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Torsades de pointes (TdP) is a type of ventricular arrhythmia that can lead to
sudden cardiac death. Drug-induced TdP has been an important concern for
researchers and international regulatory boards. The Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative was proposed that integrates in vitro testing
and computational models of cardiac ion channels and human cardiomyocyte
cells to evaluate the proarrhythmic risk of drugs. The TdP risk classification
performance using only a single TdP metric may require some improvements
because of information limitations and the instability of generalizing results. This
study evaluates the performance of TdP metrics from the in silico simulations of
the Tomek–O’Hara Rudy (ToR–ORd) ventricular cell model for classifying the
TdP risk of drugs. We utilized these metrics as an input to an artificial neural
network (ANN)-based classifier. The ANN model was optimized through
hyperparameter tuning using the grid search (GS) method to find the optimal
model. The study outcomes show an area under the curve (AUC) value of
0.979 for the high-risk category, 0.791 for the intermediate-risk category, and
0.937 for the low-risk category. Therefore, this study successfully demonstrates
the capability of the ToR–ORd ventricular cell model in classifying the TdP risk
into three risk categories, providing new insights into TdP risk
prediction methods.
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1 Introduction

The development of pharmaceuticals is crucial due to the potential risk of Torsades de
Pointes (TdP). For that reason, in the 1990s–2000s, several drugs were withdrawn from the
market due to their tendency to induce TdP (Wood and Roden, 2004; Sager et al., 2014). The
potential risk associated with TdP occurs because of the pharmacological inhibition of
human ether-a-go-go-related gene (hERG) ion channels, which regulate the rapid
component of the delayed rectifier current (IKr) and prolong the QT interval during
drug administration, and it may potentially be life-threatening to consumers. Responding to
these concerns, the International Council for Harmonization (ICH) established the
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E14 guidelines for the clinical evaluation and the S7B guidelines for
the non-clinical assessment of drug cardiotoxicity and ventricular
repolarization (Cavero and Crumb, 2005; Crumb et al., 2016).

Nevertheless, these guidelines have limitations, including the
need for detailed clinical trials and having a high level of sensitivity
with low specificity, which may obstruct the development of
therapeutic drugs capable of prolonging the QT interval without
inducing TdP (Llopis-Lorente et al., 2020). The Comprehensive
in vitro Proarrhythmia Assay (CiPA) initiative was proposed by the
Food and Drug Administration (FDA) during a Think Tank
meeting in the United States in July 2013. It involves four
working groups focusing on in vitro ion channel studies, in silico
modeling of ion channel study results, cardiomyocyte studies, and
searching for biomarkers other than QTc in human
electrocardiography (ECG) (Crumb et al., 2016).

The development of the O’Hara Rudy (ORd) ventricular cell
model was observed in disease-free human ventricular cells from a
wealth of experimental data obtained from healthy individuals
(O’Hara et al., 2011). A previous study introduced and applied
the dynamic hERG pharmacological model to the ORd model (IKr-
dyn ORd model) (Li et al., 2017). Furthermore, a follow-up study
improved the ORdmodel with the dynamic hERG by rescaling some
major ionic currents, including IKs, L-type calcium current (ICaL),
IKr, sodium current (INa), and inward rectifier current (IK1)
(CiPAORdv1.0 model) (Dutta et al., 2017). The ventricular cell
model enables the simulation of cellular responses to a range of
stimuli or conditions that potentially induce TdP, offering a deeper
insight into how alterations at the cellular level can impact the risk of
arrhythmias like TdP. This modeling approach allows for the
generation of various in silico biomarkers from action potential
(AP), calcium concentration (Ca), and net charges (qNet
and qInward).

Several studies have applied various TdP metrics from the ORd
or CiPAORdv1.0 ventricular cell model to classify TdP risks
(Mirams et al., 2011; Lancaster and Sobie, 2016; Passini et al.,
2017; Li et al., 2019; Yoo et al., 2021; Jeong et al., 2022). In their
study, Mirams et al. (2011) utilized the ventricular cell model
developed by Grandi et al. (2010). APD90 was the reference
parameter for assessing APD50, APD90, triangulation, and
maximum restitution. In the machine learning process, APD50,
APD90, triangulation of the action potential duration (APD), and
maximum restitution of APD were used. Nevertheless, the
integration of these parameters resulted in marginally enhanced
leave-one-out cross-validation scores that may be attributable to the
potential occurrence of overfitting in the model.

The FDA proposed using qNet and qInward, which were
calculated through in silico simulations that show promising
metrics for categorizing the proarrhythmic risk of drugs (Strauss
et al., 2019). A previous study suggested qNet as a single metric from
the CiPAORdv1.0 ventricular cell model to classify TdP risk into
high- and low-risk categories using ordinal logistic regression (Li
et al., 2019). In addition, a study proposed the utilization of
13 electrophysiological features (upstroke velocity, peak voltage,
APD50, APD at −60 mV, APD90, resting voltage, AP
triangulation, diastolic [Ca2+]i, amplitude of Catransient, peak
[Ca2+]i, CaD50, CaD90, and Catri) as appropriate parameters in
implementing statistical and machine learning models to perform
the binary classification of various drugs into two categories: TdP+

(posing a risk of TdP) or TdP− (lacking TdP risk) (Parikh
et al., 2017).

A dataset comprising 86 drugs from the studies conducted by
Mirams et al. (2011) and Kramer et al. (2013) has been used as a
computational methodology that integrates simulations of drug
effects on cardiac dynamics with statistical analyses and machine
learning techniques to classify TdP risks. The combination of
drug simulation data and statistical analysis employing the
support vector machine (SVM) algorithm shows good
performance, where the AUC value is 0.86. This approach
relies on metrics computed from the action potential duration
at 90% repolarization (APD90) and the Caresting waveform. This
approach delivers superior risk prediction capabilities by
incorporating insights derived from cardiac cells (Lancaster
and Sobie, 2016).

Furthermore, the Tomek–O’Hara Rudy (ToR–ORd)
ventricular cell model proposed by Tomek et al. (2019)
represents an improvement over the ORd ventricular cell
model. The ORd cell model shows that the AP plateau
exhibits a higher value than the experimental data employed.
The dynamics of AP duration accommodation to heart rate
acceleration or sodium behavior demonstrates limited
agreement (Tomek et al., 2019). Therefore, the ToR–ORd
ventricular cell model revised equations for the ICaL, calcium-
sensitive chloride current I(Ca)Cl, chloride background current
(IClb), INa, IK1, and IKr to replicate AP waveforms (Tomek
et al., 2019). The ICaL revision was based on the
Goldman–Hodgkin–Katz (GHK) flux equation with the ionic
activity coefficient derived from the Davies equation and
Debye–Huckel theory, according to the studies by Magyar
et al. (2000), and INa was substituted with an alternative
formulation derived by Grandi et al. (2010), providing a more
precise representation of sodium current behavior in human
ventricular myocardial cells (Grandi et al., 2010; Tomek et al.,
2019). Moreover, the ToR–ORd ventricular cell model modified
INa to incorporate changes resulting from CaMKII
phosphorylation, a critical regulatory mechanism in cardiac
electrophysiology (Tomek et al., 2019). The ToR–ORd model
was developed through a comprehensive calibration and
validation strategy, encompassing rigorous calibration criteria
(Han et al., 2020). Concurrently, the authors found that calcium
concentrations and sodium homeostasis remain constant under
conditions simulating high potential, which is consistent with
available experimental data.

A recent study validated 12 in silico features, i.e., 6 AP features
(APD50, dVmdt max, dVmdt max repolVmpeak, APD90, APD50, and APDtri),
4 calcium features (Capeak; CaD90; CaD50; and CaDtri), and 2 net
charge features (qInward and qNet), derived from the ToR–ORd
ventricular cell model affected by drugs (Jeong et al., 2022). The
study classified TdP risk (high, intermediate, and low) using ordinal
logistic regression (OLR) for each TdP metric. However, using a
single TdP metric demonstrated low performance. This is attributed
to the complexity of TdP phenomena involving various aspects of
cellular electrophysiology, rendering a single feature insufficient to
encompass all relevant variations and interactions in TdP risks.

In this study, we assess the diversity of in silico metrics for TdP,
encompassing various aspects of cellular electrophysiological
changes induced by drug influence. Consequently, the primary
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objective of this research is to leverage the nine available features
from the ToR–ORd ventricular cell model to classify TdP risk. This
is achieved by using an optimized artificial neural network (ANN)
through the grid search (GS) process for hyperparameter tuning and
integrating explainable artificial intelligence (XAI) with SHapley
Additive exPlanation (SHAP) values into the analysis.

2 Research methods

Figure 1 illustrates the comprehensive methodology, which
includes several stages. The first step involved generating drug
samples using the Markov chain Monte Carlo (MCMC)
method. Then, biomarkers were produced from in silico
simulation. The biomarkers acted as features for the ANN to
predict the TdP risk of drugs. Finally, the ANN model was
optimized by GS hyperparameter optimization and feature
selection using XAI.

2.1 In vitro experimental dataset and MCMC
simulation

This study evaluated the drug toxicity risk using 28 drugs from
the in vitro dataset, as shown in Table 1 (Li et al., 2019). This dataset
applied the inhibition levels of four ion channels (INaL, INa, ICaL,
and IKr) for training and testing datasets. For the dose–response
analysis, the data that are uploaded by the CiPA group are accessible
at https://github.com/FDA/CiPA/tree/Model-Validation-2018/
Hill_Fitting/data. We also applied the same Hill fitting method
used by Li et al. (2019) to ensure the consistency and validity of our
analysis. This technique produced 2,000 Hill curves illustrating the
relationship between ion channel blockade and drug concentration
described by drug concentrations leading to the half-maximal
inhibitory concentration (IC50) values of the ionic channels and
the slope of the Hill curve (h or Hill coefficient). Finally, the
2,000 IC50 values and h samples for each drug were used as
inputs for in silico simulations.

FIGURE 1
Proposed torsades de pointes (TdP) risk evaluationmethod. This study utilized 2,000Hill samples from in vitro patch-clamp data provided by Li et al.
(2019). These samples were subsequently integrated into the ToR–ORd in silico ventricular cell model, given 28 different drugs at 4 maximum
concentration levels (Cmax 1-4), resulting in 2,000 samples for 9 key TdP features. The average sample values were calculated for each sample based on
the results obtained at the four distinct drug concentration levels. Then, the dataset was segmented into 2 parts: a training dataset consisting of
24,000 samples (12 drugs × 2,000 samples) used in the artificial neural network (ANN) classifier model and a testing dataset consisting of 32,000 samples
(16 drugs × 2,000 samples) for evaluation through 10,000 testing iterations.
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2.2 Preprocessing and the ToR–ORd in silico
ventricular cell model

This study used the in silico ToR–ORd ventricular cell model to
simulate cardiomyocyte electrophysiology. The in silico simulator was
developed using the C++ programming language as the underlying
code supported by libraries such as CVode to solve differential
equations. The in silico simulator code is given in Supplementary
Material S1. The effects of drugs on myocardial cells were quantified
using Eq. 1, which includes the IC50 parameter that represents the
concentration at which the half-maximal effect is caused, the Hill
coefficient determining the dose–response curve (H), and drug
concentration (D). We used Eq. 1 to calculate the inhibitory factor,
which indicates how the drug impacts the in silicoToR–ORd ventricular
cell model. Eq. 2 describes themaximum conductance g of ion channel i
under the drug effect. Note that gcontrol,i represents the maximum
conductance of the ion channel without the drug effect.

Inhibition factor � 1

1 + IC50
D| |( )h (1)

gi � gcontrol,i 1 − inhibition factor( ) (2)

In this study, we implemented four different concentrations for
each type of drug for in silico simulations. Each drug concentration
produced a total of 2,000 samples for each TdP metric, and we
utilized a cumulative total of 8,000 samples (2,000 samples for each
of the 4 drug concentrations) as the input. One beat with the highest

dVm
dtmax repol

among the last 250 beats was selected for generating TdP
metrics (Chang et al., 2017). Through these simulations, the

electrophysiological response of human ventricular myocytes was
influenced by the drug effects with 1,000 pacing cycles with a
duration of 2,000 milliseconds (ms) for each pacing.

We utilize a set of metrics to analyze the impact of drugs on human
ventricular cardiac cells. These metrics encompass the concept of net
charge, with qNet reflecting the total charge alteration during the
simulation, along with qInward, which measures the inward charge
during the simulation, as expressed by Eqs 3, 4:

qNet � ∫BCL

0
IKr + ICaL + INaL + Ito + IKs + IK1( )dt (3)

qInward � 1
2

∫BCL

0
INaL,drugdt

∫BCL

0
INaL,controldt

+ ∫BCL

0
ICaL,drugdt

∫BCL

0
ICaL,controldt

⎛⎝ ⎞⎠ (4)

Furthermore, we consider calcium-related metrics, such as
CaD90, indicating when calcium reaches 90% repolarization
during the cycle. CaD50 measures the time when calcium reaches
50% repolarization during the cycle, and Caresting is used for
assessing the calcium level during the relaxation phase. We also
consider metrics related to APs, including dVm

dt max, which represents
the maximum rate of change in the membrane potential during the
depolarization phase of the AP cycle. APD90 indicates the duration
of the AP at 90% repolarization, while APD50 measures the duration
of the AP at 50% repolarization. Lastly, the Vmresting metric
measures the AP duration during the resting phase.

Using drug samples generated using the MCMC process, we
acquired 56,000 samples (2,000 samples × 28 types of drugs). From
the 28 drug types released by the CiPA group, as given in Table 1, we
selected 12 drugs as the training dataset. Therefore, we utilized

TABLE 1 Drug information based on the Comprehensive in vitro Proarrhythmia Assay (CiPA) guideline (Li et al., 2019).

Proarrhythmic risk level Train drugs Test drugs

Cmax (nM) Drug name Cmax (nM) Drug name

High 33 Bepridil 70 Azimilide

2 Dofetilide 742 Disopyramide

1,439 Sotalol 100 Ibutilide

3,237 Quinidine 255.4 Vandetanib

Intermediate 2.6 Cisapride 0.26 Astemizole

38 Chlorpromazine 1,206 Clarithromycin

139 Ondansetron 71 Clozapine

4 Terfenadine 19 Domperidone

6.33 Droperidol

0.431 Pimozide

1.81 Risperidone

Low 122 Diltiazem 0.45 Loratadine

4,129 Mexiletine 1,800 Metoprolol

1,948.2 Ranolazine 7.7 Nifedipine

81 Verapamil 3.02 Nitrendipine

21 Tamoxifen
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24,000 samples (2,000 samples × 12 drugs). Each sample consists of
nine TdP metrics, and it will be used as the input data in the ANN
simulation that will be optimized by GS. We implemented all
machine learning and model evaluation codes within a Jupyter
Notebook using Python programming. The simulation code of
our proposed model is given in Supplementary Material S1.

2.3 The proposed ANN optimization by
grid search

This study divided 56,000 samples generated from in silico
simulations into 2 sets to develop and evaluate an ANN model.
The first set, comprising 24,000 samples with 2,000 samples for
12 different drugs each, was designated as the training dataset. To
ensure the accuracy and robustness of the ANNmodel, we employed
a 10-fold cross-validation method during the training process. In
each cross-validation iteration, 21,600 samples were used for
training and 2,400 samples for validation, which enabled a
comprehensive assessment of the model performance across
different subsets of training data. The remaining 32,000 samples,
corresponding to 2,000 samples for 16 other drugs each, formed the
testing dataset. This ensured a rigorous evaluation of the ANN’s
predictive capabilities on unseen data. Accordingly, the model is
both generalizable and effective in simulating drug effects based on
the diverse profiles of the drugs.

We implemented the GS hyperparameter optimization
approach in the ANN classifier. This approach aims to identify
the optimal parameter configuration capable of achieving optimal
performance for a machine learning architecture. A GS
systematically tests all possible combinations of the provided
parameters. It evaluates the model performance for each
hyperparameter combination, and this process requires training
and evaluating the model using various parameter combinations.
The results of these evaluations then serve as the basis for selecting
the parameter combination that yields the best performance.

We propose various hyperparameters, including batch size (32 and
64), optimization (RMSprop and Adam), the number of neurons in the
hidden layers (5, 6, and 7), learning rates (0.1, 0.001, and 0.01), and
alpha values (0.1, 0.01, 0.001, 0.2, 0.02, and 0.002). Here, regularization
techniques lasso (L1) and ridge (L2) (0.01) were utilized in the first
hidden layer to control complexity and mitigate overfitting. In each
iteration, GS combined each existing parameter value (e.g., the
combination of a batch size of 32 with RMSprop optimization,
5 neurons, a learning rate of 0.1, and an alpha value of 0.001). The
ANN model was updated and evaluated using multiple parameter
combinations. This process was repeated for all possible combinations,
resulting in parameter combinations that provide the best performance
on the dataset. The results from this ANN model were employed for
classifying the TdP risk of drugs, which are high risk, intermediate risk,
and lowrisk. The classification process utilized the output of the softmax
function to generate risk probabilities.

2.4 Explainable AI using the ANN classifier

In XAI, SHAP values are important because they offer a
consistent and theoretical way to measure how each feature

contributes to prediction accuracy. Applying SHAP values to
complex models such as an ANN is recommended since complex
models cannot be explained easily using intrinsic explanations
(Zhang et al., 2020; Thisovithan et al., 2023). A SHAP value
analysis provides an insight into the contribution of each feature
member to the collation value of a model. The results of SHAP
values can be considered in light of the contribution made by each
feature that has a positive or negative impact on the target output.
The SHAP value for a specific data point is described in Eqs 5, 6,
where X represents the feature value vector (which needs to
be explained), S indicates the input feature subset, and the
Shapley value can be obtained through the value function
fx(S) � E [f(x) | xs].

∅i � ∑ S⊆ 1, . . . , p{ } i{ } S| |! p − S| | − 1( )!
p!

(5)

fx S ∪ i{ }( ) − fx S( )[ ] (6)

2.5 Model evaluation

In order to assess the effectiveness of a classification model,
we implemented 10,000 test protocols as outlined in the CiPA
initiative by Li et al. (2019), as shown in Figure 2. The dataset
encompassed 32,000 samples, comprising 16 drug categories
containing 2,000 samples. We generated 10,000 random
sample subsets from this dataset covering all 16 drug
categories. The model was evaluated by generating
10,000 receiver operating characteristic (ROC) curves for each
risk category: high, intermediate, and low. The model
performance was then statistically assessed by calculating the
area under the ROC curve (AUC), positive and negative
likelihood ratios, and the average classification error to
measure the model accuracy.

The positive and negative likelihood ratios were determined
using Eqs 6, 7. Model sensitivity and specificity are two essential
components of these ratios. Sensitivity and specificity were
calculated based on Eqs 8, 9, where a true positive (TP) defines
the number of positive cases accurately identified by the model; true
negative (TN) refers to accurately predicted negative cases; false
positive (FP) indicates negative cases erroneously predicted as
positive; and false negative (FN) represents positive cases
mistakenly classified as negative.

Likelihood ratio positive LR+( ) � Sensitivity

1 − specificity
(7)

Likelihood ratio negative LR−( ) � 1 − sensitivity

specificity
(8)

Sensitivity � TP/ TP + FN( ) (9)
Specificity � TN/ TN + FP( ) (10)

Based on the ROC curve, the AUC indicates the ability of the
model to distinguish between positive and negative classes by
measuring the relationship between the true positive rate (TPR)
and false positive rate (FPR) using Eqs 10, 11. The TPR measures
how sensitive the model is to identifying positive cases, whereas the
FPR measures how often the model generates false positive
predictions in negative situations.
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False positive rate FPR( ) � FP

FP + TN
(11)

True Positive rate TPR( ) � TP

TP + FN
(12)

The model performance was evaluated using median values
and 95% confidence intervals, calculated from the 2.5th to
97.5th percentiles of the test outcomes. Meanwhile, the 95%
confidence interval for the average error was determined using
the formula mean ±1.96 * SD/√N, where SD is the standard
deviation of the error and N indicates the total number of

samples (16 drug tests multiplied by 2,000 samples for
validation).

3 Results

This study classified TdP risk with various drugs inducing TdP
metrics within the ToR–ORd ventricular in silico cell model. We
implemented 10-fold cross-validation using the GS method to train
12 drugs using the ANN classifier. We employed the GS method for
automatic hyperparameter tuning to select the optimal parameters for the
ANN classifier. The detailed structure of the ANN model, based on the
GS simulation results, is shown in Figure 3. According to the GSmethod,
six neurons were used in the first layer and five neurons in the second
layer, with an alpha value of 0.1 applied to the activation function for the
leaky ReLU for both layers. The model was optimized using Adam as the
optimizer and trained for 200 epochs with a learning rate of 0.001. The
training process was conducted using a batch size of 32. The outcomes
obtained from this ANN model classified the TdP drug risks into three
risk categories: high, intermediate, and low. This classification was
achieved through the output layer utilizing the softmax function to
generate risk probabilities. The model performance was evaluated
through a 10-fold cross-validation procedure to validate the robustness
of the model. Subsequently, the best-performing model was tested using
16 test datasets and subjected to 10,000 iterations of testing.

Furthermore, we analyzed nine features (dVdt max; Vmresting;
APD90; APD50; Caresting; CaD90; CaD50; qNet; and qInward) from
the training dataset to assess feature contributions to each class. By
using the ANN classifier, we performed feature importance analysis

FIGURE 2
Schematic diagram of the 10,000 test algorithms based on the the study by Jeong et al. (2022).

FIGURE 3
ANN architecture optimized by grid search (GS) hyperparameter
optimization.
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using the SHAP method (Zhang et al., 2020; Yunendah et al., 2023)
to evaluate feature contributions to the ANN classifier. Figure 4
shows SHAP values obtained from the trained ANN model to
classify TdP risk. SHAP values provide an interpretative method
for understanding the influence of each feature on the predictions
generated by the model.

In the context of TdP risk induced by various drugs, Figure 4 shows
that certain features exhibit higher SHAP values, indicating a dominant
role in influencing the model decisions. Conversely, features with lower
SHAP values contribute minimally to the model decisions in classifying
TdP risk. Based on the SHAP results given in Figure 4, qInward
demonstrates the most dominant contribution to both high- and
low-risk classes, followed by CaD50, CaD90, APD50, APD90, and
qNet. Meanwhile, Caresting, Vmresting, and dV

dt max show minimal
contributions to these classification. In order to analyze the
performance of each feature, we conducted individual feature
analyses within the ordinal logistic regression model. As shown in
Table 2, qNet, APD50, qInward, and CaD50 achieved high
performances for high risk.

Furthermore, we examined the feature importance rankings
provided by the SHAP values for the ANN classifier using nine
features. Subsequently, this analytical process was expanded with
additional experiments involving the reduction of features that did
not show significant contributions based on the SHAP value analysis.
The top feature groups, analyzed based on their contributions to the
model, comprised five, six, seven, and eight top features. Among them,
the group with five features consisted of qInward, qNet, CaD50, CaD90,
andAPD50. Then, the top six feature groupswere qInward, qNet, CaD50,
CaD90, APD50, and APD90. The group of the top seven features
consisted of qInward, qNet, CaD50, CaD90, APD50, APD90, and
Caresting. In addition, the group of the top eight features encompassed
qInward, qNet, CaD50, CaD90, APD50, APD90, Caresting, and Vmresting.
This analysis provided an insight into the importance of each feature in
the context of TdP risk induced by various drugs.

Table 3 shows the evaluation of the performance of a predictive
model in simulations. In the configuration with 5 features, the model
demonstrated an effective ability with an AUC of 0.930 for high risk
and 0.901 for low risk, indicating a good capacity in identifying low-
risk events. Meanwhile, the positive likelihood ratio (LR+) was
5.99994, and the negative likelihood ratio (LR−) was 0.583333 for
high risk. The average classification error in this configuration was
the highest, at 26.5%.

With the addition of 6 features, an increase was observed in theAUC
to 0.937 for high risk and 0.777 for intermediate risk, along with a
decrease in the average classification error to 23.9%. This increase
indicates that adding features provides additional benefits to the
discriminative performance of the model. LR+ increased to 6.599,
indicating improved predictive performance of the model for positive
classification, while LR− decreased to 0.523, indicating improvement in
the model ability to exclude high risk in negative results.

In the configuration using 7 features, a significant increase was
observed in the AUC for high risk to 0.961, indicating excellent
model performance. Meanwhile, the AUC for intermediate risk also
increased to 0.780 and low risk increased to 0.917. LR+ for high risk
significantly increased to 400,000.3, indicating substantial
improvement in predicting high-risk positives. Although LR−
experienced a slight increase to 0.533, the average classification
error decreased to 21.7%, reflecting increased predictive accuracy.

The configuration with eight features showed a slight decrease in
the AUC for high and intermediate risks. However, the AUC for low
risk increased slightly to 0.927. LR+ remained high at 400,000.9,
maintaining substantial predictive strength for positive classification,
while LR− showed a remarkable decrease to 0.312, indicating improved
performance in excluding high risk in negative results. The average
classification error remained stable at 22.5%, indicating consistent
predictive accuracy with adding the eighth feature.

In our experiment, we observed that using nine features shows
optimal classification performance. Table 3 shows that the model

FIGURE 4
Feature importance ranking based on the SHapley Additive exPlanation (SHAP) values from explainable artificial intelligence (XAI) with the ANN,
which was optimized by GS hyperparameter optimization.
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TABLE 2 Single feature performance evaluation.

AUC LR+ LR− Mean
classification

errorHigh Inter Low High Inter Low High Inter Low

qNet 0.8750 (0.8125,
0.9375)

0.6984 (0.6508,
0.7619)

0.8364 (0.7818,
0.8727)

500,000.9866
(499999.9937,
500001.9775)

1.5238
(1.2857,
2.5000)

2.9333 (2.2000,
8.7999)

0.5000
(0.5000,
0.5000)

0.6857
(0.2857,
0.8571)

0.2750 (0.2200, 0.5500) 0.3731 (0.3677, 0.3785)

APD50 0.8750
(0.8125–0.9583)

0.6984
(0.6349–0.7460)

0.8000
(0.7455–0.8545)

500,000.9954
(500,000.0068,
500,001.9821)

1.2857
(0.7857,
1.9286)

1.7600 (1.3200,
2.7500)

0.5000
(0.5000,
0.5000)

0.8571
(0.6531,
1.1224)

0.4400 (0.2750, 0.7333) 0.4931 (0.4872, 0.4991)

qInward 0.8542 (0.7708,
0.9167)

0.6508 (0.5556,
0.7143)

0.8000 (0.7455,
0.8727)

5.9999 (3.0000,
500001.5687)

1.2000
(0.9524,
1.5000)

400000.2076 (2.2000,
400001.6751)

0.5455
(0.2727,
0.6000)

0.5000
(0.0000,
1.1429)

0.6000 (0.6000, 0.8800) 0.4022 (0.3968, 0.4076)

APD90 0.7455
(0.6905–0.8000)

0.6667
(0.6032–0.7143)

0.7455
(0.6905–0.8000)

500,000.9979
(500,000.0056,
500,001.9745)

1.0714
(0.7857,
1.7143)

1.3200 (1.1000,
2.2000)

0.5000
(0.5000,
0.5000)

0.9524
(0.7143,
1.1224)

0.7333 (0.3667, 0.8800) 0.5344 (0.5283, 0.5405)

CaD50 0.8646 (0.7917,
0.8958)

0.5238 (0.4683,
0.5794)

0.7091 (0.6455,
0.7273)

3.0000 (3.0000, 5.9999) 0.0000
(0.0000,
1.0000)

0.9429 (0.8250,
1.2571)

0.6000
(0.5455,
0.6000)

1.2000
(1.0000,
1.3333)

1.1000 (0.5500, 1.4667) 0.8194 (0.8122, 0.8265)

CaD90 0.2708 (0.2292,
0.3333)

0.6508 (0.5635,
0.7222)

0.5273 (0.4909,
0.6000)

0.7500 (0.6667, 0.7500) 1.0000
(1.0000,
1.0000)

2.2000 (1.4667,
2.2000)

1.5000
(1.5000,
2.0000)

1.0000
(1.0000,
1.0000)

0.5500 (0.5500, 0.8250) 0.9431 (0.9349, 0.9513)

Ca_Diastole 0.4062 (0.3229,
0.4896)

0.5952 (0.5079,
0.6667)

0.5000 (0.4636,
0.5455)

0.0000 (0.0000, 1.0000) 1.1429
(0.8571,
1.5238)

2.2000 (1.4667,
2.2000)

1.3333
(1.0000,
1.5000)

0.8571
(0.6857,
1.1429)

0.7333 (0.7333, 0.8250) 0.7743 (0.7665, 0.7821)

dVm_dt_Max 0.6364 (0.4364,
0.7273)

0.7143 (0.5714,
0.8571)

0.5000 (0.3542,
0.6042)

0.0000 (0.0000, 3.0000) 1.5238
(0.8571,
4.0000)

2.2000 (1.1000,
4.4000)

1.2000
(0.8182,
1.5000)

0.5714
(0.2143,
1.1429)

0.5500 (0.2444, 0.9429) 0.6720 (0.6639, 0.6801)

Vm_Resting 0.1458 (0.0833,
0.2292)

0.5079 (0.4444,
0.5873)

0.1818 (0.1273,
0.2364)

0.5000 (0.5000, 0.5000) 0.0000
(0.0000,
0.0000)

0.0000 (0.0000,
1.0000)

1.1000
(1.0000,
1.1000)

1.1250
(1.1250,
1.2857)

500,001.0122
(500,000.0253,
500,001.9961)

1.2286 (1.2215, 1.2358)
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TABLE 3 Model performance evaluation after 10,000 iterations. The features were grouped according to SHAP values, as illustrated in Figure 4. The feature with the lowest ranking in the SHAP value analysis was
eliminated first. Proarrhythmic risk is classified as high, intermediate, and low. The Area Under the Curve (AUC), Likelihood Ratio Positive (LR+), Likelihood Ratio Negative (LR−), and mean classification error were
utilized for model evaluation.

Performance
evaluation

Number of
features

Li et al. (2019)

5 6 7 8 9

AUC High 0.930 (0.850–0.981) 0.937 (0.8125–1.0) 0.961 (0.901–1.0) 0.943 (0.791, 0.958) 0.979 (0.895, 1.0) 0.89 (0.84–0.95)

Inter 0.750 (0.666–0.834) 0.777 (0.6667–0.8254) 0.780 (0.670–0.831) 0.730 (0.634, 0.793) 0.791 (0.708, 0.875) -

Low 0.901 (0.818–0.916) 0.900 (0.810–0.961) 0.917 (0.833–1.0) 0.927 (0.854, 0.981) 0.937 (0.854, 0.958) 1 (0.92–1)

LR+ High 5.99994 (5.9999400005–5.9999400008) 6.599 (3.299–600,001.206) 400,000.3 (2.1999–400,001.7) 400,000.9 (200,000.7, 400,001.7) 400,000.3 (2.199, 400,001.6) 4.5 (2.5–5)

Inter 1.571427 (1.428570–1.714284) 1.71 (1.428–1.857) 2.399 (2.199–2.599) 2.4 (2.2, 2.6) 2.6 (2.4, 2.6) -

Low 3.299987 (1.649998–6.599938) 5.99994 (2.999988–5.999940) 250,001 (250,000.5–500,001.4) 5.999 (2.999, 500002.3) 250,001 (250,000.4, 250001.5) 12 (4.5–1e+06)

LR− High 0.583333 (0.312500–0.5833338) 0.312 (0.0–0.5909) 0.318 (1.333331588936186e-06–0.6111) 0.812 (0.5833, 0.8125) 1.444E-06 (1.363e-06, 0.333) 0.11 (1.2e-06–0.23)

Inter 0.52381 (0.285715–0.571429) 0.523 (0.2653–0.7714) 0.643 (0.464, 0.714) 0.357 (0.314, 0.642) 0.642 (0.464, 0.816) -

Low 0.533334 (0.520000–0.550000) 0.533 (0.52–0.55) 0.533 (0.520, 0.550) 0.520 (0.52, 0.5333) 0.520000624 (0.520000624, 0.533) 1.1e-06 (1e-06–0.3)

Mean classification
error

0.265 (0.142–0.276) 0.239 (0.136–0.304) 0.217 (0.136–0.304) 0.225 (0.213–0.315) 0.214 (0.145–0.279) 0.194 (0.1973–0.1975)

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

0
9

M
ah

ard
ika

T
e
t
al.

10
.3
3
8
9
/fp

h
ys.2

0
2
4
.13

74
3
5
5

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1374355


achieved an AUC of 0.979 for high risk, with a 95% confidence
interval of 0.895–1.0. For intermediate risk, the obtained AUC was
0.791, with a 95% confidence interval between 0.708 and 0.875.
Regarding low risk, the AUC value was 0.937, with a 95% confidence
interval between 0.854 and 0.958. The distribution of the AUC
utilizing nine features in the ANN is shown in Figure 5. LR+ for high
risk remained high at 400,000.3, indicating strong predictive
performance for high-risk positive classification. LR− remained
low at 0.533, suggesting that the model effectively excludes high
risk in negative cases. The average classification error decreased to
21.4%, indicating that the further addition of features correlates with
the highest observed accuracy among all feature sets.

Therefore, this experiment shows that removing specific features
does not significantly affect the performance of the classification model.
Based on this finding, the eliminated features may not play a significant
role in the decision-making process by the ANN classifier. Table 3
illustrates the performance achieved by the ANN classifier using the
complete set of nine features and the reduced feature set. The ANN
classifier model performs better with the complete set of nine features
than with the reduced feature group.

4 Discussion

In this study, our primary objective was to evaluate TdP risk
prediction by employing the ToR–ORd model. We used 28 drug
datasets through the CiPA, as shown in Table 1. This study presents
the potential applicability of nine TdPmetrics (dVdt max; Vmresting; APD90;
APD50; Caresting; CaD90; CaD50; qNet; and qInward) to predict TdP
risks. We employed these metrics with an ANN classifier. Furthermore,
we fine-tuned them through the hyperparameter optimization process
known as GS to categorize TdP risks effectively.

Previous research proposed an algorithm for assessing the risk of
TdP classification based on ion channel measurements that are
affected by the drugs and obtained through in vitro experiments
(Crumb et al., 2016; Li et al., 2017; Li et al., 2019; Parikh et al., 2017).
The CiPA research group recommends the calculation of qNet,
which is the sum of ion charges passing through six ion channels
(INaL, ICaL, IKr, IKs, and Ito) (Li et al., 2017). A previous study
utilized qNet as a single in silico biomarker under the IKr-dyn ORd
cell model to classify TdP risks (high and low risks) using ordinal

logistic regression and successfully obtained superior performances,
whereas the performance was decreased when utilized without
hERG (static) (Li et al., 2019). However, involving the dynamic
hERG channel model to analyze the in vitro experimental data often
exhibits significant challenges. As shown by the work of the CiPA
group (Li et al., 2019), the authors provided a “hybrid” dataset by
combining the dynamic hERG parameters obtained from “manual”
patch-clamp experiments using a high-throughput automated
patch-clamp system (HTS) that did not capture dynamic hERG
model parameters, indicating possible challenging conditions to
replicate the dynamic hERG experiments.

A previous study successfully obtained higher performances for
classifying TdP risks by implementing several features under the
CiPAORdv1.0 ventricular in silico cell model without incorporating
the dynamic hERG into the machine learning process (Yoo et al., 2021).
The use of AP morphology, calcium transient morphology, and charge
features allowed for a more comprehensive evaluation of drug
cardiotoxicity and enhanced the accuracy of drug toxicity
assessments, consistent with the findings obtained by Lancaster and
Sobie (2016). Nevertheless, the significance of each feature in influencing
the TdP risk classification performance of the machine learning model
was not elaborated. Identifying themost influential feature for classifying
between high, intermediate, and low risks is essential. Feature analysis
can assist the development of a more simplified and efficient model by
focusing solely on the most relevant features.

A previous study utilized the ToR–ORd model to evaluate the TdP
metrics derived from single APs, intracellular calcium dynamics, and
ionic charge obtained from the effects of drugs on the ToR–ORd
ventricular cell model to classify TdP risks using ordinal logistic
regression (Jeong et al., 2022). However, using single TdP metrics
from the in silico models for classifying the TdP risks is challenging to
handle complex or non-linear relationships between independent and
dependent variables. The dependent variable is influenced by various
factors that interact simultaneously, necessitating the incorporation of
multiple features to gain a more precise understanding of these intricate
relationships. Thus, using several TdPmetrics could enhance the model
capacity for addressing complex issues, as done by Yoo et al. (2021).

In this study, we evaluated the performance of machine learning
classification in predicting TdP risk groups: high, intermediate, and low.
Subsequently, we conducted additional analysis by reducing features
based on the order of feature importance generated from the SHAP

FIGURE 5
Distribution of area under the curves (AUCs) based on the TdP risk using 9 features of 16 test drugs; yellow, red, and green are the AUC distribution
for high, intermediate, and low risks, respectively.
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value analysis. Figure 4 shows qInward as the top-ranked feature,
contributing significantly to the performance of the ANN classifier
model. qInward has the most substantial effect on classification,
particularly in the high-risk category due to alterations in the
electronic charge within the INaL and ICaL ion channels of the
heart. These changes significantly impact cardiac ion currents and
serve as primary triggers for TdP occurrence. In high-risk drugs such as
quinidine, bepridil, sotalol, and dofetilide, qInward demonstrates rapid
and concentration-dependent increases. Higher drug doses correspond
to faster and larger increments in qInward values (Li et al., 2017).
Consistent with our findings, prior research has also highlighted the
dominant role of qInward variability in convolutional neural network
(CNN) classifiers for TdP risk classification (Jeong et al., 2022).

A significant disparity in performance is observed between the qNet
model proposed by Li et al. (2019) and the qNetmodel using ToR–ORd
in silico model. This discrepancy can be ascribed to striking structural
differences in the hERG current between the ORd and ToR–ORd in
silicomodels. Specifically, the ORd in silicomodel integrates additional
components to depict pharmacodynamic effects, while such
components are absent in the ToR–ORd in silico model (Li et al.,
2017; Tomek et al., 2019). Tomek et al. (2019) reported that the
ToR–ORd in silico model remains relevant and effective in
simulating human cardiac electrophysiological responses. This model
generates data that are well aligned with experimental data, indicating
good concordance even without specific optimization. The ToR–ORd
in silico model successfully predicted responses to various ion channel
blockades, including IKr (E-4031), IKs (HMR-1556), multichannel
mexiletine blockade, and ICaL (nisoldipine), which is consistent with
experimental observations.

Subsequently, the ranking of SHAP values for each feature in the
classification contribution of each class is followed by CaD50, CaD90,
APD50, APD90, Vmresting, Caresting, and dV

dt max. Previous studies,
including works by Lancaster and Sobie (2016), Li et al. (2019),
Yunendah et al. (2023), and Yoo et al. (2021), utilized the
significance of these features in classifying TdP risk. However,
our analysis shows that Caresting,Vmresting, and dV

dt max provided
minimal contributions, as shown in Figure 4. Consequently,
Caresting,Vmresting, and dV

dt max have a limited impact on
determining TdP risk in the utilized model.

Based on the SHAP analysis results, we grouped the feature set into
five groups. Among those groups, utilizing nine features demonstrated
superior performance, as shown in Table 3. Our classification
performance evaluation was based on diagnostic accuracy metrics
(Li et al., 2019), where “excellent” was achieved if AUC ≥0.9, “good”
if AUC ≥0.8, and “minimal acceptance” if AUC ≥0.7. Based on Table 3,
we observed an intriguing pattern regarding predictive performance as
the number of features used varied. Beginning with five features, our
model exhibited adequate performance with a sufficiently strong AUC
for both low and high risks, even so with a decreased effectiveness for
intermediate risk. The sixth feature group improves model
performance, indicating classification stability for intermediate and
low risks. However, adding the seventh feature did not consistently
improve the performance, especially in the high-risk category,
suggesting that some additional features may not provide significant
predictive information. Transitioning to eight features did not yield
significant performance changes, indicating no substantial
improvement in accuracy or AUC. Compared to other feature
groups, consistently high AUC performance is observed for the

high-risk class and low-risk class. Meanwhile, the intermediate risks
show performance stability. Feature reduction does not significantly
affect TdP risk classification performance; selecting nine features
provides superior and comprehensive performance in our
predictive model.

Several limitations in this study may require further investigation.
First, while a single ToR–ORd model yields relatively high AUC
performance, integrating population models remains crucial.
Incorporating diverse ventricular APs in in silico models can better
represent the variability of cellular responses to drugs (Tomek et al.,
2019). Therefore, applying these findings to a broader population or
different drugs necessitates further research. Additionally, drug
calibration is necessary to validate arrhythmia prediction models to
ensure alignment with actual drug conditions (Han et al., 2020).

5 Conclusion and future works

This study evaluated nine TdPmetrics from the ToR–ORd in silico
ventricular cell model in predicting TdP risk. Initially, we conducted
training incorporating the training dataset into an ANN to determine
optimum hyperparameters manually through GS. We trained the
optimized ANN model with 9 metrics from 12 training data. The
optimal ANN model was then tested 10,000 times with 16 drugs that
had not been previously used. Next, we analyzed the contribution of
nine features, dVdt max, Vmresting, APD90, APD50, Caresting, CaD90, CaD50,
qNet, and qInward using SHAP value analysis on the ANNmodel. The
SHAP value analysis showed that qInward was the feature that
contributed most dominantly to the model. However, after analyzing
with single qInward using ordinal logistic regression, qInward provided
less satisfactory performance. Furthermore, we conducted an analysis
using all nine features and a reduction of features based on the highest
and lowest contribution orders from SHAP value results. Based on our
findings, reducing features did not significantly impact TdP risk
classification performance. The utilization of all nine TdP features
with theANNyielded the highest performance, i.e., anAUCof 0.979 for
the high-risk category, 0.791 for the intermediate-risk category, and
0.937 for the low-risk category. These findings contribute to the
understanding of utilizing nine features using the ToR–ORd in silico
cell model. However, further research should consider the development
of more complex in silico models that encompass a larger population
with diverse potential actions of human ventricular and drug calibration
to contribute to more significant proarrhythmic risk prediction.
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