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Ants are capable of learning long visually guided foraging routes with limited
neural resources. The visual scene memory needed for this behaviour is
mediated by themushroom bodies; an insect brain region important for learning
and memory. In a visual navigation context, the mushroom bodies are theorised
to act as familiarity detectors, guiding ants to views that are similar to those
previously learned when first travelling along a foraging route. Evidence from
behavioural experiments, computational studies and brain lesions all support
this idea. Here we further investigate the role of mushroom bodies in visual
navigation with a spiking neural network model learning complex natural
scenes. By implementing these networks in GeNN–a library for building GPU
accelerated spiking neural networks–we were able to test these models offline
on an image database representing navigation through a complex outdoor
natural environment, and also online embodied on a robot. The mushroom
body model successfully learnt a large series of visual scenes (400 scenes
corresponding to a 27 m route) and used these memories to choose accurate
heading directions during route recapitulation in both complex environments.
Through analysing our model’s Kenyon cell (KC) activity, we were able to
demonstrate that KC activity is directly related to the respective novelty of
input images. Through conducting a parameter search we found that there
is a non-linear dependence between optimal KC to visual projection neuron
(VPN) connection sparsity and the length of time the model is presented with an
image stimulus. The parameter search also showed training the model on lower
proportions of a route generally produced better accuracy when testing on the
entire route. We embodied the mushroom body model and comparator visual
navigation algorithms on a Quanser Q-car robot with all processing running
on an Nvidia Jetson TX2. On a 6.5 m route, the mushroom body model had
a mean distance to training route (error) of 0.144 ± 0.088 m over 5 trials, which
was performance comparable to standard visual-only navigation algorithms.
Thus, we have demonstrated that a biologically plausible model of the ant
mushroom body can navigate complex environments both in simulation and
the real world. Understanding the neural basis of this behaviour will provide
insight into how neural circuits are tuned to rapidly learn behaviourally relevant
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information from complex environments and provide inspiration for creating
bio-mimetic computer/robotic systems that can learn rapidly with low energy
requirements.

KEYWORDS

mushroom body, insect navigation, spiking neural networks, visual learning,
biorobotics, computational neuroscience

1 Introduction

The foragers of social insect species, such as ants, are amazing
navigators. Their limited neural resources (Chittka and Niven, 2009;
Webb and Wystrach, 2016) are finely tuned to produce impressive
performance when navigating through complex environments
(Knaden and Graham, 2016; Buehlmann et al., 2020). Investigating
the neural basis of ant navigational capabilities helps advance
understanding of how information from the environment can
be processed and stored efficiently in small neural circuits. A
common challenge in the field of computational neuroethology
(Datta et al., 2019) is translating the natural behaviours in question
into experiments where variables can be modulated in a controlled
manner. However, because forager ants are naturally motivated to
find food and return to the nest, it is possible to craft navigation
experiments that exploit this foraging behaviour to investigate how
ants use visual cues when navigating (Vermehren et al., 2020; Zeil,
2022). The two key features of solitary ant navigation are path
integration (PI) and visual route following (Wehner and Räber,
1979; Collett et al., 2013; Sun et al., 2020). PI in ants includes the
ability to return home from a novel location by keeping track of
their own outgoing movements. PI has two main requirements,
a mechanism to keep track of speed/distance travelled such as
odometry (Wittlinger et al., 2007; Wolf, 2011) and a mechanism
to keep track of orientation using information derived from
environmental compass cues and neuronal systems that track
rotations (Wehner, 1976; Rössler, 2023). PI allows for ants to explore
unfamiliar areas and return on direct paths to their nest when
they have food. Furthermore the remembered PI coordinates of
the successful foraging location can be used to guide a subsequent
foraging route (Collett et al., 1999; Wehner et al., 2004). These PI
guided routes to and from food and the nest can act as a scaffold
(Collett et al., 2003) for rapid visual route learning (Mangan and
Webb, 2012; Stone et al., 2017; Haalck et al., 2023). In this paper, we
investigate whether providing images taken from a previous route
can scaffold on-line visual route learning and navigation when a
model of the ant mushroom body (MB) is used as the learning
mechanism.

Visual navigation in insects is well-explained by view based
navigation models (Zeil, 2012) inspired by the seminal “snapshot
model” (Cartwright and Collett, 1983). In this type of model,
memories of important locations are stored as snapshots or views.
Therefore, to navigate to a goal, the ant only needs to move so as
to make their current view similar to a previously stored snapshot
taken at the goal location (Wehner and Räber, 1979; Nicholson et al.,
1999; Durier et al., 2003). To extend this model to visual route
guidance, a model has been proposed in which an ant compares
its currently experienced view with a set of stored views, taken
along the route (Philippides et al., 2011; Baddeley et al., 2012), and

moves in whichever direction the current view best matches the
stored snapshots. This mechanism allows ants to navigate along
routes by sampling the world (Wystrach et al., 2014) and moving in
directions that are characterised by the most familiar visual scenes.
Lesion studies focusing on this route-following behaviour were able
to show that learned visual navigation is mediated by the insect
brain region known as themushroombody (Buehlmann et al., 2020;
Kamhi et al., 2020). Lesions made to the mushroom body impair
an ant’s ability to remember visually guided routes, while keeping
other innate navigation behaviours intact. Furthermore, modelling
studies have also shown that the mushroom body could act like
a visual familiarity detector, storing visual scenes and outputting
proxies for familiarity when presented with new visual scenes
(Ardin et al., 2016; Zhu et al., 2021). Given this evidence, we wanted
to inestigate whether a spiking MB model could provide the same
function in complex natural scenes.

The mushroom bodies are prominent bilateral brain regions
located to the left and right of the insect brain midline. Each
mushroom body is composed of a calyx that receives input
from other (mainly sensory) regions, a peduncle containing a
large population of intrinsic neurons known as kenyon cells
(KCs), and vertical and medial lobes containing mushroom body
output neurons (Aso et al., 2014). The mushroom bodies of insects
(particularly Drosophila) are well studied for their role in olfactory
learning (Busto et al., 2010). However, in addition to olfactory
inputs, ant mushroom bodies have significant inputs from primary
visual areas. The MB collar region has connections from the
medulla and lobula in the optic lobe (Figure 1); receiving ipsilateral
connections via the optical calycal tract (OCT), and receiving
both contralateral and ipsilateral connections to both MBs via
the anterior superior optic tract (ASOT) (Habenstein et al., 2020).
The vertical lobe–one of the output regions of the MB–has a
feedback connection to the MB calyx, likely helping to regulate
KC activity (Habenstein et al., 2020). The Drosophila MB makes
downstream projections to areas implicated in steering or motor
control such as the lateral accessory lobe (LAL) and the central
complex (Li et al., 2020; Steinbeck et al., 2020), and while there is
limited evidence for this specifically in the ant, it is plausible that
these could be downstream areas for the ant MB to act on to drive
navigation behaviours.

Since neuronal recordings are difficult to obtain in navigating
insects, computational neuroscience and robotics have been integral
in bridging the gap between observed insect navigation behaviours
and theories of neural computation (Mangan et al., 2023) not least as
we have such good knowledge of the connectivity detailed above. In
this neuroethological approach, theories of what strategies or neural
architecture insects use to navigate are embodied in simulation
or physically on robots. It is a powerful approach that focuses on
producing models directly relevant to the behaviour of animals,
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FIGURE 1
The ant mushroom body and mushroom body model structure. (A) Diagram of Cataglyphis nodus brain (Habenstein et al., 2020). Adapted from Insect
brain database under CC BY 4.0 License. Mushroom bodies shown in red, medulla shown in yellow, lobula shown in orange. The anatomical position of
inputs, outputs and Kenyon cells (KCs) are labelled as well as the central complex (CX) which is one of the major output regions. (B) Mushroom body
model structure. Pixel intensity of input images are converted into an input current for visual projection neurons (VPNs). VPNs are sparsely connected
to the KC population via excitatory connections (horizontal lines). All KCs are connected to mushroom bodies via an excitatory connection with an
anti-hebbian STDP learning rule. Learning via this learning rule is switched on during model training and switched off during model testing. IFN -
inhibitory feedback neuron, MBON–mushroom body output neuron. (C) The learning rule for the anti-hebbian spike time dependent plasiticity.
Tpre–spike time of presynaptic neuron, Tpost–spike time of post synaptic neuron. ΔW–Size of the weight change. Red - Presynaptic neuron fires before
postsynaptic neuron. Blue–Presynaptic neuron fires after postsynatic neuron.

but comes with limitations when falsifying or accepting concrete
hypotheses (Webb, 2006; 2020). In this exciting field, a range of
models have started to address the question of how mushroom
bodies are used for visual navigation. Some take an algorithmic
approach, where they look at the theorised processing that occurs
in the mushroom body, and use analogues found in computer vision
techniques to try and recreate navigation behaviours by embodying
models in robotic or simulated agents (Möel and Wystrach, 2020;
Stankiewicz and Webb, 2021). Another approach has been to
create (rate-based) artificial neural networks (ANNs) which follow
the general neural architecture of the MB and embody this in
a robot vehicle or agent based simulation (Gattaux et al., 2023;
Yihe et al., 2023), or utilise it as part of a larger navigation system
simulating other navigation-related brain areas (Sun et al., 2020;
Goulard et al., 2023). Finally some use spiking neural networks
(SNNs) to create navigationmodels thatmimic both the architecture
and neuronal dynamics of the MB (Ardin et al., 2016; Müller et al.,
2018; Zhu et al., 2021), or use SNNs as one component of a hybrid
SNN/algorithmic navigation system (Nowak and Stewart, 2019).

Building on these computational analyses of mushroom bodies
(MBs), we made an SNN MB model to increase our understanding
of how theMB architecture learns visual information for navigation.
While previous studies have shown examples of MB-inspired
algorithms in various contexts, our goal is to shed light on how the
dynamics of KC activity directly contribute to learning visual input
by comparing changes in KC activity to the changes of incoming
visual stimulus. In addition, we investigate the importance of model
parameters such as connectivity sparsity, stimulus exposure time
and the number of stimuli the model was trained on to the
overall performance of the model. Finally, we test whether the
insights gained from these investigations hold in the real world,

by embodying our SNN MB model on a robot and comparing its
performance to standard visual navigation algorithms (Zeil, 2012;
Knight et al., 2019; Husbands et al., 2021; Amin et al., 2023).

2 Materials and methods

We chose to model using spiking neural networks (SNNs)
as they are more biological representative than standard artificial
neural networks (ANNs), and because they more closely mimic
the electrophysiological activity/dynamics of biological neurons
than rate-based models (Tavanaei et al., 2019). We built the model
using PyGeNN (Knight et al., 2021), a Python interface for GeNN
(Yavuz et al., 2016), which is a library that accelerates spiking
neuron simulations by automatically generating optimised NVIDIA
CUDA code–enabling complex models to be run on GPUs.
GeNN is fast and memory efficient, allowing large-scale spiking
simulations of complex networks to run on consumer accessible
hardware at speeds comparable to dedicated supercomputers or
neuromorphic systems (Knight and Nowotny, 2020). For us, GeNN
meant we were able to run a very large spiking model consisting of
over 20,000 neurons on a portable on-board processor, specifically,
the Nvidia Jetson TX2.

Inspired by currently known neuroanatomy and by the structure
of previous mushroom body models based on both ant navigation
(Ardin et al., 2016) and Drosophila olfaction (Nowotny et al., 2005),
we produced a model that includes simplified versions of key
features of the mushroom body (Figure 1B). Our model however
differs in our use of feedback inhibition, which better fits data
observed from mushroom body structures in the locust (Kee et al.,
2015) and Drosophila (Rapp and Nawrot, 2020). Another key
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difference in ourmodel is the lack of aDopaminergic neuron (DAN)
for model simplification reasons. Since we were not investigating
what factors induce learning, we were able to simplify the model
by turning learning on during training and turn learning off
during testing. Our model has four neuron types: visual projection
neurons (VPNs), Kenyon cells (KCs), a mushroom body output
neuron (MBON) and a single inhibitory feedback neuron (IFN)
to regulate the activity of the KCs. Although the specific number
of inhibitory neurons innervating the ant KCs is not known, to
simplify our computations we represented inhibition with a single
neuron innervating all KCs. Learning between the KCs and the
MBON is turned on during training and turned off during testing
the model. The VPNs receive visual input in the form of direct
stimulation currents. For stimulus presentation, each pixel from an
image ismapped to one VPN, and the brightness of the pixel directly
determines the strength of stimulation to its VPN. Because the
VPN-to-pixel ratio is 1:1, the VPN population count is dependent
on the input image resolution. We tested at a resolution of 40
× 8, so our VPN population contained 320 neurons. The next
population in the network is the KC population, consisting of 20,000
neurons. The synapses between the VPNs and KCs are excitatory
and non-learning, and the connectivity is sparse, that is, each KC
is connected to a low number of randomly chosen VPNs. The
IFN is a single neuron, which provides feedback inhibition to the
entire KC population. The final neuron type is an MBON, and
the activity of this neuron is linked to behavioural outputs of the
robot in our tests (see Figures 2D, E). The KCs are connected to the
MBON with all-to-one excitatory connections that follow an anti-
Hebbian spike-timing dependent plasticity (STDP) rule (Figure 1C)
as described below. As discussed in aDrosophila olfactionmodelling
study (Bennett et al., 2021) and shown in an experimental study
(Hige et al., 2015), there is evidence that the Drosophila KC to
MBON connection is depressed after learning occurs. Although
from a different sensory modality and species, we took inspiration
this and, as with Ardin et al. (2016) we used a learning rule that
utilises depression in an STDP synapse.

2.1 Neuron and synapse equations

In this work, VPNs, KCs and the MBON are modelled as Leaky
Integrate-and-Fire (LIF) units where the membrane voltage Vi of
neuron i is modelled as:

τm
dVi

dt
= (Vrest −Vi) +Rm (Isyni

+ Iexti) , (1)

where τm = 10ms and Rm = 50MΩ represent the time constant and
resistance of the neuron’s cell membrane, Vrest = −60mV defines the
resting potential, Isyni

represents the synaptic input current and Iexti
represents an external input current used to deliver visual input to
the VPN neurons.

When the membrane voltage crosses a threshold Vth = −50mV
a spike is emitted, the membrane voltage is reset to Vrest = −60mV
and updating of V is suspended for a refractory period τref = 2ms
(see Table 1).The IFN neuron is modelled as a simple integrate-and-
fire neuron.

τm
dV
dt
= RmIsyn (2)

with membrane time constant τm and resistance Rm as above. The
threshold on the IFN was set by a voltage parameter, where if
the membrane potential reached that value it will fire and inhibit
the KC population. The level of inhibition from the IFN to the
KC populations was set very high (see Table 2) for the purposes
of completely shutting off KC activity. Although those levels of
inhibition are not biologically plausible, for the purposes of our
modelling it gave us more direct control over the number of
KCs firing.

Synaptic connections are current-based with presynaptic spikes
leading to exponentially-decaying input currents Isyni

,

τsyn
dIsyni

dt
= −Isyni
+

n

∑
j=0

wij∑
tj

δ(t− tj) , (3)

where τsyn represents the synaptic time constant (for values see
Table 2) and tj are the arrival times of incoming spikes from
n presynaptic neurons. The exception to this is the KC to IFN
connection, where presynaptic KC spikes lead instantly to voltage
jumps in the IFN. The ordinary differential Eqs 1, 3 are solved with
an exponential Euler algorithm.

The VPN to KC connections were initialised with a set weight
and set number of VPN connections per KC (value dependent
on experiment; detailed in model evaluation methods), with the
connectivity pattern being determined randomly.The KC toMBON
synapses were initialised at a value of 0.005, with all KCs connected
to the single MBON. The anti-Hebbian learning rule used on the
synapses between the KC and MBON populations modifies the
synaptic weight (wij) between a pre and postsynaptic neuron based
solely on the relative timing of pre (tpre) and postsynaptic (tpost)
spikes (Δt = tpost − tpre) according to four

Δwij = −Ae
− |Δt|

τ (4)

whereA = 0.05nA represent the learning rate and τ = 2ms represents
the time constant of the STDP kernel. Values of wij are clamped
between 0 and 0.05. This rule is used with a nearest-neighbour spike-
pairing scheme inwhich only the pairs formed by a presynaptic spike
in neuron j and the directly preceding postsynaptic spike in neuron
i (and vice versa) are considered when updating wij. This learning
rule implies that when a KC and the MBON fire close together in
time, the synapse connecting them weakens. As a result, when a KC
is repeatedly activated in close time proximity to the MBON firing,
that specific KC is less likely to stimulate the MBON in future trials.
Synaptic learning occurs during the training phase. In this phase,
each image from the training set or training route is presented in
sequence for a set amount of ms (amount of time is dependant on
experiment), during which the weights matrix between the KCs and
MBON is updated according to the STDP rule. In the testing phase,
learning is turned off so there are no weight matrix updates.

2.2 Model evaluation methods

In our first test on model heading selection accuracy based on
images from an indoor arena, and for the tests where we compared
KC activity and image novelty the parameters were as follows: Each
KC was randomly connected to 10 VPNs, with a weight of 0.25
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FIGURE 2
Model performance on a real world navigation task. (A) Top down view of arena used for robot tests and indoor image acquisition. (B) Image of the
Q-car (Quanser) robot used for evaluating onboard navigation performance of the model (C) Model navigation behaviour on a typical training route
(blue). Mean heading deviation = 10.7°. (D) Top - Example input panorama from the testing route that has been downscaled to 40×8 resolution.
Bottom - Rotational response curve showing the MBON response at each orientation of the panorama. 0° is the original orientation of the route image
and MBON activity (novelty) is lowest for the familiar, trained image. (E) marker shows the location for the image orientation used in (E). (E) Raster plots
showing spiking activity in each population of neurons. VPNs–visual projection neurons, KCs–Kenyon cells, MBON–mushroom body output neuron,
IFN–Inhibitory feedback neuron. IFN threshold was set to 200mv for this experiment. Arrow–shows the time point where the IFN started to inhibit the
KC population. The MBON activity indicates that the image is novel and not part of the training route.

TABLE 1 Parameters of Leaky-integrate-and-fire (LIF) neurons used in
the model. LIF neurons were used for the VPN, KC and MBON neurons.

Parameter Value

Time constant τm 10 ms

Membrane resistance Rm 50 MΩ

Resting potential Vrest −60 mV

Firing threshold Vth −50 mV

Refractory period τref 2 ms

from the VPNs to the KCs. The learning rate in the KC to MBON
connection was set to 0.05, the IFN threshold was 200, and the
presentation time of the stimulus to the model was 20 ms. In the
parameter search these values varied as they were the parameters

being investigated for their effect on navigation performance. In
all of our tests, membrane voltage values of all neurons were reset
between each stimulus presentation. To analyse how KC activity
relates to the input images and how overall navigation performance
relates to model parameters, we used a dataset of panoramic
(360°). Images captured outdoors in a wooded area from a wheeled
robot. The 360° panoramas were captured on a Kodak Pixpro VR
action camera and were stored as 226× 76 images. Before use in
the modelling experiments, they were down-scaled to 40× 8 and
converted to gray-scale and the pixel values were inverted so that the
darkest pixels produce the highest values. Normalisationwas applied
to the values of each pixel by subtracting the mean pixel value of
each image, then dividing that value by the standard deviation. The
pixel values are multiplied by a scaling factor used to determine the
amount of current that each VPN receives through a current source
injection throughout the image presentation. Each panorama has
a coordinate and a heading orientation associated with it, allowing
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TABLE 2 Synaptic parameters between different neuron populations. τsyn
is a time constant that affects the speed of the change of synaptic
conductance.wij is the weight of the connection, and for the KC-MBON it
is the starting weight. The KC-IFN connection does not have a τ value as
the synapse uses a delta current where all current is transferred to the
IFN in a single timestep.

Connection τsyn [ms] wij [nA]

VPN-KC 3 0.25

KC-MBON 15 0.005

IFN-KC 5 −5

KC-IFN N/A 1 [mV]

them to be used to test navigation capability, and from this dataset
we used 400 images.These 400 imageswere taken along a 27 m route,
with an image being taken every 7 cm of travel (on average).

For each run of the parameter search, the route was separated
into a separate training and testing set where alternating imageswere
placed in the train or test set at a 50% split. During training the
model is trained on the training set images in their original, correct
heading direction. In a test the model is presented with 40 rotations
of each input image from the test set rotated from 0 to 351° from
the true heading in steps of 9°, mimicking the effect of an agent
rotating to all the different headings. During the test process the
MBON response is recorded. The heading of the test image that has
theminimumMBON response is taken as the direction of travel that
the model would choose when at that location (see Figures 2C, D).
The performance metric is the mean heading deviation which is
the mean of the absolute angular deviation between the heading
given by the lowest MBON response and the true heading for each
image in the test set. In the parameter search we modulated the
training process using a “training proportion” parameter, which
controlled how many images from the training set are used to train
the model. When using this parameter the initial train and test split
is unaffected. The training proportion and number of images in the
initial training set is used to calculate number of images in a new
training set. This number of images is selected from the original
training set, with the images selected evenly spaced from the start to
the end of the original training set. The new training set is then used
to train the model. Regardless of the training proportion parameter,
the model is tested on the entire test set.

2.3 Robot evaluation methods

To evaluate real world performance, the mushroom body model
was embodied on a Q-car (Quanser) robot (Figure 2B). This is a
4-wheeled vehicle, measuring approximately 39L× 19W× 20Hcm,
with forward drive provided by a central motor and Ackermann
steering provided through a pair of servo-motors attached to the
front two wheels. Panoramic images were acquired by connecting
a Kodak PixPro camera and all processing was performed on-board
using an NVIDIA Jetson TX2.

The robot arena (Figure 2A) consists of a 5m× 4m indoor space,
surrounded by white walls and populated with artificial plants

approximately 30 cm wide. For accurate ground truth of the robot’s
movements, we utilise a VICON motion capture system. Training
routes are acquired throughmanual control of the robot, with images
captured only while the robot is in motion. This is to prevent
training on repeat images from instances where the robot is static.
Once a navigation model is trained on these images, test trials
are carried out by returning the robot to the starting position and
then starting navigation (process described below). For each of the
models considered, a total of 5 trials were conducted. In this work,
two routes spanning the length of the arena were considered. A
simple 6.5 m route consisting of a straight portion followed by a
single turn and a more complex 7.1 m ‘snaking’ route consisting of
both a right and left turn, where there is a more dramatic change in
the views perceived by the robot.

In addition to the mushroom body model, two standard view
based navigation models were implemented for comparison at the
same resolution of 40 × 8 pixels: In the Perfect Memory model, the
views perceived by the agent during the first traversal are directly
stored in memory. During recapitulation, the agent makes a pixel-
wise comparison of every rotation of the current view with every
snapshot, choosing the heading based on the rotation of the current
view which results in the smallest of these differences (Zeil, 2012;
Knight et al., 2019; Husbands et al., 2021). The robots driving speed
was the same, with variance in how long the trials take between
models resulting frommodel inference speed. In the Infomaxmodel,
a single layer neural network is trained on the snapshots using the
Infomax (Bell and Sejnowski, 1995) learning rule, after which these
images are discarded. This learning rule adjusts weights such that
the information provided by the output units about the input unit
activity (via mutual information) is maximised. In this way, the
network encodes a holistic representation of the route and can be
used to recall familiarity when presented with a view. There are
320 input neurons, corresponding to each pixel, and the network
is fully connected to 320 novelty neurons. In a similar process,
each rotation of a view is presented to the network for a familiarity
value, with the orientation corresponding to the greatest familiarity
being used to set the robot’s heading. In work by (Husbands et al.,
2021), both the Perfect Memory and Infomax models demonstrated
successful navigation of the same outdoor 60 m route on board a
robot (Husbands et al., 2021). The additional models implemented
on the Q-car replicate this work, as well as drawing on recent
refinements to the Infomax variant which improve the robustness
of navigation (Amin et al., 2023).

3 Results and implications

We first tested the model on a navigation route represented
by a series of panoramic images collected in our indoor robot
testing arena. We trained it on 68 images from points along the
route (Figure 2C) and then tested its ability to choose the correct
heading direction. Each panoramic image was presented to the
model for 20 ms of simulation time, and our IFN was set to inhibit
the KC population after 200 KC neurons had fired. On this route,
the model performance was good, with a mean heading deviation
across the route of 11° (Figure 2C). Thus we have an existence proof
that the model can learn a representation of the views needed to
guide the route.
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Looking closer at the neuronal firing during these trials
(Figures 2E, 3), we see the typical dynamics of neuronal responses to
a route view.TheVPNs that were linked to the highest pixel intensity
neurons start to spike at around 2 ms with most VPN spikes taking
place between 2 and 10 ms of presentation time, after which the
spikes began to taper off (Figure 2E top). The VPN spikes at this
later stage are either reoccurring spikes linked to high intensity pixels
which spike again after their refractory period has finished, or spikes
from VPNs linked to medium intensity pixels that took longer to
gain sufficient input current to produce a spike. In 3A there are three
examples of VPNs which spike at different times, due to the pixel
that they receive input from giving varying amounts of stimulation.
The KC spiking is heavily concentrated around the 5 and 6 ms mark
as sufficient time is needed to gain input from connected VPNs
(Figure 2E middle). The KC spiking stops abruptly at close to 6 ms
(see 3B, where the extremely strong inhibitory current from the IFN
neuron stops any KC activity. It should be noted that although the
IFN was set to fire after receiving stimulation from 200 KC spikes,
a small amount more than 200 KCs fire in the duration of a single
trial. This is because of the time constant attached to the IFN-KC
synapse (see Table 2), which means that after the IFN theshold is
reached there is a short interval of time where a small number of
additional KCs can fire before all they are completely inhibited. The
additional KC spikes cause some further depolarisation of the IFN
after it spikes (see Figure 3B). Figures 2E, 3D show the response to an
image of maximum unfamiliarity where the MBON spikes 4 times.
Note that the extended firing is enabled by the 15 ms time constant of
the KC toMBON synapses so that spiking continues for a while even
after KC activity has stopped. Figure 2D highlights the functional
property of the MBON firing in a navigation context. Because KC
to MBON synapses are depressed when learning the route, familiar
scenes produce low MBON firing rates and novel scenes, as in the
example shown in Figure 2E, produce more spikes.

3.1 Kenyon cell activity and image novelty

To demonstrate how the property of familiarity detection
emerges out of the MB architecture we analysed the KC activity
in relation to the difference between input images. We used a set
of 400 woodland images captured on a robot. Each image was
presented to an untrained model for 20 ms while the KC activity
was recorded. For each possible pair of images we calculated the
cosine similarity by converting images into a vector of values where
each value corresponds to the intensity value of the respective pixel.
Similarly, we calculated the similarity between pairs of KC spike
trains by converting the spike trains into binary vectors where
each 1 or 0 represents whether a specific KC was active or not in
response to an single image presentation. Figure 4A shows that the
correlation between the measured distances was strong; the Pearson
correlation test R score was 0.901, p-value = 0.000, line of best fit
gradient = 1.352.

This shows that, despite VPN to KC connectivity being random,
KC activity is representative of the differences in image space–an
important condition for familiarity discrimination. However,
although the correlation is strong, the grouping of the results
indicates that KC activity does not correspond to image similarity
in a 1:1 fashion. Most results are found in the range of 0.5–0.6 for

the KCs and 0.77–0.84 for the images (median of 0.56 and 0.84
respectively). At this point of relatively high similarity, the KC
activity similarity is much lower, indicating that even when images
are very similar, the network responses enhance the differences
between inputs.

We further investigated how KC activity is related to input
novelty by comparing cumulative image difference with the
cumulative number of new KCs firing during the model training
process; if related, the tallies should follow similar trends.We trained
the MB model on a sequence of 400 images from the outdoor
wood dataset (Methods). For each image presented to the model
we recorded the identity of each kC cell that fired, and if a KC fired
that had not fired previously during training, it was added to the
cumulative total. To calculate the cumulative image difference, we
calculated the structural similarity between each image and all the
previously presented images using the metrics.structural_
similarity function in scikit-image (van der Walt et al., 2014).
The resulting similarity scores were then averaged and subtracted
from one to represent image difference rather than similarity. While
the image difference algorithm is not exactly how a biological system
will differentiate between images, we tested this on the basis that
if the KCs are encoding novelty, then new KC spikes (KCs that
have not spiked up to that point during training) will be related
to input image novelty. Figure 4B shows that the variables clearly
follow the same general trend, indicating that when new KCs spike,
the network is detecting novelty and will be able to learn that new
stimulus (because of the independence of the new KC code, relative
to previously learned inputs). For this particular set of input images,
there is eventually a plateau in new KC spikes and cumulative image
difference. This may reflect the ‘capacity’ of the network or the
inherent similarity in the route images used.

3.2 Effect of parameters on model
performance

To systematically evaluate how various simulation parameters
affect the performance of theMBmodel, we conducted a grid search
(see Figure 5 for full search results). We tested 7 parameters in
total (see Table 3): route length (as a way of testing task difficulty),
stimulus presentation time, training proportion (amount of the
route used to train the model), connection sparsity between the KCs
and the VPNs, IFN threshold (used to control the amount of KCs
firing), learning rate and connection strength between the VPNs
and KCs. We chose parameter values by linearly spacing parameters
between two bounds, and in total we tested 9,720 configurations
of the model completing the navigation task. The two metrics we
analysed fromeach runwasmeanheading deviation and confidence.
Mean heading deviation averages the model’s absolute angular
deviation from the true heading direction during testing. During
testing, the angle of rotation that receives the minimum response
of the MBON is used to give the heading of the model (Figure 2D).
However, sometimes multiple angles receive the minimum response
from the MBON, therefore we calculated confidence as one minus
the number of angles that had the minimal response divided by
the total number of rotations. Thus a score of one is maximum
confidence where the MBON had a minimum response to a single
angle, while a score of 0 is the lowest confidence as the MBON
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FIGURE 3
Example membrane potential traces for neurons during a navigation task. Traces are taken from a sample of neurons responding to an image
as seen in Figure 2E. (A) Membrane potential traces for three visual projection neurons (VPNs). (B) Membrane potential for inhibitory feedback neuron
(IFN). (C) Membrane potential traces for three kenyon cell neurons (KCs). (D) Membrane potential for mushroom body output neuron (MBON).

FIGURE 4
Influence of image novelty on KC activity. (A) Cosine similarity of image pairs compared to cosine similarity of KC activity in response to those images.
Pearson correlation R score = 0.901, p-value = 0.000, gradient = 1.352. (B) Cumulative image difference along the route dataset, compared to the
cumulative number of new KCs firing for each image along the route.

responded to every angle available. Although some extreme values
were chosen in the search, 15% of mean heading deviation results
were 20° or below, showing there are a large amount of model
configurations we tested that are capable of accurate navigation.
Below we present notable results and parameter interactions from

the grid search, isolating parameters by averaging across the results
at specific parameter values. For all results of every run see Figure 5.

Connection sparsity had a clear effect on results, with a value
of 5 (each KC connected to 5 VPNs) providing the best results
overall when all other parameters were averaged. However, how
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FIGURE 5
Navigation performance and confidence across different model
parameters. Each cell is a single run of the model with the
performance metric show via color. Navigation accuracy represented
via the mean heading deviation metric shown via the colour bar, where
lower values and darker colours correspond to better performance.
9,720 runs of the model were carried out in total. (Horizontal axis) The
training proportion value changes every 9 cells, changing between the
values 1%, 20%, 40%, 60%, 80% 100%. The VPN to KC strength value
changes every three cells, cycling through the values 0.2, 0.6, 1 (nA).
Learning rate changes every cell, cycling through the values 0.05,
0.0255, 0.001 (au). (Vertical axis) IFN threshold changes every 60 cells,
changing between the values 20, 510, 1,000 (mV). Presentation time
changes every 20 cells, cycling between the values 20, 210, 400 (ms).
VPN connections per KC changes every 4 cells, cycling between the
values 5, 10, 15, 20, 25. Route length changes every cell, cycling
between the values 100, 200, 300, 400.

connection sparsity affected performance was highly dependent
on other parameters. For example, at a presentation time of 210
and 400 ms, the best number of KC to VPNS connections was 5,
but at a presentation time of 20 ms the best performing sparsity
level was 10. An explanation for this is that slightly less sparse
connectivity helps counter extremeley low presentation time by
making it more likely that spikes in the VPN population excite
a sufficient amount of KCs. These parameters are interdependent
because they both affect the amount of information allowed through
to the KC population. Increased number of connections from VPNs
to KCs means information from a wider number of pixels gets to
the KCs, and increased presentation time means that VPNs that
normally would not have enough time to cross their activation
threshold and spike, may have enough time to spike and contribute
to the activation of KCs. Averaging across all runs and isolating
the presentation time parameter, presentation time did not have a
linear effect on performance. The values 20 and 400 ms both had the
mean heading deviations of 125°, while 210 ms had a mean heading
deviation of 104°.

The IFN threshold had a minimal effect on the model’s
performance when averaged across all other parameters, with mean
heading deviation decreasing from 126° at a threshold of 20, to
116° at a threshold of 1,000. The learning rate had a large effect
on mean heading direction, from 132° at a learning rate of 0.05, to
93° at a learning rate of 0.001. A key point of failure in the model
occurs when themodel is “saturated”, where toomany KC toMBON
connections are weakened, so that when the model receives any
stimulus the MBON does not fire causing the stimulus to be marked
as familiar. Provided other parameters are set high so that enough
excitation reaches the KCs for learning to occur, a low learning rate
allows the KC to MBON connections to be weakened to a lower
extent, meaning that this type of saturation failure is less likely. The
best VPN to KC connection strength in the parameter search on
average was 0.2. However this interacted with the IFN inhibition
threshold in a non linear fashion, where 0.6 was the optimal VPN
to KC strength when the IFN inhibition threshold was set to 510.

Training proportion presents a general trend from the values
of 100%–21%, where the less the model is trained the better it
performs. However, there is a threshold where there is insufficient
learning to drive good navigation performance, and this threshold
is different depending on other parameters. At higher percentage
connectivity levels and higher route lengths the model is more
robust to very small amounts of training. In contrast, at shorter
presentation times and shorter overall route lengths the model is
less robust to very small amounts of training. At the best overall
performing connection sparsity levels of 5, the best performing
amount of training was using 21% of the route. When the amount
of training is reduced even further to just 1% of the route, the
training is insufficient and themodel’s accuracy decreases.This effect
is especially prominent at the presentation time of 20 ms, where the
combination of low stimulus exposure time and low training amount
of 1% causes a drastic decrease in performance compared to the
samepresentation time butwith training using 15%of the route.This
behaviour of less training data being better is in contrast with other
visual navigation algorithms such as Infomax where more training
improves performance consistently (Amin et al., 2023).

The route length parameter was used as a way to set the
task difficulty, and our results follow this as increased route
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TABLE 3 Values tested in parameter search.

Parameter name Values Description

Training proportion (%) 1, 20, 40, 60, 80, 100 Amount of a route the model is trained on

VPN to KC strength (nA) 0.2, 0.6, 1 Strength of excitation from VPN to KC neurons

Learning rate (au) 0.05, 0.0255, 0.001 Scales the extend of the weight change within the learning rule (higher value results in larger change)

IFN threshold (mV) 20, 510, 1,000 Number of KC inputs the IFN receives before it spikes

Presentation time (ms) 20, 210, 400 How many milliseconds the model is presented with each stimulus

Sparsity (au) 5, 10, 15, 20, 25 Number of VPNs each KC is randomly connected to

Route length (au) 100, 200, 300, 400 Number of images the model is tested on (higher route length is a longer distance)

TABLE 4 Performance metrics for robot tests. The simple route was a
6.5 m route with a gentle curve. The complex route was a 7.1 m route
with multiple “snaking” curves. Metric shown is the mean distance of the
robot from the original training route over 5 trials ±standard deviation.

Model Simple route
error [m]

Complex route
error [m]

Perfect memory 0.115 ±0.057 0.239 ±0.04

Infomax 0.112 ±0.083 0.27 ±0.037

MB 0.144 ±0.088 0.363 ±0.02

lengths have lower performance across a variety of parameters.
The major exceptions to this are where the training amount
is set to 1% (Figure 5). In these cases the higher route lengths are
the only runs where training on 1% of the route gives the model
enough exposure to multiple parts of the route. Looking at the most
difficult route (400 images), we can see that the network can still
produce good performance. However the range of parameters over
which good performance can be produced is much narrower than
for other route lengths. The parameters for the best performing run
(12° mean heading deviation) at a route length of 400 were: training
proportions of 40%, connection sparsity of 5, presentation time of
20 ms, IFN threshold of 20, learning rate of 0.001, and a VPN to KC
strength of 0.6. This indicates that for this specific model the best
way to learn longer routes is to learn a medium proportion of the
route, with a low amount of exposure to aid in avoiding “saturation”
of the model where too many KC to MBON weights are decreased.

Aswith heading deviation, the confidence scores across an entire
run are averaged. The results from the model confidence followed
the mean heading deviation very closely, where runs that had high
accuracy results (lowmeanheading deviation) also hadhigh levels of
confidence.Themain exception to this when the training proportion
was at 1%, where even if for the same parameters there was very low
performance, the confidence of the model was often very high.

3.3 Robot performance evaluation

The parameter search provided a range of parameter values
which produced good navigation performance in simulation. We

therefore used these as a starting point for testing the mushroom
body model in robot experiments. We trained and tested the model
on two routes, and for comparison tested the same routes with the
perfect memory (Zeil, 2012; Knight et al., 2019) and Infomax (Bell
and Sejnowski, 1995; Amin et al., 2023) variants of the navigation
algorithm. Each model had 5 trials per route, and to evaluate
performance we used the mean distance from each point on the
training route to the nearest point on the trial route. We used an
image resolution of 40× 8, with 20 rotations corresponding to a
range of −90 to +90° from the current orientation. This means there
is an up to ±4.5 error on the directed heading at each step, so in
some cases this may contribute to divergence from the training
path. On the simpler route which involved a gentle curve, all
models performed comparably in terms of the mean distance to
training route in metres: Perfect memory - 0.115 ± 0.057, Infomax -
0.112 ± 0.083, Mushroom body - 0.144 ± 0.088 (Figure 6; Table 4).
Compared to the other models, the mushroom body had a tendency
to overshoot the end point of the route. On the more sinuous route,
themushroombodyperformedworse than the othermodels: Perfect
memory - 0.239 ± 0.04, Infomax - 0.27 ± 0.037, Mushroom body -
0.363 ± 0.02 (see Figure 6; Table 4); and also undershot the training
end point. Although the robot’s speed when moving forward was
consistent between trials, the MB model executes much slower than
infomax and perfect memory (about 50 times slower) meaning
that the robot travels for longer before executing the next move,
which means it travels for longer on a fixed arc. This causes both
overshooting in the simple curve case (Figure 6C), but also the
excessive curved trajectories in the complex route (Figure 6F). Since
during the test Infomax/Perfect memory compute much faster, they
are able to domore interrogations of the input images, meaning they
have more opportunity to correct their course.

4 Discussion

Our goal was to develop a spiking mushroom body model
based on the known connectivity of the ant brain that can learn
to navigate real world routes in order to investigate how neural
activity and connectivity within the mushroom body allow effective
learning. Inspired by previous work, we have built a model that
can learn a set of images with their respective orientations and we
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FIGURE 6
Example trajectories of MB and comparator models. The mushroom body model (C, F) is compared to Perfect memory (A, D) and Infomax (B, E)
algorithms for two routes of differing sinuosity (A–C, D–F) in the robot arena. The thick black line is the training route and thin lines represent route
recapitulations.

have demonstrated how neural activity is converted into navigation
behaviour.While it has been generally accepted inmodelling studies
that KCs encode novelty (Ardin et al., 2016; Müller et al., 2018;
Sun et al., 2020; Zhu et al., 2021; Gattaux et al., 2023; Yihe et al.,
2023) our results provided direct evidence that this mechanism can
be used to solve real-world problems and we show how it comes
about in the KC population. We have also demonstrated how the
similarity of input images directly relates to overlapping neural
activity in the KCs, and that the model encodes the novelty of input
through the recruitment of newly firing KCs. Our parameter search
helped us systematically analyse the effect of important features of
the model, including how to avoid saturation in the KC to MBON
connection.

The GGN in the locust and the anterior paired lateral
(APL) neuron in the Drosophila, are large neurons that broadly
innervate the mushroom bodies and provide inhibition (Liu and
Davis, 2009; Papadopoulou et al., 2011; Kee et al., 2015; Rapp and
Nawrot, 2020). Findings from the bee mushroom body in an
olfactory learning experiment indicate that inhibitory feedback from
GABAergic neurons onto KCs is an important aspect of learning
(Boitard et al., 2015), and honeybee anatomy shows that there
are multiple populations of neurons providing inhbitory feedback
(Zwaka et al., 2018). Although it would be computationally more

expensive, in future we could change our IFN implementation
so that the IFN is constantly inhibiting KCs and changes its
inhibition levels depending on the overall KC population activity.
This may produce more granular changes in KC activity that we
can use to investigate potential effects of feedback inhibition on
model accuracy. To better match the anatomical findings of the
honeybee which is more closely related to the ant as a fellow
Hymenoptera, we could spread the inhibitory role to a wider
population of neurons. This would also increase computational
complexity, but it may be more biologically representative of ant
brain dynamics. Another potential changewe could incorporate is to
take more inspiration from work done on variations to the standard
Hebbian learning rule. There are many studies that apply varied
versions of STDP to image/pattern recognition tasks (Vigneron
and Martinet, 2020), and evaluating how these could apply to the
mushroom body may improve performance of our model and grant
new insights.

Previous mushroom body models set sparsity by having
each KC receive approximately 10 connections (Ardin et al., 2016;
Müller et al., 2018; Zhu et al., 2021) loosely based on the level
of connectivity from sensory areas to the KC which has been
estimated at 6 to 10 projection neuron connections to each KC
(Turner et al., 2008; Li et al., 2020). Although there are caveats (these
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are approximations and are not from ants, and even if connections
per KC is estimated, the overall sparsity will change depending
on how many projection neurons are used to represent the visual
stimulus in a model), through our parameter search, we found
that overall connection sparsity levels within the ranges of 1.9–4.7
had good performance. With our VPN count of 320 neurons, this
corresponds to each KC receiving 6 to 15 random connections each.
However, we found that optimal sparsity of VPN to KC connections
is highly dependent on other characteristics of the simulation, such
as the amount of time the model is presented with each of the
image stimuli. This provides important context for future modelling
studies, as even if model parameters are informed by biology, the
optimal value may differ greatly depending on other aspects of the
simulation.

Through the parameter search, we have also shown that
increased training does not necessarily correspond to increased
accuracy, and the extent of this effect is different at different route
lengths. We found the model can perform well by learning from a
very small proportion of images spread out from the beginning to
the end of a full route. Although previous studies have looked at
the effect of different types of routes, they have not often focused
on how the amount of training affects model performance, likely
due to the intuition from more standard visual navigation models
where more training means better performance (Baddeley et al.,
2012; Amin et al., 2023). This characteristic of our model is related
to the anti-Hebbian learning rule we are utilising during training
and exposes details around the models information capacity. If in
training the model is presented with too many images, too many
kC cells will have had opportunity to spike in close time proximity to
the MBON spiking, setting too many of the KC to MBONweights at
or close to 0. When too many KC to MBON spikes are close to 0 this
results in the MBON never spiking, which in output terms means
every stimulus is classed as familiar, corresponding to badnavigation
performance. In future, it will therefore be important to consider
the amount of training to give a spiking model of the type we have
presented depending on the route it will travel. This characteristic of
learning being spread out at points along a route is reminiscent of
how ants conduct learning walks in which learning is thought to be
spread to key points of their outward trajectories (Nicholson et al.,
1999; Zeil and Fleischmann, 2019; Vermehren et al., 2020), and
it will be instructive in our model to investigate the effect of
concentrating MB learning to key points of the route. Finally, we
demonstrated our model could function in a real-world navigation
context by embodying it on a robot and comparing it to standard
vision-based navigation algorithms. Although parameters were
not optimal for the routes the robot was tested on, and the
processing time was slower than the standard visual navigation
algorithms, it provides existence proof that the model can work
in closed loop and is a solid foundation for future investigations
focusing more on the active motor aspects of visual route
navigation.

Due to the methodological limitation of neuroscience studies
with ants, there is relatively little information on the exact
information that reaches the mushroom body, but we can use
information from other insects to theorise about this. In the bees
(another insect in theHymenoptera order) the lobula is known to be
especially responsive to motion cues (Paulk and Gronenberg, 2008),
so it is plausible that the MB may be able to make use of motion cues

available to it in addition to the standard visual information from
the optic lobe. In future it would benefit the field to see more MB
modelling studies approach the challenge of incorporating temporal
information into their simulations, as seen in (Zhu et al., 2021).
There is evidence from ant behaviour that the sequence that ants
learn visual stimulus affects their navigation routes (Schwarz et al.,
2020), which has been explored in modelling more generally in
relation to insect mushroom bodies (Arena et al., 2015). With
respect to downstream projections of the mushroom body we can
use data from Drosophila brain mapping and connectomics to
suggest what regions the MBONs project to and speculate about
potential implications of this connectivity. There is evidence that
the Drosophila MB projects to the fan-shaped body and noduli in
the central complex, and in a minor way to the lateral accessory
lobe (LAL) (Li et al., 2020). The central complex plays a key role
in integrating information from various sources to provide heading
directions for navigation (Honkanen et al., 2019). The Drosophila
central complex contains the ellipsoid body which encodes heading
directions as bumps of activity with dynamics similar to that of
a ring attractor network (Kim et al., 2017), and some predict that
MB output could affect an animals heading direction by acting
on this region and surrounding areas (Collett and Collett, 2018;
Goulard et al., 2023).

While the LAL communicates information from the central
complex to motor areas (Namiki and Kanzaki, 2016), meaning
that the MB can exert influence on areas directly affecting the
insect’s movement. MBONs also project to the neuropils of the
protocerebrum (Aso et al., 2014), including the superior medial
protocerebrum which is a relay to the LAL. While similar
investigations have not yet been done in ants, if MB connectivity is
somewhat similar, then this could be a plausible pathway from visual
scene processing to movement.

Although we have some limited anatomical evidence and many
theories based on other species of the connectivity of various regions
to the ant mushroom body, the way visual memories are used and
how they drive navigation is not yet known. We believe our model
is therefore a great testbed for the various possibilities to see which
are plausible. For instance, the approach we have demonstrated
here is the standard/most simple navigation approach where the
model scans many directions and travels in the direction with the
highest familiarity score. Similar to (Ardin et al., 2016). However, it
is unknown what the equivalent of scanning through all possible
orientations of input would be biological. Ants do demonstrate
scanning behaviours while navigating, however these scans involve
physically rotating and although the oscillation patterns are constant
(Clement et al., 2023) there are observable instances where ants will
stop or increase scanning in a certain area (Wystrach et al., 2014). To
overcome this potential scanning implementation problem, another
approach would be to have left and right mushroom bodies working
in parallel so that whichever side has the higher familiarity score
causes a turn in the opposing direction as seen in (Wystrach,
2023; Steinbeck et al., 2024). When modelling this in a closed loop
system, a lot of processing time would be saved from not having
to scan through multiple orientations of images, but on the other
hand there will be two entire mushroom bodies being simulated
which may significantly increase the memory requirements for
the running system. A contrasting approach involving a different
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method of training would be to class different views as attractive
(towards the goal), and other views as repulsive (those facing away
from the goal) as seen in (Möel and Wystrach, 2020). The benefits
of this method would be the lack of scanning required, but it may
struggle when faced with sinuous routes. Finally, one more way of
potentially using visual memories would be to have the model be
attracted around a “Ridge of familiarity” as seen in (Stankiewicz
and Webb, 2021). In this example the virtual ant has a central
pattern generator circuit causing repeated curved trajectories of
movement as seen in (Clement et al., 2023), while a different process
measures the changes in familiarity. The movement of the ant can
therefore be modulated to oscillate around the area with the highest
familiarity. As these examples demonstrate, there are many theories
of how MB memories are utilised for navigation. Combining these
theories with anatomical insight tested them in embodied models
will likely provide new insight into the neural basis of ant navigation
in the future.
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