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Patients with sickle cell disease (SCD) display an overactive bladder (OAB).
Intravascular hemolysis in SCD is associated with various severe SCD
complications. However, no experimental studies have evaluated the effect of
intravascular hemolysis on bladder function. This study aimed to assess the
effects of intravascular hemolysis on the micturition process and the
contractile mechanisms of the detrusor smooth muscle (DSM) in a mouse
model with phenylhydrazine (PHZ)-induced hemolysis; furthermore, it aimed
to investigate the role of intravascular hemolysis in the dysfunction of nitric oxide
(NO) signaling and in increasing oxidative stress in the bladder. Mice underwent a
void spot assay, and DSM contractions were evaluated in organ baths. The PHZ
group exhibited increased urinary frequency and increased void volumes. DSM
contractile responses to carbachol, KCl, α-β-methylene-ATP, and EFS were
increased in the PHZ group. Protein expression of phosphorylated endothelial
NO synthase (eNOS) (Ser-1177), phosphorylated neuronal NO synthase (nNOS)
(Ser-1417), and phosphorylated vasodilator-stimulated phosphoprotein (VASP)
(Ser-239) decreased in the bladder of the PHZ group. Protein expression of
oxidative stress markers, NOX-2, 3-NT, and 4-HNE, increased in the bladder of
the PHZ group. Our study shows that intravascular hemolysis promotes voiding
dysfunction correlated with alterations in the NO signaling pathway in the
bladder, as evidenced by reduced levels of p-eNOS (Ser-1177), nNOS (Ser-
1417), and p-VASP (Ser-239). The study also showed that intravascular
hemolysis increases oxidative stress in the bladder. Our study indicates that
intravascular hemolysis promotes an OAB phenotype similar to those
observed in patients and mice with SCD.
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1 Introduction

Sickle cell disease (SCD), an autosomal recessive genetic disorder, is
characterized by abnormal hemoglobin S (HbS) production due to a
single amino acid substitution in the β-globin chain (Kato et al., 2018).
This genetic mutation triggers the polymerization of HbS under
hypoxic or dehydrated conditions, forming sickle-shaped
erythrocytes. These altered cells exhibit increased stiffness and a
reduced lifespan, leading to intravascular and extravascular
hemolysis, which are critical features of SCD and contribute to its
diverse clinical manifestations (Kato et al., 2018). A significant
molecular consequence of intravascular hemolysis is the reduction of
nitric oxide (NO) bioavailability due to direct NO-hemoglobin
interaction and increased reactive oxygen species (ROS) production,
which act as NO scavengers (Reiter et al., 2002; Vona et al., 2021). This
reduction in NO is associated with various severe SCD complications,
including leg ulceration, pulmonary hypertension, priapism, and
overactive bladder (OAB) (Nolan et al., 2005; Kato et al., 2006; Cita
et al., 2016).

The functions of the urinary bladder, encompassing urine storage
and voiding, are regulated by a complex interplay of neurotransmitters
(Andersson and Arner, 2004). OAB, a clinical condition marked by
persistent urgency to urinate, may occur with or without urge
incontinence and is commonly accompanied by increased urination
frequency and nocturia (Eapen and Radomski, 2016). Notably, in SCD
patients, the prevalence of OAB is significant, with clinical studies
suggesting that up to 40% of these patients may exhibit symptoms of
OAB (Portocarrero et al., 2012; Anele et al., 2015). A common
contributor to OAB is the heightened contraction of the detrusor
smooth muscle during the urine storage phase, leading to detrusor
overactivity (Michel and Chapple, 2009).

The NO-cyclic guanosine monophosphate (cGMP) signaling
pathway plays an essential role in the normal functioning of the
urinary tract. NO, synthesized by endothelial NO synthase (eNOS)
and neuronal NO synthase (nNOS), is crucial for maintaining the tone
and functionality of detrusor smooth muscle (Burnett et al., 1997;
Mónica et al., 2008; Karakus et al., 2019). NO deficiency has been linked
with the OAB phenotype and increased detrusor smooth muscle
contraction in SCD mice and various experimental models (Khan
et al., 1999; Mónica et al., 2011; Leiria et al., 2013; Leiria et al., 2014;
Karakus et al., 2019; Musicki et al., 2019; Karakus et al., 2020; Lee et al.,
2021). Furthermore, increased superoxide production by the NOX-2
isoform of NADPH oxidase, which acts by activating NO, also
contributes to the pathophysiology of OAB in animal models
(Alexandre et al., 2016; 2018; Akakpo et al., 2017; de Oliveira et al.,
2022) but has not yet been evaluated in the lower urinary tract in SCD.

To date, previous studies have used SCD transgenic mice to
investigate bladder alterations (Claudino et al., 2015; Karakus et al.,
2019; 2020; Musicki et al., 2019). These studies reported voiding
dysfunction and detrusor hypercontractility associated with reduced
NO bioavailability in the bladder. However, the exclusive effects of
intravascular hemolysis on the bladder have not been independently
analyzed. Given the critical role of intravascular hemolysis in SCD
and its potential impact on the NO signaling pathway in the bladder,
we hypothesize that intravascular hemolysis contributes
significantly to micturition dysfunction.

The phenylhydrazine (PHZ)-induced hemolysis model permits
precise control over the onset and intensity of hemolysis (Lim et al.,

1998; Dutra et al., 2014; Gotardo et al., 2023), enabling a direct
correlation between hemolysis and the observed functional and
molecular changes in the bladder. This model is precious when
the aim is to study the exclusive effect of intravascular hemolysis, as
SCD mice exhibit additional alterations beyond intravascular
hemolysis. This study endeavors to fill this critical gap in
knowledge, providing an in-depth understanding of the
mechanisms underlying intravascular hemolysis-induced
micturition dysfunction.

This study is designed to delineate the consequences of
intravascular hemolysis on the micturition process and the
contractile mechanisms of the detrusor smooth muscle in a mouse
model of PHZ-induced hemolysis. Furthermore, we investigate the
role of intravascular hemolysis in elevating ROS production in the
bladder, as well as to assess changes in phosphorylated eNOS (Ser-
1177), phosphorylated nNOS (Ser-1417), and phosphorylated
vasodilator-stimulated phosphoprotein (p-VASP Ser-239).

2 Materials and methods

2.1 Ethical approval

All animal study protocols in this study were approved by the
Ethics Committee on Animal Use of the University of San Francisco
(CEUA/USF, Permit number V3:008.06.2021).

2.2 Animals and treatment

Animal procedures and experimental protocols were performed
in accordance with the ethical principles in animal research adopted
by the Brazilian College for Animal Experimentation and followed
the Guide for the Care and Use of Laboratory Animals. All mouse
strains were originally purchased from Jackson Laboratories (Bar
Harbor, ME). Characterization and breeding were performed at the
Multidisciplinary Center for the Investigation of Biological Science
in Laboratory Animals of the University of Campinas. We used
C57BL/6 male mice (control), aged 3–4 months old, housed five per
cage on a 12 h light–dark cycle.

We injected PHZ at 50 mg/kg in C57BL/6 mice intraperitoneally
to induce intravascular hemolysis. The mice were reinjected with
50 mg/kg 8 h later and were sacrificed 4 days after starting PHZ
treatment. Control mice were treated with the saline vehicle
simultaneously with the PHZ group (Henrique Silva et al., 2018).

2.3 Void spot assay

Mice were moved individually to empty mouse cages with precut
qualitative filter paper (250 g) on the bottom. They were provided
with food but no water. After 4 hours, the filter papers were removed
and allowed to dry before being imaged using UV light
transillumination and captured using the ChemiDoc MP imaging
system with Image Laboratory software (Bio-Rad Laboratories,
Hercules, CA). Captured images were saved in grayscale-tagged
image file format (TIFF) (Figure 2A) and analyzed using ImageJ
Software (National Institute of Health, Bethesda-MD, United States
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of America). ImageJ particle analysis was performed on >0.02 cm2

spots to reduce areas of non-specific fluorescence and artifacts that
may have been created by debris and feces (Keil et al., 2016). A linear
standard measurement curve was used to convert void spot areas to
volumes, and total volumes were normalized to body weight. Assays
were performed for each animal between 9 a.m. and 2 p.m.

2.4 Functional studies of bladder strips and
concentration–response curves

Two longitudinal detrusor smooth muscle strips with intact
urothelium were obtained from each bladder. The strips were
mounted in 5 mL myograph organ baths (Danish Myo Technology,
Aarhus, Denmark) containing Krebs–Henseleit solution composed of
117 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 1.2 mM
KH2PO4, 25 mMNaHCO3, and 11 mM glucose, continuously bubbled
with a mixture of 95% O2 and 5% CO2 (pH 7.4) at 37°C. Changes in
isometric force were recorded using a PowerLab Data Acquisition
System (Software LabChart, version 7.0, ADInstruments, MA,
United States of America).The resting tension was adjusted to 5 mN
at the beginning of the experiments. The equilibration period was
60 min, and the bathing medium was changed every 15 min.

Cumulative concentration-response curves for the full
muscarinic agonist carbachol (1 nM–30 µM) and potassium
chloride (KCl; 1–300 mM) were obtained in detrusor strips. In
separate experiments, electrical field stimulation (EFS)-induced
contraction (20 V, 10 s of stimulation at varying frequencies, a 2-
min interval between each pulse) was carried out. Non-cumulative
concentration–response curves were also made for the purinergic
agonist (P2X), α-β-methylene-ATP (1 μM, 3 μM, and 10 µM).

Non-linear regression analysis used GraphPad Prism
(GraphPad Software, San Diego, CA, United States of America).
Maximal response (Emax) data were normalized to the wet weight of
the respective urinary bladder strips. Using GraphPad Prism
software, EC50 values, represented as the negative logarithm
(pEC50), were calculated by fitting the concentration–response
relationship to a sigmoidal model (log-concentrations vs. response).

2.5 Western blot analysis

The separation of proteins from biological samples of tissue
homogenates (detrusor) was performed through electrophoresis in
4%–20% polyacrylamide with 0.1% sodium sulfate (SDS-Page). Then,
the protein bands were transferred electrophoretically into a submerged
nitrocellulose membrane system. Non-specific protein binding to
nitrocellulose was reduced by “overnight” pre-incubation of the
membrane with a blocking solution (5% milk powder, 10 mm Tris,
100 mmNaCl, and 0.02%Tween 20). The bladder from eachmouse was
homogenized in lysis buffer and centrifuged at 12,000 g for 20 min at
4°C. Homogenates containing 70 μg of total proteins were run on 4%–
20%Tris-HCl gels (Bio-Rad Laboratories, Hercules, CA, United States of
America) and transferred to a nitrocellulose membrane. Non-fat dry
milk (5%) (Bio-Rad) in Tris-buffered saline/Tween was used for 60 min
at 24°C to block non-specific binding sites. Membranes were incubated
for 15–18 h at 4°C with the following antibodies: monoclonal anti-3-
nitrotyrosine (3-NT; 1:3000, Abcam), polyclonal anti-4-HNE antibody

(1:3000, Abcam), anti-NOX-2 antibody (1:1000, Sigma-Aldrich),
monoclonal anti-phospho(p)-eNOS (Ser-1177) antibody (1:1000, Cell
Signaling), polyclonal anti-eNOS antibody (1:1000, Cell Signaling),
polyclonal anti-phospho(p)-VASP (Ser-239) (1:1000, Cell Signaling),
monoclonal anti-VASP antibody (1:1000, Cell Signaling), polyclonal
phospho(p)-nNOS antibody (Ser-1417) (1:1000, Abcam), nNOS (1:
1000, Millipore), and β-actin (1:5000, Santa Cruz Biotechnology).
Densitometry was analyzed using ImageJ software (National Institute
of Health, Bethesda-MD, United States of America). Quantified
densitometry results were normalized to β-actin.

2.6 Drugs

Carbachol, α-β-methylene-ATP, PHZ, and KCl were purchased
from Sigma-Aldrich (St Louis, MO, United States of America. All
reagents were required to be of analytical grade. Deionized water was
used as a solvent, and working solutions were diluted prior to use.

2.7 Statistical analysis

The GraphPad Prism Program (GraphPad Software Inc.) was
used for statistical analysis. Data are expressed as the mean ± SEM of
N experiments. Statistical comparisons were made using the
Student’s unpaired t-test. A value of p < 0.05 was considered
statistically significant.

3 Results

3.1 Hematological parameters

Mice treated with PHZ exhibited significantly reduced levels of
red blood cells (Figure 1A) and total hemoglobin (Figure 1B)
compared to the control group (p < 0.05). Furthermore, there
was a marked increase in plasma hemoglobin concentrations in
the PHZ group (p < 0.05) compared to the control (Figure 1C),
confirming the occurrence of intravascular hemolysis.

3.2 Intravascular hemolysis leads to
increased urinary frequency and increased
void volumes

Figure 2A presents filter paper examples from the control and
PHZ-treated mice. The PHZ group showed a significant increase in
urinary spots compared to the control group (p < 0.05), indicating a
hyperactive voiding behavior (Figure 2B). Additionally, the total
void volumes produced by the PHZ-treated mice were significantly
greater than those of the control mice (p < 0.05) (Figure 2C).

3.3 Intravascular hemolysis leads to detrusor
hypercontractility

EFS of 4–32 Hz induced frequency-dependent contractions in
the detrusor smooth muscle in both control and PHZ-treated mice.
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Notably, the PHZ group exhibited significantly higher contractions
at all frequencies compared to the control group (p <
0.05) (Figure 3A).

Contractile response to α-β-methylene-ATP in the detrusor
smooth muscle was assessed through non-cumulative
concentration-effect curves (1 μM, 3 μM, and 10 μM) for both
groups (Figure 3B). Detrusor smooth muscle from PHZ-treated
mice displayed a significantly enhanced contractile response to α-β-

methylene-ATP at all tested concentrations compared to the control
(p < 0.05) (Figure 3B).

Contraction responses to carbachol were evaluated in detrusor
smooth muscle from both PHZ and control mice through
concentration-effect curves for the agonist (1 nM–30 μM)
(Figure 3C). The maximal contractile response (Emax) elicited by
carbachol was significantly greater in the detrusor smooth muscle of
the PHZ group (p < 0.05) than that of the control group (Figure 3D),

FIGURE 1
(A) Red blood cell, (B) hemoglobin, and (C) plasma hemoglobin. Data are shown as the mean ± SEM of 5–7 mice per group. *p < 0.05 vs.
control group.

FIGURE 2
(A) Representative void spot assays, (B) number of spots, and (C) normalized voided volume in control and PHZmice. Data are shown as themean ±
SEM of five mice per group. *p < 0.05 vs. control group.
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with no notable differences in potency (pEC50) between the control
(6.45 ± 0.12) and PHZ-treated mice (6.62 ± 0.09). Similarly, KCl
induced concentration-dependent contractions in both groups
(Figure 3E). Notably, Emax to KCl was significantly greater in the
PHZ group than in the control group (Figure 3F). No significant
differences in potency (pEC50) for KCl were observed between the
control group (1.01 ± 0.06) and the PHZ-treated group (6.62 ± 0.09).

Representative traces of responses to EFS, α-β-methylene-ATP,
carbachol, and KCl are shown in Figure 4.

3.4 Intravascular hemolysis decreased
protein expressions of p-eNOS (Ser-1177),
p-nNOS (Ser-1417), and p-VASP (Ser-239) in
the mouse bladder

Protein expression of activated (phosphorylated) forms of
eNOS (p-eNOS Ser-1177), nNOS (p-nNOS Ser-1417), and

VASP (p-VASP Ser-239) was investigated to understand the
impact of intravascular hemolysis on signaling of nitric oxide
(NO) in the bladder. These enzymes play fundamental roles in
the regulation of smooth muscle tone: eNOS and nNOS are
responsible for the production of NO, an important mediator of
smooth muscle relaxation, while VASP is a substrate of the
cGMP-protein kinase G (PKG) pathway, reflecting the activity
of NO-cGMP-PKG signaling. PKG, activated by cGMP, is
essential for mediating the effects of NO on smooth muscle,
promoting relaxation, and directly influencing bladder
function (Oelze et al., 2000; Francis et al., 2010). In the
PHZ-treated mice, the activated (phosphorylated) forms of
p-eNOS (Ser-1177), p-nNOS (Ser-1417), and p-VASP (Ser-
239) were significantly reduced in the bladder compared to
the control group (p < 0.05), as shown in Figure 5. These results
suggest that intravascular hemolysis compromises NO
signaling in the bladder, potentially contributing to voiding
dysfunction.

FIGURE 3
Contractile responses to (A) electrical field stimulation, (B) α-β-methylene-ATP, (C) carbachol, and (E) KCl in the bladder from control and PHZmice.
(D) Emax values for (D) carbachol and (F) KCl. Data are shown as the mean ± SEM of six mice per group. *p < 0.05 vs. control group.
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3.5 Intravascular hemolysis leads to
increased oxidative stress markers in the
mouse bladder

To assess the impact of intravascular hemolysis on oxidative stress in
the bladder, the protein expression of oxidative stress markers, including

NOX-2, 3-NT, and 4-HNE, was examined. NOX-2 is an important
enzyme in ROS production, while 3-NT and 4-HNE are products of
oxidative damage to proteins, serving as markers of nitrosative and
oxidative stress, respectively (Pacher et al., 2007; Vermot et al., 2021). In
the PHZ-treated mice, there was a significant increase in the protein
expression of oxidative stress markers NOX-2, 3-NT, and 4-HNE in the

FIGURE 4
Representative tracings of contraction response to EFS, α-β-methylene-ATP, carbachol, and KCl from control and PHZ mice.
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bladder compared to the control group (p < 0.05), as shown in Figure 6.
This increase in oxidative stress markers indicates that intravascular
hemolysis promotes a pro-oxidative environment in the bladder, which
may impair organ function and contribute to the development of OAB
phenotypes such as those observed in SCD models.

4 Discussion

In this study, PHZ-induced hemolysis in mice led to significant
hematological changes, mirroring aspects of SCD. The increased

urinary frequency and volume increase in PHZ-treated mice aligns
with OAB symptoms, suggesting a link between intravascular
hemolysis and bladder dysfunction. Notably, the enhanced
contractility of the detrusor muscle in these mice indicates a
direct impact of hemolysis on bladder smooth muscle activity.
The decreased expression of p-eNOS (Ser-1177), nNOS (Ser-
1417), and p-VASP (Ser-239) in the bladder tissue indicates a
dysregulated NO signaling pathway in the impaired bladder
function. Additionally, elevated oxidative stress markers in the
bladders of PHZ-treated mice reinforce the role of oxidative
stress in OAB phenotypes.

FIGURE 5
Representative images of Western blotting (top panels) and protein values (bottom panels) for (A) p-eNOS (ser-1177) (n = 6), (B) p-nNOS (ser-1417)
(n = 4), and (C) p-VASP (Ser-239) (n = 4) in homogenates of bladder from control and PHZ mice. Data are shown as the mean ± SEM. *p < 0.05 vs.
control group.

FIGURE 6
Representative images of Western blotting (top panels) and protein values (bottom panels) of (A)NOX-2 (n = 7), (B) 3-NT (n = 7), and (C) 4-HNE (n =
4) in homogenates of the bladder from control and PHZ mice. Data are shown as the mean ± SEM. *p < 0.05 vs. control group.
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A central aspect of SCD is intravascular hemolysis, where red
blood cell contents like hemoglobin, arginase, and other cellular
components are released into the plasma (Kato et al., 2017). The
PHZ-induced intravascular hemolysis model in mice is widely
utilized for assessing the specific effects of intravascular
hemolysis (Vannucchi et al., 2001; Henrique Silva et al., 2018;
Iacopucci et al., 2022; Gotardo et al., 2023). Our study
corroborates previous findings and confirms that PHZ-induced
intravascular hemolysis in mice led to significant hematological
changes, closely replicating the hemolytic environment seen in SCD.
Free hemoglobin (HbFe2+) in the plasma or interstitial space quickly
reacts with NO, leading to nitrate production and the formation of
methemoglobin (HbFe3+), the oxidized form of hemoglobin (Reiter
et al., 2002). This process significantly reduces NO bioavailability,
contributing to tissue damage (Gladwin et al., 2012; Kato et al., 2017;
Kato et al., 2018). An efficient pharmacological strategy that has
been studied to limit the effects of hemoglobin involves treatment
with haptoglobin. This plasma protein binds to free hemoglobin,
forming a complex that is then cleared from circulation by the
macrophages of the reticuloendothelial system (Buehler et al., 2020).

NO plays a crucial role in the physiology of the lower urinary tract,
with its diminished bioavailability linked to micturition dysfunction.
The OAB in SCD mice is associated with decreased expression of
phosphorylated eNOS at its positive regulatory site Ser-1177 and
phosphorylated nNOS at its positive regulatory site Ser-1412 in the
bladder. Similarly, in our study, PHZ mice displayed decreased
expression of p-eNOS (Ser-1177) and p-nNOS (Ser-1417),
indicating lower NO production in the bladder. NO activates
soluble guanylate cyclase (sGC) in smooth muscle, enhancing cGMP
production. cGMP activates protein kinase G, which phosphorylates
VASP at Ser-239, a reliable biomarker for monitoring the NO-
stimulated cGMP-protein kinase G pathway (Oelze et al., 2000;
Francis et al., 2010). In our study, protein expression for p-VASP
(Ser-239) was lower in the bladder in the PHZ group, indicating
decreased cGMP levels. Mice lacking nNOS exhibit bladder
hypertrophy, dysfunctional urinary outlets, and increased urinary
frequency (Burnett et al., 1997). Additionally, rats treated chronically
with a NOS inhibitor develop an OAB phenotype (Mónica et al., 2008;
Mónica et al., 2011). Altered micturition patterns have been previously
reported in cGMP-dependent protein kinase I gene-deficient mice
(Persson et al., 2000). PHZ-treated mice exhibited increased urinary
spots and higher total void volumes. These results align with findings
from animalmodels lacking both eNOS and nNOS, as well as SCDmice
(Karakus et al., 2019; Musicki et al., 2019; Karakus et al., 2020),
reinforcing the importance of NO pathways in urinary function. A
prior study speculated that the augmented urine volumes observed in
double-NOS (eNOS and nNOS) or triple-NOS (eNOS, nNOS, and
iNOS) knockout mice could be attributed to impairments in renal
function, specifically in the ability to concentrate urine, leading to
polyuria (Morishita et al., 2005).

Acetylcholine, primarily through muscarinic M3 receptors, is the
primary excitatory neurotransmitter in the parasympathetic nerve
endings of detrusor smoothmuscle (Andersson andArner, 2004). Co-
stored and co-released ATP with acetylcholine also play a significant
role in nerve-mediated bladder contraction, contributing to efficient
urine elimination (Burnstock, 2011). In our study, detrusor
contractions induced by EFS were significantly higher in the PHZ-
treated group. In parallel, the responses of detrusor smooth muscle to

bothmuscarinic and purinergic receptor agonists (carbachol and α, β-
methylene-ATP, respectively), as well as to the receptor-independent
agent KCl, were also increased in PHZ-treated mice. These findings
indicate that intravascular hemolysis leads to detrusor
hypercontractility. The increase in detrusor muscle contraction is
likely secondary to the low accumulation of cGMP in bladder tissue, a
well-known secondary messenger that counteracts the contractile
mechanisms of smooth muscle (Mónica and Antunes, 2018). Rats
treated chronically with a non-selective inhibitor of NOS (L-NAME)
show increased detrusor contraction induced by muscarinic receptor
agonists (Mónica et al., 2008), as well as animal models deficient in
both eNOS and nNOS (Karakus et al., 2019), highlighting the
importance of the integrity of the NO pathway in bladder function.

Increased oxidative stress, characterized by elevated ROS
production or reduced antioxidant capacity, is associated with the
development of OAB in experimental models and participates in the
pathophysiology of SCD (Alexandre et al., 2016; Silva et al., 2016;
Akakpo et al., 2017; Alexandre et al., 2018; Vona et al., 2021; de
Oliveira et al., 2022). NOX-2, an important NADPH oxidase
isoform, catalyzes electron transfer to oxygen, generating a
superoxide anion (Vermot et al., 2021). Excess superoxide reacts
with NO, producing peroxynitrite, a highly toxic reactive nitrogen
species (Pacher et al., 2007). Increased expression of NOX-2 has
been reported in animal models with OAB (Alexandre et al., 2016;
Akakpo et al., 2017; Alexandre et al., 2018; de Oliveira et al., 2022).
Our study found increased NOX-2 expression in the bladder of
PHZ-treated mice and elevated markers of oxidative and nitrosative
stress, 4-HNE, and 3-NT. These results fit with our previous findings
that demonstrate that PHZ-treated mice exhibit increased oxidative
markers like 3-NT, 4-HNE, and NOX-2 in the penis (Iacopucci et al.,
2022). Prior research has shown NOX-2 downregulation through
NO-cGMP-dependent mechanisms (Teixeira et al., 2007). In
contrast, NO inhibits NADPH oxidase-dependent superoxide
anion production by a cGMP-independent mechanism without
altering the protein expression of NOX-2 (Selemidis et al., 2007).
In this context, this suggests that increased plasma hemoglobin may
trigger oxidative stress elevation, reducing NO and cGMP
bioavailability, as evidenced by reduced p-VASP (Ser-239).

In the present study, we used a PHZ-induced hemolysis model
instead of transgenic mice with SCD for a few fundamental reasons.
First, the PHZ-induced hemolysis model allows precise control over
the onset and intensity of hemolysis, facilitating the direct correlation
between hemolysis and the functional and molecular changes
observed in the bladder. This precise control is important, as it
allowed us to establish a direct relationship between intravascular
hemolysis and the observed dysfunctions. Furthermore, this model is
widely recognized for its ability to simulate key aspects of
intravascular hemolysis observed in sickle cell disease, allowing
specific investigation of the mechanisms underlying urinary
complications. However, we recognize the value of transgenic
models of SCD to study the disease in a broader context.

5 Conclusion

Our study is the first to show that intravascular hemolysis promotes
voiding dysfunction correlated with alterations in the NO signaling
pathway in the bladder, as evidenced by reduced levels of p-eNOS (Ser-
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1177), nNOS (Ser-1417), and p-VASP (Ser-239). The study also showed
that intravascular hemolysis increases oxidative stress in the bladder.
Our study indicates that intravascular hemolysis promotes OAB
phenotypes similar to those observed in patients and mice with
SCD, suggesting a potential mechanistic link. These findings suggest
that pharmacologic interventions targeting intravascular hemolysismay
ameliorate voiding dysfunction in SCD.
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