra-hemodynamic components, which are neither considered in
ICP/ICP-guided protocols nor observable without non-standard
patient manipulations. Conceptually, this ICHD model (discussed
below) asserts that perfusion is governed by CPP dynamics
mitigated by CA processes.

1.1 Pressure-flow relationships

Defining both simulation models (e.g., (Kashif et al., 2012)) and
clinical indices as PRx,Mx, and CPPopt (Aries et al., 2012; Tas et al.,
2021) requires assuming relationships among pressure, flow, and
autoregulation. In elementary fluid settings, for example, increases
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in pressure difference imply increases in flow co-determined by
changes in vessel diameter. The fluid relationship synthesized with
knowledge of CA’s mitigating function motivates PFR hypotheses
according to sign and potential causal direction:

(1)

(2)

(3)

The positive PFR (pPFR, Eq 1) posits that CBF results from
pressure-driven processes regulated by variable vasoresistance.
This pressure-passive situation is associated with autoregulatory
impairment and serves as a baseline hypothesis in this work.
The pPFR, for example, is assumed by cerebrovascular resistance
(CVR, the mean ratio of CBF to CPP, i.e., CBF = CPP/CVR
(Nordström et al., 2013; Powers, 2016; Canac et al., 2020)) as a
relative measure of CA function. This work operates within
the common perspective that CA modulates CVR in response
to various factors, including non-hemodynamic and volumetric
influences omitted in the model. Under fixed CPP, flow increase
is mathematically associated with decreased CVR and tied to CA-
driven vasodilation. However, CVR is expected to remain positive
so that CBF changes are positively or neutrally related CPP changes.
Increased CBF under decreased CPP requires the vasodilation to be
modeled by negative resistance.

The zero PFR (zPFR, Eq. 2) indicates decoupled CBF and CPP,
presumably by functional autoregulation yielding no net correlation
between flow and pressure. The negative PFR (nPFR, Eq. 3) is
an alternate hypothesis comprising anti-correlated pressure-flow
dynamics resulting from unspecified processes. The dynamics of
ICHD under zPFR and nPFR violate the positive pressure-flow
association enforced by pPFR-based models, and these cases are
therefore expected to be poorly modeled.

This study hypothesizes that the functional CA of zPFR
represents equilibrium between positive and negative PFRs over 2-
h timescales with neither being dominant. Namely, impaired CA
corresponds to pPFR and functional CA to zPFR, while the nPFR
is not expected to persist over such long timescales.

1.2 Purpose and outline

This work examines the validity of assumptions made by
conceptual hemodynamics models which relate observable
pressures to the perfusion quantities affected by pressure-guided
TBI management protocols. The lack of necessary ICHD data
has prevented the validation at multi-hour timescales of the
pressure-flow relationships that underlie pressure-oriented TBI
therapies and autoregulatory measures. This work exploits a
single-center multi-modal monitoring (MMM) observation of
neurocritical patients to investigate model assumption consistency
with observed signals in clinically relevant TBI cases. It assesses
model sufficiency in application to clinically relevant cases. Its
goals are to compute assumptions’ failure, to bring knowledge

limits into focus, and to propose practicable model domain
improvements.

The analysis of this work uses model-aided PFR categorization
of clinical data to identify patterns of intracranial hemodynamics
inaccurately represented by pPFR assumptions. Cases with
persistent negative pressure-flow association (nPFR) compose
a sizable portion of examined data; alternate assumptions not
presently formulated are required to inform neurocritical care of
patients presenting these dynamics. Empirical characteristics of
CA indexes associated with pPFR and non-pPFR data indicate
that pressure-flow relationships generalize qualitative assessment of
autoregulatory function and suggests a pathway for including CBF
data into the decision support process.

2 Methods

This research explores PFRs by analyzing neurocritical patient
data through model-simulated hemodynamics. These vital aspects
are presented prior to defining the experiments and metrics
used to assess PFRs. Simulations generate simulated observations
whose appropriateness categorizes pressure-flow association of the
data. This hypothesis-driven assumes that PFR timescales manifest
between timescales of 1–2 min and 2 h.

2.1 The neurocritical care dataset

The University of Cincinnati obtained continuous
multimodality monitoring data from neurointensive TBI patients
between 2014 and 2019 (Table 1). The collection occurred with
prior consent under local institutional review board authorization
(UCIRB #18–0743), These single-center data include concurrent
records of ABP and ICP (125 Hz), plus brain tissue perfusion
(1 Hz), brain tissue oxygenation (PbtO2, 1 Hz), and intracranial
temperature (ICT, 0.5–2 Hz) observed by a Bowman probe
(https://hemedex.com/products/bowman-perfusion-monitoring-
system/). Further patient data include extra-ventricular drainage
(EVD) transducer observations (which may be open or clamped),
systemic monitors (EtCO2, central venous pressure, temperature),
temperature management system use, and PRx computed bedside
through Moberg CNS monitor systems (https://www.moberg.
com/products/cns-monitor). The recording and storage process
discretize patient data into epochs of irregular length that were
analyzed separately. EVD observation of ICP was not used because
records lack clamp status and calibration timeseries needed for
hour-scale analysis.

The dataset contains synchronized bedside monitoring system
records and a time record of categorical interventions (e.g.,
suctioning, posture change, or sedation change). This work
investigates dynamics among available monitored signals without
access to electronic health records (EHRs) of patient injuries,
medication dosages, intervention details, or patient laboratory
data. The single-site cohort received standardized care, thereby
minimizing variances of therapeutic influence on ICHD through
sedation, pressor use, fluid management, and ventilator settings
(such as positive end-expiratory pressure or PEEP) (Slupe and
Kirsch, 2018). Endnotes of this work address data access.
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TABLE 1 Cohort description of University of Cincinnati MMM dataset
Data described as mean±standard deviation, median [quartile range], or
proportion (%) as appropriate.

Variable Value (N = 25)

Demographics and Injury Characteristics

Age (years) 40.2±17.7

Sex (male) 20 (80%)

Injury mechanism

 Motor Vehicle Collision 12 (48%)

 Fall 10 (40%)

 Other 3 (12%)

Δt Injury to Admission (hrs) 1.5 [0.8, 2.0]

Admission Status

Glasgow Coma Score (GCS) 3 [3, 5]

 Motor Subscore 1 [1, 3]

Unreactive Pupil (1 or both) 11 (44%)

Pre-hospital Hypoxia 4 (16%)

Pre-hospital Hypotension 0 (0%)

Rotterdam CT Score 4 [3, 5]

Injury Severity Score 25.7±9.5

Encounter Therapies

Mechanical Ventilation 25 (100%)

Decompressive Hemi-crainectomy 9 (36%)

Monitoring Data

Δt Injury to Moberg CNS data (hrs) 13.1 [7.2, 17.7]

Duration of Moberg CNS data (hrs) 32.1 [22.5, 57.3]

ICP Monitoring 16 (64%)

Δt Injury to ICP Monitoring (hrs) 6.6 [5.5, 14.6]

ICP Monitor Type

 Parenchymal Monitor 11 (69% of 16)

 External Ventricular Drainage Catheter 0 (0%)

 Both 4 (25% of 16)

ICP Available Waveform Signal Data 16 (100% of 16)

ICP Available Numeric Data 16 (100% of 16)

PbtO2 Monitoring 16 (64%)

PbtO2 Available Numeric Data 16 (100% of 16)

(Continued on the following page)

TABLE 1 (Continued) Cohort description of University of Cincinnati
MMM dataset Data described as mean±standard deviation, median
[quartile range], or proportion (%) as appropriate.

Variable Value (N = 25)

Outcome

Hospital Length of Stay (days) 12.8 [11.8, 20.1]

In-Hospital Mortality 8 (32%)

 Withdrawal of Life-Sustaining Therapy 6 (75% of 8)

6-Month Mortality 10 (40%)

6-Month Glasgow Outcome Scale-Extended 3 [1, 6]

2.2 Simulating hemodynamics and metrics

This study outlines a common conceptual ICHD framework
used across various models to ensure generalizability. The system
comprises ABP (P), ICP (I), CA processes (α), and CBF (Q)
whose interactions appear in Figure 1. The model hypothesizes that
blood flow results from the arteriovenous pressure gradient and
interactive CA processes. More complex hypotheses considering
cerebrospinal fluid (Czosnyka et al., 1997) or volume distributions
(Ryu et al., 2015) are excluded; their associated models are difficult
to identify and are too computationally expensive for hour-scale
simulation (Stroh et al., 2021b).

The pressure gradient (∇p) is the assumed driving force of the
system, and its average is the analogue of CPP. Ignoring spatial
heterogeneity of vasculature, the zero-dimensional compartmental
ICHD system reduces to:

Q = α1∇p+ α2
d
dt
(∇p) = F (∇p,α) (4)

where components of the vector α = (α1,α2) parametrize CA
effects on vessel bed conductance and compliance, respectively.
Components of α are assumed to be non-negative due to
assumption of pPFR (Eq. 1) except as transient behavior. The
compartmental model Eq. 4 is adopted in various models
(Kashif et al., 2012; Fanelli et al., 2019; Imaduddin et al., 2019)
or approximates those: with more complex CA (Ursino and
Lodi, 1997; Ursino and Lodi, 1998), with CSF and sinus volume
dynamics (Czosnyka et al., 1997), with spatially-distributed volume
components (Hu et al., 2007; Ryu et al., 2015; Wang et al., 2019), or
with venous dynamics (Spronck et al., 2012).

Temporal averaging produces the common CVR definition α1 =
∇p/Q because the compliant storage term of Eq. 4 is negligible in
relation to the total flow. The time-averaging in differential form
relates changes in CPP to changes in CBF, d

dt
Q = α1

d
dt
∇p, which

is relevant to analysis through correlation. Importantly, it applies
to nPFR dynamics with the inclusion of a negative sign while
maintaining α > 0.The relationship between this sign and PFR choice
is exploited to experimentally assesses model assumptions (pPFR).

This work uses Eq. 4 to simulate 1-min average ICP from
pulsatile ABP and CBF signals under constant CA processes, as
in (Kashif et al., 2012; Fanelli et al., 2019). This model has been
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validated using shorter non-invasive CBF velocity measurements
from the middle cerebral artery. Longer, non-pulsatile perfusion
timeseries available to the present study require use via model
inference (detailed in Supplementary Section S1). The technique
estimates CBF from CPP by optimizing non-negative control
parameters α, ensuring consistency between Eq. 4 and CPP data
at each step.

2.2.1 Posterior correction and hypothesis
assessment

Model-estimated CBF is recalibrated to account for uncertainty
of model-to-observation CBF correspondence and to test the
asserted PFR hypothesis. Global CBF estimates (in mL/s) must be
compared with local perfusion data (in mL/hg/min) by overcoming
personalized biases and scale differences arising from patient-
specific anatomy, injury, and probe location. Scale and bias are
adjusted by fitting CBF estimates to perfusion data with a linear
correction m ⋅CBF+ b. Note that m is identified by minimizing
the root mean squared error (RMSE) between CBF and perfusion
scaled by their respective variances. The resulting values of m are
therefore normalized to the observed data.This allows for a uniform
comparison across experiments where perfusion ranges vary in
magnitude due to probe location heterogeneity.

The sign of the correction slope m gauges whether model-
generated CBF trajectories and observed perfusion have the
same orientation, thereby identifying the fitness of the pPFR
assumption for the observed pressure-flow dynamics. The slopes
provide a compact, qualitative assessment of experiment PFRs
and their associated dynamics. Positive slopes (m > 0) signify CA
impairment with perfusion data aligned with pressure-passive CBF
assumptions (pPFR). Negative slopes (m < 0) signify opposition
of perfusion data to these assumptions arising from nPFR-
driven dynamics. Near-zero slopes identify no clear net CPP-
CBF relationship over the 2-h experiment. PFRs, or dynamical
regimes, are categorized by the slope m of the correction for each
experiment: pPFR cases are identified by m > 0.2; nPFR by m <
0.2; and zPFR by |m| ≤ 0.2. Parameter thresholding near |m| = 0.2
conservatively defines the zPFR identity to approximate a balance
between specificity of zPFR and sensitivity to nPFR and zPFR
identities (see Supplementary Section S1).

2.2.2 Mean flow index calculation
Meanflow(Mx)indexquantifiesCAbygaugingtherelationofCBF

changes to those CPP. The averaging and correlation windows affect
the timescale and resolution of Mx, and there is no consensus choice
for theseparameters (Olsen et al., 2022).ThisworkcalculatesMxusing
6-min windows defined by 30-sample correlations of 12-s averages of
CBF andCPPdata.The choice stabilizes the index (Mahdi et al., 2017)
while incorporating sub-minute pressure-flow variations inaccessible
to the minute-scale model.

2.3 Experiment selection

Experiments in this work aim to characterize PFRs by analyzing
numerical simulations, clinical indexes (Mx and PRx), patient
observations during intervals satisfying data requirements. From
the available patient data, fourteen patients were identified with

the joint ABP, ICP, and perfusion recordings needed to perform
data experiments; Supplementary Section S2) summarizes these
patient epochs. Intervals of 100–140 min (nominally, 2 h) were
algorithmically extracted from these patient records by excluding
periods of missing data while ignoring gaps in perfusion data up
to 10 min that may result from probe calibration. The extraction
identified 193 patient-data intervals, which were further screened
to omit those with perfusion sensor data flagged as faulty
or where signals violated quality control thresholds. This filter
removed intervals where: i) ABP is negative or identified as an
outlier among the 99.8th percentile of the data; ii) perfusion is
negative, exceeds 130 mL/hg/min globally, or has a 5-min mean over
95 mL/hg/min; or iii) ICP is negative anywhere or continuously
exceeds 100 mm Hg for longer than 5 min. The set remaining
defines 83 2-h intervals from 11 patients; these are used for
computational experiments (Supplementary Section S3). The 2-h
durationmaximizes the likelihood of a posture change or suctioning
occurring within each experiment; such events occur in the data
with a median frequency of about 1.5 h. These disturbance events
prompt hemodynamic responses that facilitate PFR identification.

3 Results

This work extracts, checks, and contextualizes assumed ICHD
relationships to gain understanding that may improve care of
TBI patients. It identifies PFRs for individual patient-intervals,
providing additional information about patient hemodynamics and
autoregulation status. Section 3.1 examines hemodynamics data and
clinical indices with an emphasis on pressure flow relationships over
timescales of days. Section 3.2 categorizes PFRs of the data over 2-h
patient-interval experiments using model simulated CBF. Section 3.3
assesses relationships between dynamics, indices, and model
estimation for the numerical experiment intervals.The closing results
section briefly synthesizes results into main conclusions.

3.1 Data-oriented analysis of dynamics via
indices

Tabulated statistics of PRx and Mx over day-scale data
(Supplementary Table S2) suggest differences in PFR regimes as
measured by the CA functionality indices. The Mx mean values
are negative in only 6 patient-epochs, while the median value is
∼0.36.ThismedianMx exceeds the threshold ofMx = 0.3 commonly
identifying impaired CA (Czosnyka et al., 1996; Olsen et al., 2022)
and suggests a statistical dominance of a pressure-driven flow
(pPFR) among these records. However, over one-quarter of the
patient-epochs show decoupled perfusion and CPP (|Mx| < 0.15)
when summarized over tens of hours. This suggests that CA is
functional in a sizable portion of cases, although variability is large.
On shorter timescales of several hours, locally summarized index
values may be more extreme: variability exists both within and
across patients. The PRx values associated with neutral Mx values
(PRx = 0.08) are significantly smaller (one-sided p = 0.007) than
the remainder (PRx = 0.28). These neutral values indicate active
CA influences when most data are examined over timespans of
hours or less.

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2024.1381127
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Stroh et al. 10.3389/fphys.2024.1381127

3.2 Model-estimated CBF

Eighty-three experiments simulate CBF from ABP and ICP data
using a model to enforce positive pressure-flow association (pPFR)
under CA stationary at 1-min timescales. The aptness of pPFR for
each 2-h experiment is identified from the posterior calibration
of estimated CBF to observed perfusion. Linear corrections that
preserve the model trajectory orientation identify pPFR while
those that change it indicate a negated CPP-to-CBF relation
and therefore identify nPFR. Optimal adjustments that either
approximately nullify orientation or fail to calibrate the model
to data identify zPFR. Among the 83 experiments representing
11 patients, the distribution of PFRs categories is as follows:
46% were identified with pPFR, 28% with zPFR, 27% with
nPFR. Supplementary Section S3 chronicles experiment results and
the associated summary (Supplementary Section S4) shows these
proportions to be independent of probe quality diagnostics.

3.2.1 Experiments identified with positive PFR
Overall positive coordination between CBF and CPP (pPFR)

is dominant in 38 of 83 experiments (46%). Cases identified by
pPFR cases have CBF changes that strongly track the changes in the
pressure gradient (CPP), which is detected by a positive correction
slope m > 0. Figure 2 depicts three such examples that exemplify
pPFR: perfusion and CPP are positively correlated, as are perfusion
and estimated CBF.Model estimated CBF (Figure 2, lower) correctly
estimates the form of the perfusion trajectory fromCPP. Trajectories
may include transient excursions and variability, which are visible in
the evolution of clinical indices (Mx, PRx) (right).

3.2.2 Experiments identified with zero-PFR
CBF-to-CPP coordination with an approximately zero-net mean

is identified in 23 of 83 (27.7% of) experiments. These cases reflect
statisticalnear-equilibriumbetweenpositiveandnegativePFRs,which
may or may not result from decoupling of pressure and flow by
active CA processes. Figure 3 illustrates several experiments where
CPP (Figure 3, upper, black) has an irregularly structured relationship
to perfusion data (blue) at both short and longer-term scales. CBF
estimated from CPP cannot be corrected to consistently agree with
perfusion data in these cases because the observed pressure-flow
relationship is not stationary throughout the experiment. CPP and
perfusion data (upper panels) evolve independently at times and
may include periods of both positive and negative coordination.
Highly variable Mx and PRx may potentially indicate reduced or
range-inhibited CA function, discussed below in Section 3.3.

3.2.3 Experiments identified with negative PFR
Negative CBF-to-CPP coordination dominates 22 of 83 (26.5%

of) experiments. Two examples (Figure 4) illustrate persistently
negative correlation between observed CPP (solid black lines) and
perfusion (solid blue) at both short and longer-term scales. Such
behavior violates pPFR-orientedmodel hypotheses so that estimated
CBF (dashed black) requires correctionwith a negative slope (‘flipped
and scaled’) to correctly represent perfusion. Several investigated
EHR records (Supplementary Section S5) suggest reasons for nPFR
appearance at hour timescales include metabolism and sedation,
blood volumetric influences, and transitions across the limits of CA
functionality.

FIGURE 2
Two example experiments with positive PFR. (upper panels of (A,C)) Experiments in this set show consistent, positive coordination between CPP (black)
and perfusion (blue) observational data. (lower panels) Model estimated CBF (black, dashed) follows changes in CPP; posterior correction (blue,
dashed) preserves the original orientation of the estimate without a change in sign. (panels (B,D)) The associated trajectories in correlation indices
show strongly positive Mx values, while PRx may be variable including sign changes.
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FIGURE 3
Two example experiments with zero PFR. The layout is the same as in Figure 2. Pressure (solid black) and perfusion (solid blue) data do not consistently
coordinate over the 2-h experiment (upper panels of (A,C)). As a result, no suitable choice of Control parameters, corresponding to CA mechanisms,
must alternate between positive and negative values to simulate these data for which no single PFR hypothesis suffices.

3.3 ICHD data in relation to experiments

Analyzingobservational data through the lensofmodel-identified
PFRs canbetter characterize ICHDandassociatedproperties. Figure 5
empirically establishes the connection between PFRs andCAmetrics,
Mx and PRx. The aggregated joint (PRx, Mx) distributions for
pPFR and non-pPFR experiments (left and center) differ significantly
(two-sample K-S test (Wasserman, 2006), p < 0.001, D ≈ 0.335). This
difference (right) suggests a familiar, interpretable discrimination
of PFRs using CA indexes. Particularly, pPFR experiments are
delineated by joint (Mx, PRx) values (right, blue line), generalizing
the independent thresholds on Mx and PRx for CA function (green
lines).Note that parameters defining the linear discriminationdepend
on the window scheme used in Mx and PRx calculation.

High Mx values associated with pPFR correspond precisely
to hypothesis of impaired CA, while remaining experiments
explain the central mass of data around (PRx, Mx) = (0.3,0.3).
The data associated with zPFR (bottom left) and nPFR (bottom
right) experiments are also distinct, with the former being more
variable and including both high and low values of Mx. This
supports the hypothesis that longer-time pressure-flow decoupling
arises from a balance of local positive and negative pressure-
flow coordination which may be extreme in either direction.
However, the nPFR subset (bottom right) lacks the presence of
strongly positive Mx, so that their distribution includes a broad,
neutral center near (PRx, Mx) = (0.27,0.2) and a more extreme
negative center near (0.152,−0.82).Within nPFR-identified data, the
relative proportion occupied by the Mx-negative center decreases
greatly when using longer averaging windows, which suggests

the involvement of processes acting at sub-minute scales such as
dynamic aspects of CA (Claassen et al., 2021).

Identifying PFRs as above depends on CBF/perfusion data and
it is desirable to seek characterization of PFRs in more common
data. For example, short-timescale autoregulatory responses to extra-
hemodynamic influences (Briggs et al., 2022) might be detectable
when CA is functional within non-pPFR cases. However, joint
measurement data are broadly distributed at the 2-h timescale, and
such variability limits discriminatory data analysis. Characteristics of
PFRs are instead pursued among observed states they associate with.
Perfusion is excluded from the following analysis due to its rarity and
dependenceofitsvaluesonpatient-andplacement-specificproperties.

PFR classification over 2-h windows summarizes significant
short-term variability at 1-min timescales. Figure 6 shows the
corresponding distributions of ICHD (Figures 6A–E) and non-
hemodynamic variables (Figures 6F–J). All distributions except
ABP are distinct (pairwise two-sample KS tests, p < 0.005) with
significant differences in median (pairwise two-sample t-tests,
p < 0.05) except: nPFR and pPFR have similar ICT, and SpO2
is tightly centered near 100% in all three groups. Positive PFR
data indicate: elevated ICP, RR, and HR; reduced CPP; instances
of reduced tissue oxygenation; and a majority of PRx values
indicating impaired CA. The zPFR data link to moderate ICP
and diminished CPP with moderate positive PRx centered near
0.3, the current threshold of CA function. The zPFR features the
highest median tissue oxygenation under similar CPP to pPFR
cases. Apart from the curiously elevated ICT among zPFR data,
these characterizations conform with consequences of functional
and impaired CA, respectively.
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FIGURE 4
Example experiments with negatively-signed PFR. The layout is the same as the previous figure. Negative coordination between CPP (blue) and
perfusion (magenta) observational data persists throughout many 2-h experiments. Model estimated CBF (blue, dashed) follows changes in CPP and
requires a sign change in the posterior correction (dashed blue) match observed perfusion. Both Mx and PRx can be highly variable in these cases
whose underlying causes are not known.

The nPFR data, in contrast to zPFR and nPFR, have lower PRx
values that indicate functional CA and increased density at both low
and super-critical ICP: over 15% of nPFR ICP is hypertensive ( > 20
mm Hg) while themedian is ∼9 mm Hg.Thismultimodal structure
suggests that nPFR comprises multiple sub-dynamics involving
flow-related effects not quantified by PRx. Compared with other
cases, nPFR cases show reduced median tissue oxygenation paired
with elevated CPP and the highest incidence of SpO2 < 92%. The
data suggest nPFR characterization includes CA-mitigated flow to
limit hyperemia (at low ICP/high CPP) and hypoxia (with low
PbtO2 in response to further reduced SpO2). However, capnometry
(EtCO2, in lieu of paCO2 (Razi et al., 2012)) is coherent across
PFRs, with medians differing by ∼2 mm Hg and extreme values
linked to outlier measures of pulse oximetry and cardiopulmonary
rates. Overall, the 1-min analysis considered here does not exclude
volume-driven intracranial hypertension as a possibility in high
ICP cases, as this requires finer temporal resolution to pinpoint
causal influence.

3.4 Results summary and conclusions

Hypothesis-oriented experiments and PFR-differentiated data
analysis found that:

1. Dynamics involving pressure-driven flow, pPFR, appeared
throughout 46% of the experiment intervals (41 of 83)
that were consistent with model assumptions. Remaining
experiments divide about equally between nPFR (27%) and

zPFR (28%) categories and include dynamics in violation
of basic fluid mechanical rules governing pressure-driven
flow. Hour-scale dynamics of zPFR cases typically feature
an equilibrium between pPFR and nPFR modes with both
high and low Mx values. Here, CPP-CPP coordination varies
between positive (high Mx) and negative (low Mx) phases
rather than comprising locally decoupled signals (Mx≈0).

2. Computational ICHD models fitting the pPFR domain
extended to the nPFR domain with minor modification
because their physical assumptions are mathematically
equivalent up to a sign change. A similar approach may be
pursued for zPFR cases composed from mixed pPFR/nPFR
dynamics by changing assumptions (and model signs)
coincident with changes in PFR.

3. Pressure-flow identities could be inferred from the data
through clinical indices Mx and PRx. Most nPFR experiment
data has PRx values below 0.15, while the majorities for
pPFR and zPFR experiments were above 0.25. Highly variable
dynamics of both zPFR and nPFR cases are captured in
trajectories of Mx and PRx. Joint use of PRx and Mx
demarcates pPFR and introduces a novel method to identify
impaired CA that generalizes current, independent index
thresholds that may be insufficient (Figure 5, right).

4. The nPFR cases associate with both intracranial hypertension
and low ICP, and nPFR-related dynamics may persist for
multiple hours. About 15% of nPFR data feature ICP > 20 mm
Hgwhile half have ICP less than 10 mm Hg under similar CPP.
Compared with pPFR and zPFR, data of nPFR have reduced
tissue oxygenation and highest incidence of SpO2 < 92%,
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FIGURE 5
Joint Mx and PRx distributions and their difference Contours show distribution of (PRx, Mx) for pPFR ((A), 27.3K points), zPFR (D), 13.6K points), and
nPFR (E), 15.8K points) experiments, excluding unqualified data (PPA ≥ 5). For pPFR, the data density is highest at (PRx, Mx) = (0.7,0.75) where both
pressure and flow aspects of autoregulation are impaired. Panel (C) shows the difference in densities of pPFR and non-pPFR (C) indices, identifying the
region Mx = 0.43 ⋅ (1−PRx) dominated by pPFR cases. Green lines represent current index thresholds of 0.3 above which CA is assumed to be impaired;
delineation based on PFR is a consistent joint consideration of those thresholds. The corresponding zPFR and nPFR distributions are distinct (bottom
row). The zPFR data include both strongly positive and negative Mx values, whereas nPFR data consist of near-neutral positive Mx and strongly
negative Mx.

which may be explained by CA-mitigated flow to limit
hyperemia and hypoxia. These findings evince multiple nPFR
sub-dynamics that plausibly discern between metabolically-
driven flow at low ICP and volume-driven behavior at
elevated ICP.

5. Detailed examination of patient trajectories (Supplementary
Section S5) suggests that state-dependent engagement of
CA in addition to the metabolic environment (Figure 6)
affect the dominant PFR, and possible volumetric influences
could not be ruled out. Sedation, mannitol, and patient
stimulation events strongly influence the ICHD state
and remain confounding factors in simulation-based
experiments.

4 Discussion

This work analyzed a novel neurocritical dataset containing
cerebral blood flow (CBF) and cerebral perfusion pressure (CPP)
to investigate hour-scale pressure-flow relationships (PFRs).
These relationships are essential, underlying components of

computational and conceptual models of hemodynamics, and
required rare, previously unavailable continuous perfusion or blood
flow data to validate over longer scales. The positive pressure-
flow relationship (pPFR), typically assumed in hemodynamics
models and the mean flow index (Mx), dominated 46% of the
83 2-h experiments explored across 11 patients. About 28% of
experiments showed no or weak orientation in PFR (zPFR) as
expected when cerebral autoregulation (CA) is functional and
engaged; such dynamics were not expected to be accurately
deterministically simulated. However, 27% of experiments were
best described by a negative PFR (nPFR) not fitting physiologically
justified dynamics. This behavior is of interest for pressure-guided
TBI management because the common pPFR assertion fails in
these cases.

The pressure-driven flow regime pPFR (Eq. 1) is tied to
dynamics with dysfunctional, impaired, or un-engaged CA
mechanisms where blood flow changes are driven primarily
by the arteriovenous pressure gradient, CPP. The dynamics
of zPFR (Eq. 2) include active decoupling of pressure and
flow by cerebral autoregulation, so that neutral values of PRx
(ABP to ICP correlation) and Mx (CPP to flow correlation)
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were anticipated. The nPFR cases featured neutral PRx and
strongly negative Mx, while associated observational data
(Figure 6) suggests multiple possible origins including flow
driven by metabolic demand and volume-driven pressure
dynamics. The associated differences in joint (PRx, Mx)
distribution (Figure 5) also show that the PFR perspective aligns
with and generalizes current thresholds for CA impairment.
These developments aim to support improvement of mechanistic
process models and refine clinical guidance from CBF
observation.

4.1 Key findings

Assumptions of pressure-driven flow do not apply to negative
PFR cases, which are characterized by strongly anti-correlated
CPP-CBF dynamics. These dynamics are governed by distinct
physiological processes and violate model assumptions in a precise,
identifiable, and correctable way. Specifically, they reverse the
orientation of predicted CBF amplitudes about the mean (see
Figure 4), an error correctable by a strategic sign change in Eq. 4.
Specifying the correct hypothesis for these cases demands a more
comprehensive understanding of the nPFR dynamics. The three
PFR regimes were associated with considerable differences among
peripheral data (viz. PbtO2, ICT, and SpO2) and parameters (PRx,
Mx), although distributions were broad at both intra- and cross-
patient levels. Investigation of available data with numerous sources
of heterogeneity could not establish PFR classification criterion without
direct knowledge of CBF.

The linear segmentation of (PRx, Mx) parameter distributions
provided PFR-discerning criterion Mx > 0.43 ⋅ (1−PRx) to
qualify CA impairment under the hypotheses of pPFR. This
delineation (Figure 5) separates dynamical regimes in a way
that generalizes current thresholds (of 0.3) for CA impaired
based on Mx and PRx, highlighting the benefit of combined
over individual index use. Such thresholds are sensitive to index
calculation window and should be considered in relation to
timescales of interest. The analysis also illustrates that PRx and
Mx convey different information about ICHD. For example, PRx
better discriminates pPFR from other categories, while Mx best
discriminates the nPFR data.

Strong correlations between CPP and CBF (high positive Mx)
facilitate mechanistic modeling in PFR cases where CA function
is absent and predictive modeling may be urgently needed for
patient care. In contrast, statistically decoupled hemodynamical
observations and targets (neutral PRx and Mx) preclude modeling
of zPFR regimes, although these cases are less likely to benefit
from hemodynamic forecasting because patient CA appears
functional. Between those cases, nPFR presumably features multiple
hemodynamic behaviors and cannot be mechanistically modeled
within the pPFR framework. However, the anti-correlated CBF-
CPP dynamics found in nPFR are simulatable with a simple change
in the model and hypothesis.

PFR-level differences in observational data could not be
established independently of flow, highlighting the limitations of
CPP as a CBF proxy and reinforcing the value of flow observation
in the decision making knowledge environment. The plausible
metabolic influences on CBF within nPFR motivates the use of

empirical modeling to assess which clinically observable variables
best relate to quantities of interest. Figure 7 ranks the influence
of multi-modality monitoring data as predictors of ICP and
CBF predictors in 83 experiment intervals as determined by
Gaussian process regression (Williams and Rasmussen, 2006). For
empirical ICP and CBF prediction, the most influential signals
relate tometabolism/infection, respiration, and sedation rather than
hemodynamics (outlined in red). Both nPFR and pPFR qualitatively
share this ordering, which suggests their variables of interest might
be approximated by a common model framework incorporating
extra-hemodynamic factors over 1–2 h timescales.

4.2 Limitations and implications

Numerical simulations of this hypothesis-based analysis rely on
specific data and data quality, potentially biasing the representation
of patients with more abundant, complete, and clean data who may
not reflect PFRs in the entire patient population. However, high
intra-patient variability and long data series led to multiple PFRs
appearing in most patients without a discernible pattern over time.
The 166 patient-hours categorized from the 67 patient-days of data
are insufficient for a robust analysis of PFR temporal evolution or
injury-related differences, important topics for future study.The lack
of population generalizability does not impair the study objective of
validating model assumptions.

The scope of this work was limited to identifying PFRs rather
than elucidating their causes. Specifically, it does not address the
origins of these PFR dynamics which may involve specifics of other
injuries, administered medications (sedatives and vasopressors),
and other therapies (mechanical ventilation, fluid management).
This limitation is attributable to data availability, as patient EHRs
are needed to investigate and analyze the effects of these factors.
The employed hemodynamic model did not include volumetric
components or constraints. The exclusion of CSF, arguably the most
significant dynamic volume component ignored,was justified by two
key factors. Namely, its inclusion produces an unidentifiable model
without additional data (e.g., CSF production and absorption rates),
while the impacts of CSF dynamics on ICHD (Bothwell et al., 2019)
are likely smaller and slower than those of CBF considered.

The presented PFR identification depended on ad hoc linear
correction to equate global CBF estimates with local tissue perfusion
data. This adjustment addressed measurement uncertainties and
patient data variability while preserving signed coordination
between pressure and flow. However, the true CBF-perfusion
relationship is more complex and likely nonlinear as it depends
on interacting factors including vascular stiffness, Circle of Willis
geometry, and blood flow distribution at the probe site. A dedicated
study comparing localized thermodiffusively-measured perfusion
to global CBF estimates (via transcranial Doppler measurement)
at the middle cerebral artery remains important, particularly to
rectify the influence of injury distribution and probe location on
observed flow. Although perfusion data were screened for quality
based on probe diagnostics, unidentified factors such as spurious
trends caused by ABP, ICP, or CBF sensor drift cannot be completely
dismissed. Minimal impact on the primary findings of this study is
expected as it is improbable that such artifacts occurred consistently
over hour-long timescales of multiple patients.
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FIGURE 6
Distribution of 1-min averaged data in PFR-identified experiments. In the top row, panels (A–E) show ABP, ICP, CPP, PRx, and heart rate (HR),
respectively. In the bottom row, panels (F–J) show PbtO2, SpO2, EtCO2, ICT, and respiratory rate (RR), respectively. (C) CPP medians exceed the
protocol target range of 60–70 mm Hg (grey). Both brain tissue oxygenation (F) and ICT (I) are elevated in zPFR relative to other data, although
this may also reflect differences in patient care during intervals selected for experiment. Fully characterizing nPFR likely requires finer temporal
and patient-specific analysis to identify the respective influences of high and low ICP, EtCO2, both systemic and brain-tissue metabolic
factors.

The pPFR, defined by known physiological mechanics, served
as a natural null hypothesis for PFR classification along with zPFR,
whose hemodynamics include pressure-independent CBF.However,
half of zPFR-identified experiments showed highly variable
alternation between nPFR and pPFR extremes (Figures 3C, D)
rather than a more stable balance (Figures 3A, B) postulated by
theory. Subintervals of some highly variable zPFR cases may be
categorized as nPFR or pPFR, making them potentially modelable
(discussed below) but partially unexplained. Of notable interest
are the variability and dynamics in (PRx,Mx) space (Figures 2–
4C, D). These as well as encounter-scale trajectories of PFRs
may contain substantial diagnostic and physiological information.
Factors relating the temporal co-evolution of CA functionality and
ICHD states were not explored here.

This analysis identified that nPFR comprises dynamics that
diametrically opposite the pPFR assumptions used in models and
underlie Mx as a clinical measure of CA function. The nFPR
regime served as an alternate hypothesis to the mechanistically
formulated dynamics, leaving the processes behind nPFR
dynamics unexplained. However, data analysis and chart reviews
(Section 3.3 and Supplementary Section S5) strongly suggest the
existence of multiple subdynamics linked to metabolic responses
and hyperemia in addition to CA functional range and the effects of
intervention and stimulation.

4.3 Modeling implications

ABP-only estimation of ICP (Stroh et al., 2021b) generated
consistently erroneous trends and phase of ICP in some

experiments. Error diagnosis could not be explained without
perfusion data and motivated this work. Although the errors
were correctable by negating the pressure-flow relationship (a
sign change in Eq. 4), such modification contradicted physical
assumptions of the model. Change of model hypothesis are
now justified by examining perfusion data: a sign change in
Eq. 4 is necessary for dynamics governed by nPFR rather than
pPFR. The change specifically addresses nPFR cases where
dynamics are opposite to the pressure-driven flow assumed by
the model. Physiologically, the correction corresponds to CA
modulating flow opposite to CPP changes. This altered hypothesis
pragmatically extends the pressure-driven flow model framework
to nPFR dynamics. Despite the computational convenience of
this approach, its pressure-governed formulation mis-represents,
e.g., the volume-driven pressure and metabolically-driven flow
regimes suggested by the data (Section 3.3 and Supplementary
Section S5).

Harmonizing nPFR and pPFR assumptions into a common
framework requires a method for correctly choosing which
hypothesis applies for a particular patient, state, and time.
However, a mechanistic representation is complicated by the
distinct nPFR sub-dynamics and extra-hemodynamic CA stimuli
that remain incompletely characterized. An accessible alternative
is to wrap the current implementation in a machine learning
(ML) layer (Farchi et al., 2021; Levine and Stuart, 2021) which
predicts the PFR and necessary sign changes from training
data and other relevant streams of patient observation. This
approach leverages existing mechanistic ICHD models and their
modification to extend model applicability to clinically-relevant,
real-world cases.
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FIGURE 7
Gaussian process regression fitting of ICP (left) and CBF (right) from 1-s averaged data across the 83 2-h experiment intervals. Box plots give the
distribution of scales of predictor influence on a logarithmic scale ordered decreasingly by median. ICHD model variables, indicated in red boxes, have
low empirical predictive rank over the 2-h timescale. Importance rank is found by automatic relevance determination (ARD) (MacKay and
Neal, 1994; Radford, 2012) using kernel function parameters associated with each predictor’s scale factor. The ranking is robust under alternate
regression strategies (e.g., Lasso and Ridge Regression).

4.4 Practical implications

CPP/ICP-oriented therapies rely on assumptions valid under
pPFR that may not be valid for nPFR patient dynamics. Within
zPFR dynamics where functional CA modulates flow, manipulation
of CPP is only likely to directly influence CBF if CA response
is altered, by e.g., by moving pressures across the limits of CA
function. In nPFR dynamics, however, use of CPP to proxy
CBF (Aries et al., 2012; Eriksson et al., 2012) incorrectly assumes
positive pressure-flow coordination. ICP/CPP-based therapies may
not ensure adequate perfusion in nPFR dynamic regimes which
include flow/volume-driven pressure andmetabolically-driven flow.
In the former, interventions that manage intracranial volume
budget (CSF drainage, heartrate) could be effective strategies
for optimizing perfusion rather than raising ABP, particularly if
the blood-brain barrier is compromised (Nordström, 2005). In
the latter, which are postulated to feature low ICP (Figure 6B),
CPP manipulation may unnecessarily disrupt endogenous flow
regulation.

The ICHDsystemvariables (CPP,CBF and perfusion, and the set
of CA functions) warrant careful treatment of causal relationships,
which can be overlooked when analyzing states rather than
trajectories. Mx and PRx are CPP-CBF and ABP-ICP correlations,
respectively, which measure different functional aspects of CA
without causal direction between variables. Considering patient
trajectory through the PFR perspective offers a more granular,
dynamical perspective and incorporates causal logic into ICHD
relations in contrast to separate use of Mx and PRx. Unlike
pressures that influence the intracranial volume budget, blood
flow contributes to it directly. Observations of CBF changes
in the context of the pressure environment may also improve
metrics and targets for TBI management that account for volume
(viz. the Lund concept (Grände, 2006) and implicitly CPPopt
(Donnelly et al., 2018)). More long-time observation of CBF is
required to investigate whether CPP/ICP-oriented manipulations
result in appropriate perfusion under nPFR dynamics when CPP
fails to proxy blood flow. The PFR perspective may also be valuable

for discriminating which patient ICHD behaviors benefit from
vascular protection by ICP-targeting therapies vs flow-optimizing
CPP-optimizing targets, as (Howells et al., 2005) foundmanagement
outcomes depended on patient autoregulatory state. From a wider
perspective that sees CBF itself as proxy for oxygenation, PFR
classifcation may also find use in extending oxygenation-guided
therapies e.g., (Gouvêa Bogossian et al., 2022).

4.5 Concluding remarks and future work

The baseline assumption of positive pressure-flow coordination
affects neurocritical care of TBI patients because ICP- and
CPP-targeting guidelines aim to ensure adequate brain tissue
perfusion through pressure management. This work analyzed
those underlying assumptions for consistency against continuous,
invasively-monitored TBI patient data, employing a physiological
model to classify pressure-flow relationships based on assumption
appropriateness. It revealed ICHD categories explained by whether
CA processes were functional and found additional dynamics with
strongly negative pressure-flow coordination sustained over long
timescales. A simple yet unanticipated modification of assumptions
was required to model negative pressure-flow coordination that
may involve strong metabolic or volumetric drivers. The necessity
explains the inaccuracy of CBF-less ICP model predictions that
motivated this study, but it implies a similar misconception may
exist in TBI management through pressure targets alone. The results
bring into question the interpretation of highly negative Mx values
inCAassessment, as they relate to different physiological hypotheses
than positive and neutral values. Conclusions also motivate the
use of CBF observation for personalizing neurocritical care to
CBF and other observations. As PFRs distinguish hemodynamics
by incorporating pressure and flow, and therefore generalize
Mx and PRx (Figure 5), they are means toward that development.
The mathematical formulae in ICHD models can be trivially
modified to account for nPFR dynamics without understanding the
mechanisms underlying their origin. Identifying the underlying
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drivers, causes, and covariates of particular PFR dynamics were
not part of this work. Such a task ultimately require analyzing
neurocritical monitoring data of a larger cohort in the context
of patient, care, and observation heterogeneities gathered from
EHR data including injuries, ventilator settings, sedation, and CSF
maniuplation. Subsequent investigations focused on identifying the
causes and physiological mechanisms of nPFR will contribute to
a more nuanced understanding of PFRs and improve reliability
of predictive decision support tool for cases currently outside the
model framework.
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