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The objective of the present study was to determine the effect of a novel (4th
generation) phytase supplementation as well as its mode of action on growth,
meat quality, and incidence of muscle myopathies. One-day old male broilers
(n = 720) were weighed and randomly allocated to 30 floor pens (24 birds/pen)
with 10 replicate pens per treatment. Three diets were fed from hatch to 56-
days-old: a 3-phase corn-soy based diet as a positive control (PC); a negative
control (NC) formulated to be isocaloric and isonitrogenous to the PC and with a
reduction in Ca and available P, respectively; and the NC supplemented with
2,000 phytase units per kg of diet (NC + P). At the conclusion of the experiment,
birds fed with NC + P diet were significantly heavier and had 2.1- and 4.2-points
better feed conversion ratio (FCR) compared to birds offered NC and PC diets,
respectively. Processing data showed that phytase supplementation increased
live weight, hot carcass without giblets, wings, tender, and skin-on drum and
thigh compared to both NC and PC diets. Macroscopic scoring showed that birds
fed the NC + P diet had lower woody breast (WB) severity compared to those fed
the PC and NC diets, however there was no effect on white striping (WS)
incidence and meat quality parameters (pH, drip loss, meat color). To
delineate its mode of action, iSTAT showed that blood glucose concentrations
were significantly lower in birds fed NC + P diet compared to those offered PC
and NC diets, suggesting a better glucose uptake. In support, molecular analyses
demonstrated that the breast muscle expression (mRNA and protein) of glucose
transporter 1 (GLUT1) and glucokinase (GK) was significantly upregulated in birds
fed NC + P diet compared to those fed the NC and PC diets. The expression of
mitochondrial ATP synthase F0 subunit 8 (MT-ATP8) was significantly
upregulated in NC + P compared to other groups, indicating intracellular ATP
abundance for anabolic pathways. This was confirmed by the reduced level of
phosphorylated-AMP-activated protein kinase (AMPKα1/2) at Thr172 site,
upregulation of glycogen synthase (GYS1) gene and activation of mechanistic
target of rapamycin and ribosomal protein S6 kinase (mTOR-P70S6K) pathway. In
conclusion, this is the first report showing that in-feed supplementation of the
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novel phytase improves growth performance and reduces WB severity in broilers
potentially through enhancement of glucose uptake, glycolysis, and intracellular
ATP production, which used for muscle glycogenesis and protein synthesis.
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Introduction

The US broiler industry is the largest producer of meat-type
chickens, producing approximately 9.17 billion chickens in
2022 with a production value of $50,445,885,000 (USDA,
2023). Although it supports the livelihoods and food security
of billions of people, the US broiler industry is facing several
challenges from a steep projected increase in global demand for
high quality animal protein by 73% by 2050; and the need to
adapt to environmental constraints driven by climate changes
and already scarce natural resources (water, energy, land).
Additional challenges facing broiler production in the next
decades will include, but are not limited to, water shortage,
disease challenges and zoonoses, environmental footprint, and
pollution concerns, while maintaining affordable, healthy,
adequate, nutritious, and wholesome protein supply to feed
the future of an ever-increasing world-population.

Poultry meat is highly regarded worldwide as one of the most
efficient food sources with high quality nutrients, relatively
inexpensive, and without religious taboos (Cavani et al., 2009;
Marangoni et al., 2015). However, the newly emerging breast
muscle disorders, woody breast (WB) (Bilgili et al., 2014) and
white stripping (WS) (Bauermeister et al., 2009), have had an
increasingly negative impact on worldwide chicken meat
production and quality (Mudalal et al., 2015; Trocino et al.,
2015). White stripping is characterized by visible white
striations parallel to breast muscle fibers (Kuttappan et al.,
2013), however WB is distinguished by a hard consistency to
raw breast filets (Sihvo et al., 2014). Although probable different
etiologies, both myopathies appeared in varying degree and more
often together on the same breast filet. The lesions associated
with both myopathies appear to be aseptic, superficially located,
and include muscle fiber fragmentation, hyalinization, and
swelling with replacement by fibrous connective tissue, as well
as an influx of macrophages and other immune and fat cells
(Soglia et al., 2016; Baldi et al., 2018). This constitutes a major
animal health, welfare, and economic concern that costs the
industry several hundred million dollars a year due to on-farm
culling and mortality, down-grading, and condemnation at
processing, as well as rejection from human consumption, and
for which there is no effective solution because of its unknown
etiology (Che et al., 2022). There is, therefore, a critical need to
define its causation and identify mechanism-based strategies
to prevent it.

Several high throughput omics studies postulated the
involvement of diverse dysregulated cellular processes,
including hypoxia, oxidative stress, and altered glucose
utilization, in the progression of these muscle myopathies.
Using functional mechanistic studies, Dridi’s group has shown
that hypoxia induces WB through the unfolded protein response,

ER stress, and modulation of satellite cell fate (Emami et al., 2021;
Greene et al., 2023). Supplementation of high dose of phytase
reduced the severity of WB via the improvement of local (muscle)
and systemic oxygen homeostasis and modulation of muscle
metabolome and fatty acid profile (Greene et al., 2019; Cauble
et al., 2020; Greene et al., 2020). Furthermore, it has been
reported that when fed at high dose, exogenous phytase
induces a rapid and complete breakdown of diet-derived
phytates, reduces the anti-nutritional effects, and thereby
elicits a greater nutrient utilization, better growth (Shirley and
Edwards, 2003; Rutherfurd et al., 2012), and free myo-inositol
(Schmeisser et al., 2017; Gonzalez-Uarquin et al., 2020). Recently,
a novel 4th generation phytase, HiPhorius™ (DSM Nutritional
Products, Kaiseraugst, Switzerland), has been developed for
optimal enzyme activity, thermo-resistance, stability to wide
pH range in the gastrointestinal tract, and low phosphorus
and greenhouse gas emissions (Imtiaz, 2022). It has been
found to further improve broiler growth compared to classical
phytase (Ronozyme HiPhos, DSM Nutritional products,
Kaiseraugst, Switzerland) (Zhang et al., 2022). Yet, its mode of
action is still not well defined. The aim of the present study was,
therefore, to determine the effect and the mode of action of
HiPhorius™ on growth performance, blood parameters, and
muscle myopathy incidences in broiler chickens.

Materials and methods

Experimental design and diets

A total of 720 day-old straight run broiler chicks (Ross 708,
Aviagen, Huntsville, AL) were obtained from a local commercial
hatchery (Simmons Foods, Siloam Springs, AR) and transported to
the University of Arkansas Broiler Research Farm. Upon arrival,
chicks were randomly placed into 30 temperature-controlled pens at
24 birds per pen with a density of 0.096 m2/bird. Each pen was
equipped with a hanging feeder, section of continuous nipple
drinker line (5 nipples per pen), and built-up, top-dressed litter
composed of clean pine shavings. All broilers were fed a 3-phase
feeding program; d0-18 starter, d19-36 grower, and d37-56 finisher.
Each pen was assigned to 1 of 3 isocaloric and isonitrogenous
experimental treatments (10 pens/treatment), which consisted of
a positive control with adequate nutrient supply (PC), negative
control with a reduction of 0.08% Ca and 0.15% available P (NC),
and a negative control supplemented with 2,000 phytase units/kg
(FYT per kg of feed) of a novel fourth generation phytase
[HiPhorius™, DSM Nutritional Products, Kaiseraugst,
Switzerland, (NC + P)] (Table 1). Feed and water were provided
ad libitum throughout the experiment. Initial temperatures were set
at 32°C and gradually reduced to 20°C by d28 and remained there
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until the conclusion of the experiment. Lighting schedules were
settled at 24L:0D for d0, 23L:1D from d1-6, and 18L:6D from d7-56.
Light intensities were verified at bird level using a light meter
(LT300, Extech Instruments, Waltham, MA). Birds were weighed

and feed intake were measured by pen at d0, 18, 36, and 55 post
hatch. Averaged body weight (BW), body weight gain (BWG), feed
intake (FI), and mortality corrected feed conversion ratio (FCR)
were subsequently calculated. These parameters and corresponding

TABLE 1 Ingredients and nutrient composition of the experimental dietsa.

Ingredient, % Starter (0–18 days-of-age) Grower (18–36 days-of-age) Finisher (36–56 days-of-age)

PC NC PC NC PC NC

Corn 52.39 53.50 57.04 58.14 61.17 62.28

Soybean meal 39.88 39.71 34.86 34.69 30.30 30.13

Poultry fat 3.45 3.06 4.15 3.77 4.94 4.56

Limestone 1.06 1.32 0.99 1.25 0.93 1.19

Dicalcium phosphate 1.85 1.03 1.62 0.81 1.40 0.58

Salt 0.22 0.22 0.22 0.22 0.22 0.22

Sodium bicarbonate 0.37 0.38 0.38 0.38 0.37 0.38

L-lysine HCl 0.14 0.14 0.13 0.14 0.11 0.12

L-threonine 0.05 0.05 0.03 0.03 0.01 0.01

DL-methionine 0.32 0.31 0.29 0.29 0.25 0.25

Vitamin premixb 0.10 0.10 0.10 0.10 0.10 0.10

Trace mineral premixc 0.10 0.10 0.10 0.10 0.10 0.10

Choline chloride, 60% 0.06 0.06 0.06 0.06 0.06 0.06

Coccidiostat 0.02 0.02 0.02 0.02 0.02 0.02

Calculated nutrient composition, %

Dry matter 85.08 85.37 84.45 84.74 83.75 84.04

Crude protein 23.65 23.66 21.57 21.57 19.64 19.65

ME, kcal/kg 3,000.00 3,000.00 3,100.00 3,100.00 3,200.00 3,200.00

Total calcium 0.96 0.88 0.87 0.79 0.78 0.70

Total phosphorus (P) 0.71 0.56 0.65 0.50 0.60 0.45

Available P 0.48 0.33 0.44 0.29 0.39 0.24

Phytate P 0.27 0.27 0.26 0.26 0.25 0.25

Digestible lysine 1.28 1.28 1.15 1.15 1.02 1.02

Digestible threonine 0.86 0.86 0.77 0.77 0.68 0.68

Digestible methionine 0.63 0.63 0.58 0.58 0.52 0.52

Digestible SAAd 0.95 0.95 0.87 0.87 0.80 0.80

Sodium 0.20 0.20 0.20 0.20 0.20 0.20

Chloride 0.23 0.23 0.23 0.23 0.23 0.23

DEBe 252 252 232 232 214 214

Choline 1,700.00 1,700.00 1,700.00 1,700.00 1,700.00 1,700.00

aPC, positive control; NC, negative control.
bThe vitamin premix contributed (per kg of diet): vitamin A, 30,864 IU; vitamin D3, 22,048 ICU; vitamin E, 220 IU; niacin, 154.32 mg; d-pantothenic acid, 39.68 mg; riboflavin, 26.44 mg;

pyridoxine, 11.04 mg; thiamine, 6.16 mg; menadione, 6 mg; folic acid, 3.52 mg; biotin, 0.32 mg; vitamin B12, 0.04 mg.
cThe mineral premix contributed (per kg of diet): manganese, 100 mg; zinc, 100 mg; calcium, 69 mg; copper, 15 mg; iron, 15 mg; iodide, 1.2 mg; selenium, 0.25 mg.
dSAA, sulfur amino acid.
eDEB, dietary electrolyte balance.
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mortality were calculated for each phase and overall growth
performance.

Blood parameters and tissue collection

On d55, 72 birds (8 pens/treatment; 3 birds/pen) were randomly
selected, weighed, and sampled for venous blood analysis using an
i-STAT Alinity system (SN:801128); software version JAMS 88.A.1/
CLEWD44; Abaxis, Union City, CA, United States) with the i-STAT
CG8+ cartridge test (ABBT-03P88-25) according to manufacturer’s
recommendation. Heparinized whole blood (0.2 mL) was analyzed
for ionized sodium (iNa), potassium (iK), chloride (iCl), calcium
(iCa), total carbon dioxide (TCO2), glucose (Glu), bicarbonate
(HCO−

3), and pH. The i-STAT system has been validated in
avian species (Martin et al., 2010; Schaal et al., 2016). Birds were
euthanized by cervical dislocation immediately following blood
draw and a cranial sample of left breast muscle (Pectoralis major)
was removed, snap frozen in liquid nitrogen, and stored
at −80°C until use.

Processing

All birds underwent a feed withdrawal period of 10 h prior
being transported to the University of Arkansas Pilot Processing
Plant on d56. Five hundred and forty birds (18 birds/pen) were
weighed to obtain live dock weights before being placed on
shackles, electrically stunned (11 V, 11 mA for 11 s),
exsanguinated, soft scalded (55°C for 2 min), de-feathered
(Foodcraft Model 3; Baker international, MI, United States),
and mechanically eviscerated. With-out giblets (WOG) and
abdominal fat weights were then recorded, before being
chilled for 3 h at 4°C. Chilled with-out giblets (CWOG)
weights were recorded, before being deboned to acquire
breast (Pectoralis major), tender (Pectoralis minor), wing, and
leg quarter weights.

Woody breast (WB) and white striping (WS)
palpation and scoring

On d28 and 49, WB occurrence was estimated via live-bird
palpation as previously described (Greene et al., 2019). After
slaughter process at d56, breast filets were macroscopically scored
and classified to WB and WS categories (Supplementary Figure S1).
For WB and as described previously, a normal category (NORM)
has a degree 0 with flexible breast throughout, moderate (MOD) has
a degree 0.5–1.5 with mild hardening in the caudal area, and severe
(SEV) has a degree with severe hardening and hemorrhagic lesions
in the caudal region (Greene et al., 2019). For WS, a three-category
scoring scheme, primarily accounting for the thickness and density
of striations, has been used: normal (NORM) category is
characterized by absence of white lines, moderate (MOD) with
small (~<1 mm), and severe (SEV) which is marked by large
white striation (>1–2 mm) (Supplementary Figure S1) (Vignale
et al., 2017).

Meat quality

Breast fillets were collected after processing, placed on trays, and
covered with plastic overlay before being stored at 4°C for 24 h for
drip loss, pH, and colorimetric analysis. Drip loss (%) was calculated
as the difference between hot debone breast weights and chilled
breast weights and is expressed as a percentage of WOG. A Minolta
colorimeter (CR-400; Konica Minolta Sensing Inc., Sakai Osaka,
Japan; size 102(W) X 217 (H) X 63 (D) mm) using illuminant
D65 and a 2-degree observer was used to determine the L*
(lightness), a* (redness), and b* (yellowness) values from three
readings on the ventral side of the left breast fillet. The same
breast fillet was used to measure the average pH, from
3 readings, with a temperature-compensating pH meter (Testo
205; Testo Inc., West Chester, PA).

RNA extraction, reverse transcription, and
quantitative real-time PCR

Total RNAs were extracted from chicken left-breast muscle
using Trizol reagent (Life Technologies, Carlsbad, CA) according
to the manufacturer’s recommendations. After DNAse treatment
and purification, the concentrations of total RNAs were
measured for each breast muscle sample by Take 3 Micro-
Volume Plate using Synergy HT multi-mode micro plate
reader (BioTek, Winooski, VT), and RNA integrity and quality
were assessed by both OD260/OD280 nm absorption ratio (>1.8)
and by using 1% agarose gel electrophoresis. Reverse
transcription and qPCR were performed as previously
described (Dridi et al., 2012; Greene et al., 2023). In brief,
RNA (1 µg) was reverse transcribed using qScript cDNA
Synthesis Supermix (Quanta Biosciences, Gaithersburg, MD)
in a 20 µL total reaction under the following conditions (42°C
for 30 min followed by 85°C for 5 min). cDNAs were amplified by
qPCR (Applied Biosystems 7500 Real Time System) with Power-
Up Sybr green master mix (Life Technologies, Carlsbad, CA),
5 µL of 10X diluted cDNA, and 0.5 µM of each forward and
reverse specific primers as previously described (Dridi et al.,
2012). Oligonucleotide primers specific for chicken mechanistic
target of rapamycin (mTOR), ribosomal protein S6 kinase A1
(RPS6K), adenosine monophosphate-activated protein kinases
(AMPKα1, AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, AMPKγ2,
AMPKγ3), ribosomal RNA 18S and beta-actin have been
previously reported (Nguyen et al., 2015; Vignale et al., 2015;
Blankenship et al., 2016). Oligonucleotide primers specific for
chicken glucose transporters (GLUT1, GLUT3, GLUT6, GLUT8,
GLUT10, and GLUT12), glucokinase (GK), hexokinases (HK1,
HK2, and HK3), glycogen synthases (GYS1 and GYS2), glycogen
branching enzyme (GBE1), glycogen debranching enzyme
(AGL), mitochondrial ATP synthase F0 subunit 8 (MT-ATP8),
glycogen synthase kinase 3 beta (GSK-3β), eukaryotic translation
initiation factor 2 alpha kinase 4 (EIF2AK4 or GCN2), eukaryotic
translation initiation factor 2 subunit alpha (EiF2α), and
eukaryotic translation initiation factor 4E binding protein 1
(EIF4EBP1) are summarized in Table 2. Relative expression of
the target genes was determined using the 2−ΔΔCT method
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TABLE 2 Oligonucleotide QPCR primers.

Genea Accession numberb Primer sequence (5′ → 3′) Orientation Product size (bp)

GLUT1 NM_205209 TCCTGATCAACCGCAATGAG Forward 60

TGCCCCGGAGCTTCTTG Reverse

GLUT3 NM_205511 TTGGGCGCTTCATTATTGG Forward 68

CTCACTGATGTACATGGGAACAAAG Reverse

GLUT6 XM_423637 CGCTTTGGACGTTGACATTG Forward 62

CTGGATGACTCGGGATGAGAA Reverse

GLUT8 NM_204375 GCTGCCTCAGCGTGACTTTT Forward 58

AGGGTCCGCCCTTTTGTT Reverse

GLUT10 XM_417383 AACGCAGAACAAAGATTCCTGAA Forward 65

GTCATTCCACGTGCCAGCTT Reverse

GLUT12 XM_419733 TTTGTGGACCTGTTTCGTTCAA Forward 61

GCGTGAGCCCTACCAGCAT Reverse

GK AY256906 TGTTACATGGAGGAGATGCACAA Forward 78

GCCCCACTCCGTGTTCAC Reverse

HK1 NM_204101 TTATGTGGTGCCGGAATGG Forward 61

GCTCTAAGCCTCTGTTCTCCCTAA Reverse

HK2 NM_204212 AGAGCCCTCTGATGCCACAT Forward 57

GGAGGTGTCCGGAGAAAGG Reverse

HK3 XM_001231328 CACCGGAGAAACCTTGTGAGA Forward 72

CTGACTCGGCCATGAAGCA Reverse

GYS1 AB090806 GCCTCAACGTCCGCAAGTT Forward 55

TGGGCGTGCAGGTTCTG Reverse

GYS2 NM_001406729 CATTGACAAGGAAGCAGGAGAGA Forward 67

GTGTACAGATGCCCGTTCCA Reverse

GBE1 XM_015298401 AAGAAAATGGAGTATGGGAAATGG Forward 71

TGAGGCACAGGAGAAAAACCA Reverse

AGL XM-040677682 TTCTAGCGTTTGGTGGGACTCT Forward 58

CCCTGGCCAAGCAGGTT Reverse

mtATP8 HM142824 CACACTTGCCGGAACGTACA Forward 57

GCCGTTTGCGTGGAGATT Reverse

GSK3α XM_416557 AAGGCACATCCATGGACTAAGG Forward 59

GACCCGTACTCCTGAGGTGAAA Reverse

GCN2 XM_040671975 TGCGTCCTCAGGGATTGACT Forward 66

GGCACTTGACCCACAGATCA Reverse

EIF2S1 NM_001006477 GGCCGTCGCCAGAATG Forward 59

CCTCCGGAAACTTATGCTGGTA Reverse

(Continued on following page)
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(Schmittgen and Livak, 2008), with normalization to ribosomal
18S expression. PC broilers were used as a calibrator.

Western blot analysis

The immunoblot analyses were performed as previously described
(Dridi et al., 2012; Emami et al., 2021; Greene et al., 2023). In brief,
muscle tissues were homogenized in lysis buffer using bullet blender
storm (NextAdvance, Averill Park, NY). Following concentration
determination by a Bradford assay kit (Bio-Rad, Hercules, CA)
using a Synergy HT multimode microplate reader (Biotek Agilent,
Winooski, VT), total proteins (70–100 µg) were run in 4%–12%
gradient Bis-Tris gels (Life Technologies, Carlsbad, CA) and then
transferred to polyvinylidene difluoride (PVDF) membranes. After
transfer, PVDF membranes were blocked using a Tris-buffered
saline (TBS) with 5% nonfat milk and Tween 20 at room
temperature for 1 h. The membranes were washed with TBS and
Tween 20 and then incubated with primary antibodies at a dilution
of either 1:500 or 1:1000 overnight at 4°C. Primary antibodies used were
rabbit anti-glucose transporter 1 (GLUT1 #A6982, ABClonal, Woburn,
MA), rabbit anti-GLUT12 (#LS-C110860, LSBio, Lynwood, WA),
rabbit anti-glucokinase (GK, #A15059, ABClonal, Woburn, MA),
rabbit anti-hexokinase 1(HK1, #A1054, ABClonal, Woburn, MA),
rabbit anti-HK2 (#A20829, ABClonal, Woburn, MA), rabbit anti-
phospho-AMP-activated protein kinase (AMPKα1/α2)Thr172 (#2531,
Cell Signaling, Technology, Danvers, MA), rabbit anti-AMPKα1/α2
(#2603, Cell Signaling, Technology, Danvers, MA), rabbit anti-
phospho-mechanistic target of rapamycin (mTOR)Ser2448 (#2971, Cell
Signaling, Technology, Danvers, MA), rabbit anti-mTOR (#2972, Cell
Signaling, Technology, Danvers, MA), goat anti-phospho-P70S6 kinase
(P70S6K)Thr389 (#SC-11759, Santa Cruz Biotechnology, Dallas, TX),
rabbit anti-P70S6K (#SC-230, Santa Cruz Biotechnology, Dallas, TX),
mouse anti-phospho-glycogen synthase kinase 3 beta (GSK-3β)Ser9
(#SC-373800, Santa Cruz Biotechnology, Dallas, TX), and rabbit
anti-Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, #NB300-
327,Novus Biologicals, Centennial, CO) as a housekeeping protein. Pre-
stained molecular weight marker (Precision Plus Protein Dual Color)
was used as a standard (BioRad, Hercules, CA) and as indicator for
transfer efficiency. The secondary anti-mouse (#SC-358914, Santa Cruz
Biotechnology, Dallas, TX)-, anti-goat (#SC-2354, Santa Cruz
Biotechnology, Dallas, TX)-, and anti-rabbit (#7074S, Cell Signaling,
Technology, Danvers, MA)-IgG-HRP-linked antibodies were used at 1:
5,000 dilution for 1 h at room temperature. The signal was visualized by
enhanced chemiluminescence (ECL plus) (GE Healthcare Bio-Sciences,
Buckinghamshire, United Kingdom) and captured by FluorChem M
MultiFluor System (Proteinsimple, Santa Clara, CA). Image Acquisition

and Analysis were performed by AlphaView software (Version 3.4.0,
1993–2011, Proteinsimple, Santa Clara, CA).

Statistical analyses

Data were analyzed by One-way ANOVA and Tukey’s HSD
multiple comparison test using the Mixed Model platform of JMP
Pro v. 17.0 (SAS Institute, Cary, NC, United States) for the
growth, blood parameters, and meat quality and processing
data, and Graph Pad Prism version 9.00 for Windows (Graph
Pad Software, La Jolla California, United States) for muscle gene
and protein expression profiles. For the growth data, pen served
as the experimental unit and pen averages were calculated and
analyzed for each quality characteristic. For the gene and protein
expression, however, the bird was used as the experimental unit.
For the muscle myopathy incidence, bird was the experimental
unit and score was considered an ordinal variable. The model
included diet. When diet was significant, score means between
diets were separated using Pearson Chi-square. Statistical
significance was set at p ≤ 0.05.

Results

Effect of phytase supplementation on
growth performance

Phytase recoveries in the NC + P diet were 1,829; 1,595; and
1,771 FYT/kg in the starter, grower, and finisher phases, respectively.
Broiler performance was approximately 83% of Ross 708 breed
guidelines (Aviagen, Huntsville, AL) at d55. The overall mortality
for the entire period (0–55 days) was high at 17.9% ± 7.5% and not
influenced by treatment (p = 0.9798); the majority occurred from
d18-55. This elevated mortality was a result of intense heat waves
that happed on day 31 and 43 of the experiment (data not shown).

At the conclusion of the experiment (d55), birds fed with NC + P
diet were significantly heavier and gained more (~112 g/bird, p <
0.05) than the birds offered the PC and NCdiets (Table 3). There was
no difference in feed intake between all studied groups, which
resulted in 2.1- and 4.2-points better FCR for the birds fed NC +
P diet compared to those fed NC and PC diets, respectively (Table 3).
When categorized by rearing phase, birds fed NC + P diet had better
FCR than their counterparts fed NC and PC diets at all periods
(Tables 3), but the difference was statistically discernible only at
starter period (Table 3). Birds fed the NC diet ate less feed (p < 0.05),
gained less, and were significantly lighter compared to those offered

TABLE 2 (Continued) Oligonucleotide QPCR primers.

Genea Accession numberb Primer sequence (5′ → 3′) Orientation Product size (bp)

EIF4EBP1 XM_424384 CTCTCCGTGTGGGTGTGAATAC Forward 56

CCCCACAGCCCATCATCA Reverse

aAGL, glycogen debranching enzyme; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1; EIF2S1, eukaryotic translation initiation factor 2 subunit alpha 1; GBE1, glycogen

branching enzyme 1; GCN2, General Control Nonderepressible 2 or Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4; GK, glucokinase; GLUT, glucose transporter; GSK3α, glycogen
synthase kinase 3 alpha; GYS, glycogen synthase; HK, hexokinase; mtATP8, mitochondrial ATP, synthase F0 subunit 8.
bAccession number refer to Genbank (NCBI).
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TABLE 3 Growth performances during the entire experiment and by rearing phasea.

Treatmentb BW, g BWG, g FI, g FCR, g:g Mortality, %

Period (0–55 days)

PC 3,475b 3,437b 5,853 1.705 17.92

NC 3,476b 3,438b 5,787 1.684 18.20

NC + P 3,588a 3,550a 5,893 1.663 17.58

SEM 0.036 0.036 0.049 0.014 2.20

p-value 0.039 0.044 0.322 0.138 0.979

Starter (0–18 days)

PC 664a 626a 770a 1.234a 0.42

NC 633b 595b 726b 1.225a 0.00

NC + P 682a 644a 759a 1.190b 0.42

SEM 0.007 0.007 0.008 0.007 0.352

p-value 0.0003 0.0003 0.002 0.0005 0.612

Grower (18–36 days)

PC 2,178ab 1,514 2,238 1.478 8.75

NC 2,126b 1,493 2,191 1.467 8.29

NC + P 2,207a 1,526 2,247 1.474 10.01

SEM 0.017 0.012 0.017 0.007 2.04

p-value 0.003 0.145 0.609 0.531 0.827

Finisher (36–55 days)

PC 3,475b 1,296 2,845 2.210 8.76

NC 3,476b 1,350 2,869 2.144 9.91

NC + P 3,588a 1,381 2,887 2.117 7.13

SEM 0.036 0.035 0.037 0.047 1.94

p-value 0.039 0.243 0.734 0.377 0.601

aBW, period averaged individual body weight; BWG, averaged individual body weight gain; FI, averaged individual feed intake; FCR, mortality corrected feed conversion ratio.
bPC, positive control; NC, negative control; NC + P, negative control supplemented with phytase at 2,000 FYT/kg diet. Data are means of 24 birds per pen and 10 replicate pens per treatment.

Different superscript letters within the same column indicate a significant difference at p < 0.05.

TABLE 4 Processing weights of 56 days-old Ross 708 broilersa.

Treatmentb BW, g WOG, g CWOG, g Fat, g Breast, g Tender, g Wings, g LQ, g

PC 3,389b 2,687 2,774 45 786 163b 270b 838b

NC 3,372b 2,679 2,758 42 790 167ab 270b 832b

NC + P 3,514a 2,783 2,867 45 803 172a 281a 876a

SEM 38 31 32 1.3 12 2.2 2.9 10

p-value 0.035 0.050 0.052 0.265 0.561 0.043 0.023 0.012

aBW, 56 days dock body weight.
bWOG, hot carcass weight with-out giblets; CWOG, chilled carcass weight with-out giblets; Fat, hot fat pad; Breast, pectoralis major; Tender, pectoralis minor; Wings = skin-on wings; LQ, skin-

on drum and thigh.
2PC, positive control; NC, negative control; NC + P, negative control supplemented with phytase at 2,000 FYT/kg diet. Data are means of 18 birds per pen and 10 replicate pens per treatment.

Different superscript letters within the same column indicate a significant difference at p < 0.05.
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the PC and NC + P diets at the starter phase, then they compensated
and catch-up similar growth as the birds fed the PC diet during the
grower and finisher periods (Tables 3).

Effect of phytase supplementation on
carcass parameters and meat quality

As depicted in Table 4, phytase supplementation significantly
increased live weight at processing, wings, and skin-on drum and
thigh (LQ) compared to birds fed both NC and PC diets. Chickens
fed NC + P diet exhibited a significantly higher tender weight
compared to those offered the PC diet (Table 4). Phytase
supplementation tended to increase WOG and CWOG weights
compared to PC and NC diets (p = 0.05, Table 4). Although it
was not statistically significant, birds fed NC + P diet exhibited
higher breast weight (17 and 13 g) compared to those fed the PC and
NC diets (Table 4). There was no significant difference in abdominal
fat content between the studied groups (Table 4).

There was no effect of treatment on the incidence of WS
scores and incidence (Table 5). The combination of live-bird

palpation and macroscopic scoring showed that WB incidence
increased with age in all studied groups, but the amplitude was
significantly lower in birds fed the NC + P diet particularly at
d49 and d56 (Figure 1) compared to the other groups. Table 6
showed that phytase sypplementation reduced the WB severity
(SEV, p = 0.0531) compared to PC and NC diets. Breast meat
quality parameters (pH, drip loss, lightness, redness, and
yellowness) were not influenced by the dietary
treatments (Table 7).

Effect of phytase supplementation on blood
parameters

There was no effect of dietary treatment on the concentration of
Na, Ca, total CO2, or bicarbonate in the whole blood. However, birds
fed the NC + P diet had a greater concentration of K (p = 0.0083) in
the blood compared with birds fed the NC, and intermediate in birds
fed the PC. Blood glucose (p = 0.037) and pH (p = 0.018) were lower
in birds fed the NC + P diet compared with birds fed the PC and NC
diets, respectively (Table 8).

TABLE 5 White stripping incidence in 56 days-old Ross 708 broilersa.

Treatmentb Average Incidences of white striping, %

NORM MOD SEV

PC 0.393 68 24 8

NC 0.414 67 24 9

NC + P 0.405 68 23 9

SEM 0.050 3 2 2

p-value 0.978 0.984 0.980 0.871

aA three-category scoring scheme, primarily accounting for the thickness and density of striations, has been used: degree 0 is a normal (NORM) category, which is characterized by absence of

while lines, degree is a moderate (MOD) category with small (~<1 mm) white striation, and degree 2 is severe (SEV) category, which is marked by large white striation (>1–2 mm).
bPC, positive control; NC, negative control; NC + P, negative control supplemented with phytase at 2,000 FYT/kg diet. Data were obtained from 180 birds/group.

FIGURE 1
Effect of phytase supplementation onWB incidence in broilers at different ages. WB occurrence and incidence were assessed by live-bird palpation
at the age of 28 and 49 days, and macroscopically scored at the processing (56 days). Data are presented as WB presence (+) or absence (−). WB
incidence increased with age in all studied groups, but the amplitude was significantly lower in the NC + P birds particularly at d49 and d56. NC, negative
control; NC + P, negative control supplemented with 2,000 phytase units/kg (FYT per kg of feed); PC, positive control.
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Effect of phytase supplementation on
muscle gene and protein expression profile

As shown in Figure 2A, the tested GLUT (GLUT1, 3, 6, 8, 10,
and 12) genes are all expressed in chicken breast muscle. The
expression of GLUT1 and GLUT6 was significantly upregulated in
phytase-supplemented (NC + P) birds compared to NC and PC
groups (Figures 2B, C). Compared to PC birds, GLUT3 mRNA
levels were significantly higher in NC, and GLUT10 mRNA
abundances were higher in NC + P (Figures 2D, E). mRNA
abundances of GLUT8 and GLUT12 were significantly

increased in NC compared to PC and NC + P birds (Figures
2F, G). Immunoblot analyses showed that GLUT12 and
GLUT1 protein levels were significantly induced in NC + P
compared to the other groups (Figures 2H, I).

As depicted in Figure 3A, GK (also known as HK4) and HK (1,
2, and 3) genes are all expressed in chicken breast muscle. Phytase
supplementation significantly upregulated the expression of GK
and HK2 genes, but it downregulated that of HK1 compared to the
other groups (Figures 3B–D). The expression of HK3 remained
unchanged between all studied groups (Figure 3E). Western blot
analyses showed that GK protein levels were significantly

TABLE 6 Woody breast incidence in 56 days-old Ross 708 broilersa.

Treatmentb Average Incidences of woody breast, %

NORM MOD SEV

PC 0.376 70 23 7

NC 0.357 70 24 6

NC + P 0.258 77 21 2

SEM 0.0469 3.7035 3.0676 1.4183

p-value 0.208 0.352 0.737 0.053

aScored on a numeric scale from 0–3: 0 = no woody breast; 1 = mild woody breast; 2 = severe woody breast. Data are means of 18 birds per pen and 10 replicate pens per treatment.
bMeans within the same column with different superscripts are significantly different at p < 0.05 and tendencies are presented at p < 0.10.

TABLE 7 Breast meat quality of 56 days-old Ross 708 broilersa.

Treatmentc pH Drip loss, % Breast fillet colourb

L* a* b*

PC 5.92 0.16 57.55 2.25 7.07

NC 5.93 −0.19 56.20 2.80 6.77

NC + P 5.93 0.36 56.93 2.48 7.24

SEM 0.03 0.17 0.72 0.30 0.37

p-value 0.975 0.099 0.437 0.458 0.673

aParameters were measured 24-h post-harvest.
bL*–lightness; a*–redness; b*–yellowness.
cPC, positive control; NC, negative control; NC + P, negative control supplemented with phytase at 2,000 FYT/kg diet. Data are means of 18 birds per pen and 10 replicate pens per treatment.

TABLE 8 Blood parameters of 56-old Ross 708 broilersa.

Treatmentb BW Na K Cl Ca TCO2 Glucose HCO3 pH

kg mmol/L mg/dL mmol/L

PC 3.65 150 5.92ab 114 1.43 24.3 254a 23.2 7.39ab

NC 3.79 149 5.70b 112 1.41 25.3 247ab 24.1 7.42a

NC + P 3.73 151 6.21a 115 1.44 24.6 240b 23.5 7.36b

SEM 0.10 0.81 0.11 0.83 0.001 0.52 3.7 0.52 0.01

p-value 0.646 0.209 0.008 0.093 0.320 0.346 0.037 0.487 0.017

aData obtained from i-Stat devices and report ionized minerals from 24 birds per treatment (3 birds per pen and 8 replicates per treatment).
bPC, positive control; NC, negative control; NC + P, negative control supplemented with phytase at 2,000 FYT/kg diet. Different superscript letters within the same column indicate a significant

difference at p < 0.05.
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increased in NC + P birds compared to the other groups, however
HK1 and HK2 remained unchanged between all tested groups
(Figures 3F, G).

The expression of breast muscle GYS1 was significantly
upregulated in NC + P birds compared to the other groups,
however GYS2 mRNA levels were significantly higher in both NC

FIGURE 2
Effect of phytase supplementation on the expression profile of breastmuscle glucose transporters (GLUTs). Several GLUT genes are expressed in the
breast muscle (A). mRNA abundances of GLUT1 (B), GLUT6 (C), GLUT3 (D), GLUT10 (E), GLUT8 (F), GLUT12 (G) were measured by real-time quantitative
PCR and analyzed by 2−ΔΔCt method (Schmittgen and Livak, 2008). Protein levels of GLUT1 and GLUT12 were determined by immunoblot (H,I). Data are
presented as mean ± SEM (n = 6 birds/group). Different letters indicate significant difference at p < 0.05. GLUT, glucose transporter; NC, negative
control; NC + P, negative control supplemented with 2,000 phytase units/kg (FYT per kg of feed); PC, positive control.
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and NC + P compared to PC group (Figures 4A, B). Phytase
supplementation significantly downregulated the expression of both
AGL and GBE1 expression, however NC diet significantly upregulated
the expression of the abovementioned genes (Figures 4C, D).

Phytase supplementation significantly reduced the phosphorylated
levels of the catalytic subunit AMPKα1/α2 at Thr172 site, indicating a
decreased activity of AMPK in NC + P birds compared to the other
groups (Figures 5A, B). Real-time quantitative PCR showed that phytase

FIGURE 3
Effect of phytase supplementation on the expression profile of breast muscle hexokinases. Hexokinase-coding genes are expressed in the breast
muscle (A). mRNA abundances of GK (B), HK1 (C), HK2 (D), and HK3 (E)weremeasured by real-time qPCR and analyzed by 2−ΔΔCt method (Schmittgen and
Livak, 2008). Protein levels of GK, HK1, and HK2 were determined by immunoblot (F,G). Data are presented as mean ± SEM (n = 6 birds/group). Different
letters indicate significant difference at p < 0.05. GK, glucokinase (or HK4), HK, hexokinase; NC, negative control; NC + P, negative control
supplemented with 2,000 phytase units/kg (FYT per kg of feed); PC, positive control.
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supplementation significantly downregulated the expression of
AMPKα2 and upregulated that of AMPKγ3 and MT-ATP8 compared
to PC and NC groups (Figures 5D, I, J). The expression of AMPKβ1was
significantly higher in both NC and NC + P compared to PC birds
(Figure 5E), however the mRNA abundances of AMPKγ1 was
significantly induced only in NC chickens compared to PC group
(Figure 5G). The expression of AMPKα1, AMPKβ2, and
AMPKγ2 remained unchanged between all studied groups (Figures
5C, F, H).

Phytase supplementation significantly increased the levels of
phosphorylated mTOR and P70S6K at Ser2448 and Thr389 sites,
respectively, compared to the other groups (Figures 6A, B). However,
the activity of GSK-3β remained unchanged between all tested groups
(Figures 6A, B). At mRNA levels, phytase supplementation
significantly induced the expression of mTOR and RPS6K, but it

reduced that of EiF2α compared to PC and NC diets (Figures 6C–E).
The expression of GSK3β and EiF4BP1 was significantly upregulated
in NC compared to PC and NC + P birds (Figures 6F, G).
GCN2 mRNA levels did not change in all groups (Figure 6H).

Discussion

The global poultry sector soared from 9 to 133 million tonnes of
meat and mounted from 15 to 93 million tonnes of eggs between
1961 and 2020 (Nations and Rome, 2023) and continues to support
the livelihoods of billions of people worldwide. However, muscle
myopathies, including WB and WS incidence, are emerging on a
global scale and imposing heavy welfare and food security burdens
on the poultry industry worldwide (Mudalal et al., 2015; Trocino

FIGURE 4
Effect of phytase supplementation on the expression of glycogen metabolism-associated genes in broiler breast muscle. Gene expression of
Gys1 (A), Gys2 (B), AGL (C), and GBE1 (D) were measured by real-time qPCR and analyzed by 2−ΔΔCt method (Schmittgen and Livak, 2008). Data are
presented as mean ± SEM (n = 6 birds/group). Different letters indicate significant difference at p < 0.05. AGL, glycogen debranching enzyme; GBE1,
glycogen branching enzyme; Gys, glycogen synthase; NC, negative control; NC + P, negative control supplemented with 2,000 phytase units/kg
(FYT per kg of feed); PC, positive control.
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FIGURE 5
Effect of phytase supplementation on the expression of AMPK subunits in broiler breast muscle. The levels of pan and phosphorylated AMPKα1/2 at
Thr172 site were determined byWestern blot analysis (A,B). mRNA abundances of AMPKα1 I, AMPKα2 (D), AMPKI (E), AMPKβ2 (F), AMPKγ1 (G), AMPKγ2 (H),
AMPKγ3 (I), and MT-ATP8 (J) were measured by real-time quantitative PCR and analyzed by 2−ΔΔCt method (Schmittgen and Livak, 2008). Data are
presented as mean ± SEM (n = 6 birds/group). Different letters indicate significant difference at p < 0.05. AMPK, adenosine monophosphate (AMP)-
activated protein kinase; MT-ATP8, mitochondrial ATP synthase F0 subunit 8; NC, negative control; NC + P, negative control supplemented with
2,000 phytase units/kg (FYT per kg of feed); PC, positive control.
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et al., 2015), accounting for more than $1 billion annual economic
loss in North America alone (Barbut, 2020). Although their
etiologies are still not well defined, breast fillets affected by these
myopathies share super-imposed and overlapping histological

hallmarks, which are typically characterized by myo-degeneration
and necrosis, infiltration of inflammatory cells in the endomysium,
and accumulation of connective tissues and fat (Sihvo et al., 2014;
Baldi et al., 2018).

FIGURE 6
Effect of phytase supplementation on the expression of key genes and proteins involved in breast muscle protein synthesis. The levels of pan and
phosphorylatedmTORSer2448, P70S6KThr389, and GSK-3βSer9 were determined byWestern blot analysis (A,B). mRNA abundances ofmTOR (C), RPS6K (D), EiF2α
(E), GSK-3β (F), EiF4BP1 (G), and GCN2 (H)were measured by real-time quantitative PCR and analyzed by 2−ΔΔCt method (Schmittgen and Livak, 2008). Data
are presented as mean ± SEM (n = 6 birds/group). Different letters indicate significant difference at p < 0.05. GCN2, general control nonderepressible
2 or eukaryotic translation initiation factor 2 alpha kinase 4; EiF2α, eukaryotic translation initiation factor 2 subunit alpha; EiF4BP1, eukaryotic translation
initiation factor 4E binding protein 1; GSK-3β, glycogen synthase kinase 3 beta;mTOR,mechanistic target of rapamycin; P70S6K, ribosomal protein S6 kinase.
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Despite their rising incidence and associated complications,
mechanistic understanding of these myopathies remains limited. In
that regard, several omics studies (Mutryn et al., 2015; Abasht et al.,
2016; Kuttappan et al., 2017) and recent functional evidence suggested
that hypoxia is a key causative factor for WB (Emami et al., 2021) and
that in-feed supplementation of phytase improved growth performance
and reduced WB severity (Greene et al., 2019). Building on these
previous studies and in a continuum of the same research hot spot, we
report here that addition of a new fourth generation phytase improves
growth performances (BW, weight corrected FCR, and carcass cut up)
and reduces the severity of WB without affecting WS incidence and
meat quality attributes (pH and colors) in Ross 708 broilers. This novel
phytase was encoded by a 6-phytase gene from Citrobacter braakii
(ATCC51113), expressed in Aspergillus oryzae, and characterized by an
optimal enzyme activity and intrinsic temperature- and pH-stability
(Imtiaz, 2022; Zhang et al., 2022). The improvement of growth
performance observed here is not surprising and it is in agreement
with previous investigations (Zhang et al., 2022). However, it is worth
noting that compared to the previous study where the effect of dietary
phytase on growth was reported to be minimal in older birds (d28-36),
here the present study showed that the effect was significant in all
rearing phases (ages). Although further studies are needed, the
abovementioned differential age-dependent effects were probably
associated with the experimental duration (36 days vs. 55 days),
conditions and location (China or France vs. United States and cage
vs. floor pens), diet composition and nutrient specifications, and/or
broiler strains (Cobb 500 and Ross 308 vs. Ross 708) in the previous
(Zhang et al., 2022) and in the present experiment, respectively.

In attempt to delineate themode of action of the novel phytase, and
asWBmyopathy has been predicted to be associated with carbohydrate
dysmetabolism, we next measured blood glucose concentrations using
iSTAT Alinity. Interestingly, phytase supplementation decreased
circulating glucose levels compared to both NC and PC diets, which
suggests an increased glucose uptake by the breast muscle and probably
by other glucose-absorbing tissues. The upregulation of GLUT
(GLUT1, 6, and 10) gene expression and GLUT1-and GLUT12-
protein levels in our experimental conditions supports the
abovementioned hypothesis that the novel phytase enhances glucose
uptake by the breast muscle (Cowieson et al., 2013; Lu et al., 2019). This
has been supported by enriched GLUT1 and GLUT12 proteins in
membrane fractions (data not shown). However, it is intriguing and still
unknown how and why the other GLUTs (GLUT3, GLUT8, and
GLUT12) were induced in the breast muscle of NC birds. As they
belong to different classes (I to III) (Olson and Pessin, 1996; Joost and
Thorens, 2001), it is possible that these GLUTs have different and/or
additional functions and affinities. For instance, GLUT3 has been
reported to transport maltose, xylose, dehydroascorbic acid,
mannose, and galactose in mammals (Colville et al., 1993). GLUT12,
on the other hand, has been shown to be involved in urate transport in
rodents (Toyoda et al., 2020). As the glycogen debranching enzyme
(AGL) expression was upregulated by theNC diet, it is probable that the
activated glycogenolysis pathway might directly or indirectly regulate
these GLUTs (Fidler et al., 2017). Furthermore, as we used the whole
muscle tissue, it is plausible that the expression of these GLUTs is cell-,
compartment-, and/or fiber-specific, and therefore they respond
differently to stimuli [for review see (Pyla et al., 2013)].

After transport and uptake, the cellular fate of glucose begins with
phosphorylation and then undergoes subsequent utilization pathways,

including glycolysis, glycogen formation, or conversion to other
intermediates in the hexose phosphate or hexosamine biosynthesis
pathways, depending on the expression of isozymic forms of HKs
(Bouche et al., 2004). Here, real-time qPCR analyses showed that
both GK (also known as HK4) and HK1-3 are expressed in the
muscle, corroborating a previous study in chickens (Roy et al., 2013).
In human, however, GK expression has been shown to be restricted to
the pancreas and the liver (Matschinsky, 1990). Selective expression/
regulation of HK isozymic forms, differing in catalytic and regulatory
properties as well as subcellular localization, is likely to be an important
factor in determining the pattern of glucose metabolism. In fact, despite
their overall structural similarity, HK1 (type I) serves for catabolic
function for energy production, however HK2 (Type II) and
probably HK3 (Type III) isozymes are suggested to serve primarily
anabolic functions (Wilson, 2003). The upregulation of GK at both
mRNAand protein levels suggests that phytase supplementation induces
muscle glycolysis and ATP synthesis, which is supported by the
upregulation of MT-ATP8 gene expression and the downregulation
of the catalytic AMPKα1/2 subunit gene and its phosphorylated levels at
Thr172 site. MT-ATP8 encodes for the mitochondrial ATP synthase
(complex V), which is an important enzyme that provides energy to be
used by the cell through the ATP synthesis (Jonckheere et al., 2012).
AMPK is a conserved master cellular “fuel gauge” and metabolic sensor
that is activated by falling energy status, but downregulated when the
cellular ATP/AMP ratio is elevated (Hardie et al., 2012; Gowans and
Hardie, 2014; Garcia and Shaw, 2017). In most species, AMPK exists as
an obligate heterotrimer, containing catalytic subunits (α1 and α2), and
two regulatory β (β1 and β2) and γ (γ1, γ2, and γ3) subunits, which are
encoded by different genes (Hardie, 2007). The upregulation of both
AMPKβ1 and AMPKγ3 subunits by phytase suggests that the
downregulation of the catalytic AMPKα1/2 was probably mediated
by ATP-binding to these regulatory subunits (Scott et al., 2004).
However, it is still unclear why and how the NC diet induces muscle
AMPKβ1 and AMPKγ1 expression in our experimental conditions, and
the mechanism likely involves calcium flux that remains a critical
underexplored area for future investigations (Dunn and Munger, 2020).

The increased level of cellular energy (ATP), described above, can
be used for anabolic pathways. As there was no difference in fat content
in our experimental conditions, we limited our analyses to glycogen-
and protein-biosynthesis. The increased abundance of glycogen
synthases (GYS1 and GYS2) mRNA indicates that the
supplementation of phytase enhances muscle glycogen synthesis.
However, the downregulation of both glycogen branching and
debranching enzyme expression suggests that both glycogenolysis
and glycogenesis are concomitant, a phenomenon known as
glycogen cycling (Landau, 2001). Importantly, it has been shown
that AMPKγ3 mutation increased glycogen content and decreased
triglyceride in human skeletal muscle (Costford et al., 2007), which
suggests that phytase supplementation might regulate breast muscle
glycogen and energy homeostasis via AMPKγ3-AMPKα1/2 interaction.

The enhanced BW along with increased part (breast, wing, tender)
weights suggest that phytase supplementation enhances global and local
(breast muscle) protein synthesis, which is supported by the
upregulation of mTOR-RPS6K and the downregulation of EIF-4BP1
and EIF2α expression (Schmeisser et al., 2017). mTOR is a conserved
serine/threonine kinase and nutrient sensor (Kim et al., 2002), that
belongs to the PI3K-related protein kinase (PIKK) family (Richardson
et al., 2004) and plays a key role in ribosomal biogenesis and protein
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synthesis (Zhang et al., 2014). The well-studied and best-characterized
mTOR-downstream cascade is the translation regulator 4E-BP1-S6K1,
both of which contain TOR signaling (TOS) motifs (Nojima et al., 2003;
Schalm et al., 2003). 4E-BP1 is a translational repressor that inhibits
translation initiation by interfering with the interaction between the cap-
binding protein eIF4E and eIF4G1 (Hara et al., 1997; Zhang et al., 2010;
Thoreen et al., 2012). Activation of EIF2α attenuates global protein
synthesis, except the translation of select mRNA such as the activating
transcription factor 4 (ATF4) (Harding et al., 2003; Nobukuni et al.,
2005). Unlike its inhibitory effect on 4E-BP1 and EIF2α, mTOR activates
P70S6K, which in turn, regulates ribosome function, mRNA processing,
cap-dependent translation initiation and elongation, and then promotes
several cellular processes, including protein production and cell size/
growth (Price et al., 1992; Isotani et al., 1999; Magnuson et al., 2012).
Although the exact mechanism by which phytase supplementation
activates mTOR is not known at this time point, it is possible that
the effect is mediated through high amino acid digestibility, absorption,
and utilization (Nobukuni et al., 2005; Zoncu et al., 2011;Manifava et al.,
2016). Indeed, exogenous phytase fed at high dose has been reported to
induce a rapid and complete breakdown of phytate in diets, reducing the
anti-nutritional effects, and thereby eliciting a greater amino acid
utilization (Amerah et al., 2014; Sommerfeld et al., 2018; Siegert
et al., 2021). Moreover, it is plausible that phytase activates mTOR
via available phosphorus-stimulating AKT pathway (Simons et al., 1990;
Jin et al., 2009; Liu et al., 2017). Although it was not functionally
demonstrated here, it is very likely that phytase activates mTOR via
glucose-AMPK pathway (Leprivier and Rotblat, 2020; Rumala et al.,
2020; Caligaris et al., 2023), whichmerits future in-depth investigation. It
is logical also to hypothesize that phytase supplementation might
activate mTOR pathway via increased inositol (Kim et al., 2011;
Badodi et al., 2021) and/or improvement of oxygen homeostasis
(Miloslavski et al., 2014; Greene et al., 2019; Zhu et al., 2020), that
warrants further consideration.

In summary, this is the first report, to the best of our knowledge,
showing potential new mechanisms evolving glucose metabolism
and AMPK-mTOR pathway, by which the novel phytase improves
growth and reduces WB myopathy. This opens a new vista and
provides a framework for future in-depth mechanistic research
using different chicken strains.
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