
Hyperparameter tuning using
Lévy flight and interactive
crossover-based reptile search
algorithm for eye movement
event classification

V. Pradeep1, Ananda Babu Jayachandra2, S. S. Askar3 and
Mohamed Abouhawwash4*
1Department of Information Science and Engineering, Alva’s Institute of Engineering and Technology,
Mangaluru, India, 2Department of Information Science and Engineering, Malnad College of Engineering,
Hassan, India, 3Department of Statistics and Operations Research, College of Science, King Saud
University, Riyadh, Saudi Arabia, 4Department of Mathematics, Faculty of Science, Mansoura University,
Mansoura, Egypt

Introduction: Eyemovement is one of the cues used in human–machine interface
technologies for predicting the intention of users. The developing application in
eye movement event detection is the creation of assistive technologies for
paralyzed patients. However, developing an effective classifier is one of the
main issues in eye movement event detection.

Methods: In this paper, bidirectional long short-term memory (BILSTM) is
proposed along with hyperparameter tuning for achieving effective eye
movement event classification. The Lévy flight and interactive crossover-
based reptile search algorithm (LICRSA) is used for optimizing the
hyperparameters of BILSTM. The issues related to overfitting are avoided by
using fuzzy data augmentation (FDA), and a deep neural network, namely, VGG-
19, is used for extracting features from eye movements. Therefore, the
optimization of hyperparameters using LICRSA enhances the classification of
eye movement events using BILSTM.

Results and Discussion: The proposed BILSTM–LICRSA is evaluated by using
accuracy, precision, sensitivity, F1-score, area under the receiver operating
characteristic (AUROC) curve measure, and area under the precision–recall
curve (AUPRC) measure for four datasets, namely, Lund2013, collected
dataset, GazeBaseR, and UTMultiView. The gazeNet, human manual
classification (HMC), and multi-source information-embedded approach
(MSIEA) are used for comparison with the BILSTM–LICRSA. The F1-score of
BILSTM–LICRSA for the GazeBaseR dataset is 98.99%, which is higher than that of
the MSIEA.
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1 Introduction

The human eye is considered a spontaneous way of understanding
human communication and interaction, which is exploited for
processing data according to the nearby environment, in response to
the respective situation. The physiological capacities are highly
constrained from creating movement in any of the limbs or the
head, as a result of various diseases such as Parkinson’s, spinal cord
injury, locked-in syndrome, muscular dystrophy, multiple sclerosis,
complete paralysis, and arthritis. Hence, around 132 million disabled
people require a wheelchair, and only 22% of them have access to one.
Moreover, these disabled people cannot use a technically improved
wheelchair. Therefore, an eye detection and tracking method is
investigated for enhancing the interaction between humans and
computers, and it will enhance the living standard of disabled
people (Dahmani et al., 2020; Barz, and Sonntag, 2021; Koochaki,
and Najafizadeh, 2021; Aunsri, and Rattarom, 2022). Brain activity
triggers eye movements that are a response to visual stimuli or an intent
to obtain information about the neighboring environment (Harezlak,
and Kasprowski, 2020; Li et al., 2021; Vortmann, and Putze, 2021).
Generally, eye movements are categorized into saccades and fixations,
i.e., when the eye gaze moves from one position to another position and
pauses at a certain position, respectively (Harezlak et al., 2019; Rahman
et al., 2021; Yoo et al., 2021).

Eye tracking is the process of tracking and determining the
movements of the eye and the focal point of the eye. The technology
of eye tracking is used in various fields such as cognitive science,
computer gaming, marketing, medicine, and psychology. Hence, eye
tracking is extensively used in computer science applications by making
use of the features of the eye for studying information processing tasks.
In general, eye-tracking information is computed and acquired by using
an eye-tracking sensor/camera. The acquired data offer many features
and are useful in various classification tasks (Lim et al., 2022; Holmqvist
et al., 2023). Eye tracking metrics are used for disclosing perceptions
about the participant’s actions and mindset in different circumstances.
Significant eye-trackingmetrics are saccades, duration, pointing,fixation,
and pupil diameter (Bitkina et al., 2021; Elmadjian et al., 2023). Eye
movement classification is affected because eye-tracking data contain a
huge amount of user data that are not required for all applications. For
example, eye movement discovers characteristics such as bio-markers,
identity, and gender (David-John et al., 2021).

In this research, eyemovement event detection is performed using a
deep learning classifier with hyperparameter tuning. Generally,
hyperparameter tuning is used to choose the parameter values and
obtain improved classification (Shankar et al., 2020). The major
contributions of this research are given as follows:

• A BILSTM is used for classifying eye movement events to help
disabled people. The BILSTM is used in this research because
it considers both the past and upcoming data while classifying
the given input.

• The LICRSA-based hyperparameter tuning has been proposed
to optimize the following parameters: dropout, learning rate,
L2 regularization, and max-epoch. The LICRSA is used
because its Lévy flight approach helps discover out-of-local
solutions. Next, interactive crossover increases the ability to
search by acquiring the solution through optimal and
remaining candidate solutions.

The remaining paper is organized as follows: Section 2 provides
the details about existing eye-tracking applications. The proposed
method is detailed in Section 4, whereas the outcomes of the
proposed method are presented in Section 4. Finally, Section 5
offers the conclusion.

2 Related works

Li et al. (2020) implemented a machine learning-based
automated approach to perform fatigue detection and
classification for equipment operators. Toeplitz inverse
covariance-based clustering (TICC) was used to obtain various
mental fatigue levels and labeling based on the movement of the
eye. Features of eye movement were acquired for various
construction sites, and supervised learning classified the
mental fatigue levels of the operator. TICC along with
machine learning were used in various construction sites due
to higher accuracy. An additional enhancement in accuracy was
achieved only by using a large number of eye movement metrics
related to mental fatigue.

Yang et al. (2023) developed an analysis for the attention
patterns in depressed patients based on the region-of-interest
(ROI) analysis. The established ROI recognition analysis was
named ROI eventless clustering (REC) and did not need eye
movement event discovery. For diverse attribute features, ROI
clustering was operated with deflection elimination (RCDE) for
supporting the discovery of depression. This RCDE also used noisy
data for describing the attention patterns. Moreover, it was essential
to use eye movement event because gaze features were vital while
performing classification.

Mao et al., 2020 implemented disease classification according to
the movements of the eye by using a deep neural network. Normalized
pupil data such as size and location were offered as features of the eye
movement. For each feature, long short-term memory (LSTM) was
used for developing a weak classifier. The weights of each weak classifier
were discovered using a self-learning method. Next, a strong classifier
was designed by synthesizing the weak classifiers. The classifier with
fewer samples was less robust while performing the classification.

Zemblys et al., 2019 implemented event detection using gazeNet
without any requirement for hand-crafted signal features or signal
thresholding. End-to-end deep learning was used in gazeNet, which
categorized raw eye-tracking data into fixations, post-saccadic
oscillations, and saccades. The problems created by unbalanced
inputs were overcome by using heuristic data augmentation.
However, the effect of previously classified information was
required to be eliminated in gazeNet for enhancing event detection.

Friedman et al., 2023 developed the classification of eye
movement using human manual classification (HMC). In manual
classification, higher inter-rater reliability was used because it was an
important representation of an expressive standardized
categorization. For evaluating the results acquired from automatic
classification, inter-rater reliability was used, alongside the training
of machine learning approaches to achieving better classification.
The HMC was effective only when operated with less input data
during eye movement detection.

Yuan et al., 2021 presented the multi-source information-
embedded approach (MSIEA) to investigate driving actions. A
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precise eye gaze was estimated by using the identification of eye
gaze without gaze calibration. The information of multiscale
sparse features of eye and head poses was combined for
predicting the direction of gaze. Next, fused data were
obtained by integrating the estimated gaze with vehicle data.
The FastICA was used for discovering a large amount of driving-
related data which were used for understanding the driving
actions. The driver’s head orientations affected the
performances of the MSIEA.

Kanade et al., 2021 developed gaze classification using
convolutional neural networks (CNNs) for vehicular
environments. From the input, the images of the face, right eye,
and left eye were acquired using region-of-interest. Appropriate gaze
features were obtained by fine-tuning the VGG-face network with
pre-trained CNNs. Here, the classification was performed using the
distance factor. The learning methodologies used in eye-tracking
were utilized for enhancing the performance of eye feature
evaluation.

3 BILSTM–LICRSA method

The classification of eye movement event detection is performed
using a BILSTM deep learning classifier, whereas the LICRSA is used

to optimize the hyperparameters. The important processes of this
proposedmethod are dataset acquisition, data augmentation, feature
extraction using VGG-19, BILSTM classification, and LICRSA-
based hyperparameter tuning process. The block diagram for the
BILSTM–LICRSA method is shown in Figure 1.

3.1 Dataset acquisition

This research uses four different datasets: Lund2013 dataset
(Larsson et al., 2013), collected dataset, GazeBaseR dataset (https://
figshare.com/articles/dataset/GazeBase_Data_Repository/12912257.),
and UTMultiView dataset (Sugano et al., 2014). Information about
the datasets is given below:

3.1.1 Lund2013
An annotated eye-tracker dataset, Lund2013 dataset, created at

Humanities Lab (Larsson et al., 2013) was used to perform eye
movement event detection. Monocular eye movement data of a
person’s viewing images, videos, andmoving dots are included in the
Lund2013 dataset. The Lund2013 dataset has different classes such
as fixations, saccades, smooth pursuit, post-saccadic oscillations,
blinks, and undefined events. The data of fixations, saccades, and
post-saccadic oscillations from the Lund2013 dataset are used in this
research, which are 136,078 samples in total.

3.1.2 Collected dataset
Participants were made to sit directly facing the webcam at a fixed

distance for collecting real-time face images. Videos are obtained by the
webcam while the user follows a pre-defined on-screen target, i.e., a dot
that moves in different locations. An onscreen target’s trajectory is
recorded as the eye movement trajectory (EMT) in the system, and
related angle images are saved using the real-time webcam. A sample
real-time face image is shown in Figure 2. Both the images and EMT are
combined as a collective dataset and used for real-time analysis. The
total instances gathered are 10,000 from 100 test users, and it has the
labels of fixations, saccades, and post-saccadic oscillations.

FIGURE 1
Block diagram of the BILSTM–LICRSA method.

FIGURE 2
Sample real-time image.
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3.1.3 GazeBaseR
The GazeBaseR dataset has temporal motion features of gaze

points and spatial distribution features of saccades. The gaze point’s
temporal motion features are a sequence of timestamps, and it is
related to the gaze points, e.g., [0.1 s, (30, 20)], [0.2 s, (32, 22)], and
[0.3 s, (31, 21)], which denotes the gaze point at various times. On
the other hand, spatial distribution is a saccade vector series, e.g., (5,
3), (4, 2), and (3, 1), which denotes the distance and direction of eye
movements. Two classes exist in this dataset during the prediction:
movement or no movement.

3.1.4 UTMultiView dataset
The UTMultiView has eye image and 3D head pose features,

where the eye image is a grayscale and low-resolution image that has
the iris, pupil, and some portion of the sclera. Next, the 3D head pose
is a three-element vector (such as 30, 45, and 60) denoting a person’s
head orientation by means of roll, pitch, and yaw. The prediction
provides the three-element vector, e.g., 10, 20, and −10, denoting the
evaluated direction of gaze.

The real-time images from the collected dataset and
UTMultiView dataset are processed under FDA and VGG-19 to
augment and extract features from the images. The text data are
directly fed to the classifier along with the respective extracted
features from VGG-19 for classification.

3.2 FDA-based data augmentation

FDA (Dabare et al., 2022) augments the collected data (i.e., images
from the dataset), which is considered a preprocessing approach for
avoiding overfitting issues in a classifier. There are two different phases
that exist in the augmentation: fuzzification and generation of new
augmented data. First, fuzzification is performed according to the
clustering and identifying the membership grade of every record. A
new input characteristic value is created according to the adequate
cluster center value discovery and using the threshold value, which is an
α-cut value. The parameters given as input to perform augmentation are
specified in Table 1.

3.2.1 Fuzzification of an entire input space
For the input data, the attributes are clustered using the fuzzy

C-means (FCM) clustering method. The FCM method is selected
because of the identification capacity for each cluster’s membership
grade of every piece of information. The fuzzification process is
described as follows:

1. FCM clusters the input data and deduces the membership
degree of each attribute of the cluster. The usage of FCM
clustering for unknown data offers a measure of belongingness,
which is represented as the membership grade for every cluster.
If unknown information is clustered, it belongs to various
clusters. In FCM clustering, data have membership degrees
either as 1 or 0 for the cluster center. The membership degree is
1, when the data belong to a respective cluster; otherwise, the
membership degree is 0. Therefore, the values of membership
degree are defined by the cluster.

2. The membership grade is considered in descending order for
each attribute during the formation of the new membership
dataset. For each record in the dataset, it is considered that the
input contains n records and k attributes. Eqs 1, 2 show the
input (X) and output (Y) spaces, respectively.

X �

x11 x12 x13 . . . x1k

x21 x22 x21 . . . x2k

x31 x32 x33 . . . x3k

..

. ..
. ..

.
1 ..

.

xn1 xn2 xn3 . . . xnk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Y � y1 y2 y3 . . . yn[ ]T. (2)

Therefore, yi � xi1 xi2 xi3 . . . xik, where the record of the dataset
is represented as i. FCM clustering is performed over the input, and a
newmatrix Ei is formed by the membership grade for each cluster as
shown in Eq. 3.

Ei �
μi1 Xi1( ) μi1 Xi2( ) μi1 Xi3( ) . . . μi1 Xik( )
μi2 Xi1( ) μi2 Xi2( ) μi2 Xi3( ) . . . μi2 Xik( )
μi3 Xi1( ) μi3 Xi2( ) μi3 Xi3( ) . . . μi3 Xik( )

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (3)

where, μ represents the fuzzy membership grade for the dataset’s
first record and μi2 represents the second cluster. Eq 3 shows the
transformation of input X into the element E, which is in
descending order, as shown in Eq. 4.

E �

e1
e2
e3
..
.

en

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

3.2.2 New augmented dataset generation
An allocation of cluster center α-cut for the fuzzified data is used to

form the augmented data, wherein the steps are explained as follows:

1. Fuzzy uncertainty and fuzzy clustering are used to transform the
input for identifying the appropriate cluster center of each data
of cluster.

2. The fixed α-levels between 0 and 1 are horizontally cut by the
membership function according to Figure 3, which illustrates a

TABLE 1 Augmentation parameters.

Parameters Description and value

Number of clusters 3

Bounding
box (Xmin, Ymin, Xmax, Ymax)

Pixel coordinates of the top-left and bottom-
right corners of the face, e.g., (100, 50, 200, 150)

Facial landmarks (X,Y) Right eye center, e.g., (170, 70), and left eye
center, e.g., (130, 70)

Head pose (roll, pitch, and yaw) (roll—rotation around the X-axis,
pitch—rotation around the Y-axis,
yaw—rotation around the Z-axis),

e.g., (5,−10, 15)

Rotation (degrees) Overall image, e.g., −15° to +15° (for subtle head
motion)

Noise type Gaussian noise: e.g., standard deviation (σ) =
0.01 to 0.05—low-to-moderate noise; salt-and-
pepper noise: e.g., noise density = 0.001 to

0.01—low-to-moderate noise
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sample of triangular membership function at the α-cut level of
0.25. The membership function is horizontally cut between 0 and
1 with a restricted amount of α-levels. The uncertainty is high
when there is a huge support for the membership function. The
fuzzy set has all components in a membership function of α[0, 1],
and the above is referred as the membership function’s α-cut. The
finest augmented data are created by the optimum α-cut for
generalization purposes without using an overall fuzzified data
point. This FDA uses the trial-and-error approach to identify the
optimum α-cut because an inadequate α-cut affects the balance of
achieving the important features of gazemovements. According to
the deliberation of how well the approach is generalized with the
selected α-cut value, an optimum α-cut is selected for FDA. The
group of elements that belong to the fuzzy setA and to the degree
α is denoted as α-cut and is shown in Eq. 5, where the
membership grade’s belongingness is denoted as μA.

Aα � x ∈ X
∣∣∣∣μA x( )≥ α{ }. (5)

3. Data with a smaller membership degree than the selected α-cut
are avoided from the new cluster center dataset.

Equation 6 is the identified threshold value forEα, which represents
the optimal α-cut value. The formulated threshold value is used for
knowing the amount of data filtered from the augmented dataset. The
threshold value, i.e., α-cut in Eα, is expressed in Eq. 6.

Eα � u ∈ U | μE u( )≥ α{ }, (6)

where U denotes the universe of discourse, μE is the membership
grade between [0, 1], and value between [0, 1] is denoted as α. If the
fuzzy α-cut is used in E, the number of rows inE is changed according
to the fuzzy α-cut. Moreover, a cluster center dataset is formed by
using the centers of each cluster. For instance, Eq. 7 shows the cluster
center dataset for n records of original data and three clusters.

CL �
CL11 CL12 CL13

CL21 CL22 CL23

..

. ..
. ..

.

CLn1 CLn2 CLn3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Hence, the cluster center of each element is transformed as the
CL cluster center dataset. The cluster center is considered a symbol
of fuzzy values of data. Subsequently, the identified cluster centers
are included to the input dataset to generate the augmented dataset,
as expressed in Eq. 8.

Augdata � {X,CL}. (8)

The augmented data from the FDA is concatenated with the
input data results, in 305,744 samples, which is 55.49% is higher than
the given input. The sample for the augmented real-time image used
along with the input is shown in Figure 4.

3.3 Feature extraction using VGG-19

In feature extraction, the VGG-19 (Mateen et al., 2019) is used to
obtain important features from the augmented input (Augdata),
i.e., augmented images. Generally, VGG-19 is a deep neural network

with multilayered operation. Due to its simple architecture, VGG-19
is suitable, and the 3 × 3 convolutional layers are positioned at the
top to increase the depth level. In VGG-19, the max-pooling layers
are used as a handler to minimize volume size, and the two fully
connected layers are used with 4,096 neurons. Here, feature
extraction is accomplished by convolutional layers, and the
dimensionality of features is reduced by max-pooling layers
related to the convolutional layers. In the first convolutional
layer, 64 kernels are used to accomplish the feature extraction,
followed by a feature vector generated by fully connected layers. For
each sample, VGG-19 returns 4,096 features during feature
extraction. The extracted feature vectors are given as input for
BILSTM classification.

3.4 Classification using BILSTM

The features from VGG-19 are given along with the text features
from the respective dataset as input to the BILSTM (Ali et al., 2021)
for classifying eye movements. In general, LSTM is an extended
version of a recurrent neural network with a similar kind of
architecture. The RNN and LSTM transfer the data from one
stage to another stage. The LSTM classification offers higher
success in longstanding dependencies. However, a single LSTM
unit is restricted to classifying the output according to the
previous data. Hence, the single LSTM has the possibility of
providing misclassification without considering the forward data.
Accordingly, the BILSTM approach is developed, which
incorporates both the past and upcoming data, therefore
enhancing the classification. There are two LSTM models
operated in a parallel manner, as shown in Figure 5. In that, one
LSTM operates from the input data’s start, and the other operates
from the input data’s end. Consequently, the BILSTM classification
supports both the previous and upcoming data. For instance, the
first and second LSTM of BILSTM studies the data starting from left
to right and ending from right to left. This helps the BILSTM model
completely keep the information of eye movement data for
classification.

FIGURE 3
Sample of the triangular membership function for α-cut.
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The BILSTM model shown in Figure 5 is used in the hidden
layers, which have the capacity for keeping older data for a short
time. An essential element in the BILSTMmodel is a memory cell
Ct that is updated using the input gate (it) and forget gate (ft).
The data required to be kept in the memory cell are decided by
using the input gate. On the other hand, the data required to be
dumped from the memory cell are decided by the forget gate. The
Ct of forward LSTM in every time step is updated by using
Eqs 9–14.

u
f( )

t � tanh w
f( )

xu xt + w
f( )

hu ht−1 + b
f( )

u( ). (9)

i
f( )

t � σ w
f( )

xi xt + w
f( )

hi ht−1 + b
f( )

i( ). (10)

f
f( )

t � σ w
f( )

xf xt + w
f( )

hf ht−1 + b
f( )

f( ). (11)

C
f( )

t � f
f( )

t ⊙ C
f( )

t−1 + i
f( )

t ⊙ u
f( )

t . (12)
O

f( )
t � σ w

f( )
xo xt + w

f( )
ho ht−1 + b

f( )
o( ). (13)

fht � O
f( )

t ⊙ tanh (C f( )
t ). (14)

TheCt of backward LSTM in every time step is updated by using
Eqs 15–20.

u b( )
t � tanh w b( )

xu xt + w b( )
hu ht+1 + b b( )

u( ). (15)
i b( )
t � σ w b( )

xi xt + w b( )
hi ht+1 + b b( )

i( ). (16)
f b( )
t � σ w b( )

xfxt + w b( )
hf ht+1 + b b( )

f( ). (17)
C b( )

t � f b( )
t ⊙ C b( )

t−1 + i b( )
t ⊙ u b( )

t . (18)
O b( )

t � σ w b( )
xo xt + w b( )

ho ht+1 + b b( )
o( ). (19)

bht � O b( )
t ⊙ tanh (C b( )

t ). (20)

Here, the parameters that need to be learned in the BILSTM
classification arewxi, bi, wxu, whu, wxo, bo, wxf, and bf, and the input
of BILSTM is xt. The forward and backward LSTM outputs are
denoted as fht and bht, respectively. BILSTM has the capacity to
read data in both the directions, i.e., forward and backward. In
forward LSTM, data are processed from left to right, while data are
processed from right to left in backward LSTM. The combination of
forward and backward LSTM outputs is the outcome of BILSTM
(HT) for each time step t that is expressed in Eq. 21.

HT � w h( )
x fht + w h( )

h bht + b h( ), (21)

where BILSTM has fht and bht that denote the past and future
data, respectively. Therefore, the BILSTM approach combines the
past and future backgrounds and considers the BILSTM’s output.

3.5 LICRSA-based hyperparameter tuning
for BILSTM

The important goal of this work is to optimize BILSTM’s
hyperparameters using the LICRSA (Huang et al., 2022) and
obtain improved performance in the classification. In general, the
RSA replicates the predation plan and social activities of crocodiles.
Hyperparameters such as dropout, learning rate, L2 regularization,
and max-epoch are optimized using the LICRSA. The LICRSA starts
from the initial solutions, i.e., randomly initializes the
hyperparameters and helps enhance the classification. The fitness
function considered for BILSTM is to perform the analysis and
return the accuracy of eye movement classification.

3.5.1 An iterative process of the LICRSA for
hyperparameter tuning

The solutions of the LICRSA are initialized using the minimum
and maximum values of dropout, learning rate, L2 regularization,
and max-epoch. The range of dropout is [0.1, 0.4], that of learning
rate is [0.003, 0.1], and that of L2 regularization is [0.003, 0.1],
whereas the max-epoch has choices of [5, 10, 15, 20]. This randomly
generated solution is given as input to the LICRSA for finding the
optimal set of hyperparameters. Lévy flight and interaction
crossover are selected for enhancing the search process. The Lévy
flight approach is used to search local solutions and improve the
precision, whereas the algorithm development is improved by
interaction crossover. In this study, the Lévy flight approach was
used for creating a random number with replacement under the
following features: 1) the created random values are huge
sometimes; however, they are mostly interspersed with small
values in between, and 2) a step’s probability density function is
heavy-tailed. The generated random number is used to perform
location updates for generating oscillations and accomplish small
foraging in the neighborhood based on fluctuations of the random
value in one round and further, thus further helping the candidate
solution come out of the local optimum.

Equation 22 expresses the definition of Lévy dissemination.

Levy γ( ) ~ u � l−1−γ, 0< γ≤ 2, (22)

FIGURE 4
Sample augmented image.
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where u signifies the Gaussian distribution and the iteration is
denoted as l. In the encircling process, the Lévy flight is used for high
and belly walking movements of crocodiles to increase the searching
area. Moreover, the optimal exploitation phase’s flexibility is
improved by using the Lévy flight in hunting coordination and
cooperation. The encircling is performed according to the Lévy flight
expressed in Eq. 23.

y i,j( ) l + 1( ) �
y*
j l( ) × − φ i,j( ) l( ) × μ − RF i,j( ) l( ) × λ × Levy γ( ), l≤ Tmax

4

y*
j l( ) × y r1 ,j( ) × ES l( ) × λ × Levy γ( ), Tmax

4
≤ l< 2 × Tmax

4

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (23)

where the location j of solution i is denoted as y(i,j), y*
j (l)

denotes the best solution, φ(i,j)(l) is the operator of the crocodile i in
dimension j, μ is fixed as 0.1, which is used to handle the search
accuracy, the reduced function is denoted as RF(i,j), λ is fixed as 0.1,
the stochastic integer in the range of [1, N] is denoted r1, N is the
number of solutions in LICRSA, Tmax denotes the maximum
iterations, and the evolutionary sense is ES(l). Eq. 24 is the
LICRSA’s hunting activities based on the Lévy flight.

y i,j( ) t + 1( ) �
y*
j l( ) × P i,j( ) l( ) × λ × Levy γ( ), 2 × Tmax

4
≤ l< 3 × Tmax

4

y*
j l( ) − φ i,j( ) t( ) × ϵ − RF i,j( ) t( ) × λ × Levy γ( ), 3 × Tmax

4
≤ l<Tmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

(24)

where a difference in the percentage among the crocodiles in the
best location and current location is denoted as P(i,j), and ϵ is a
small value.

The candidate solutions in the current location are readjusted
using interaction crossover based on the information exchange of
the candidate in the best solution and two candidate solutions. The
new location obtains data over optimal and remaining candidate
solutions for enhancing the ability to search for achieving an optimal
set of hyperparameters. Initially, the parameter CF expressed in Eq.
25 is used to handle the crocodile population’s activity, which
linearly decreases along with iterations.

CF � 1 − l

Tmax
( )2× l

Tmax

. (25)

The population in the LICRSA is randomly separated into two
portions with the same amount of crocodiles. The selected portions
are yk1 and yk2, and these locations are communicated for updating
two crocodiles. Eqs 26, 27 show the updated strategy of the LICRSA.

y k1,j( ) l + 1( ) � y k1,j( ) l( ) + CF × y*
j l( ) − y k1,j( ) l( )( )

+ c1 y k1,j( ) l( ) − y k2,j( ) l( )( ), (26)

y k2,j( ) l + 1( ) � y k2,j( ) l( ) + CF × y*
j l( ) − y k2,j( ) l( )( )

+ c2 y k2,j( ) l( ) − y k1,j( ) l( )( ), (27)

where stochastic integers in the range of [0, 1] are c1 and c2 and
the crocodile in location k1 is yk1. After performing interactive
crossover, the crocodiles with lesser capacities are eliminated using
the elimination mechanism, as shown in Eq. 28.

y i,j( ) l + 1( ) �
y i,j( ) l( ) if f y i,j( ) l( )( )<f y i,j( ) l + 1( )( )
y i,j( ) l + 1( ), elseiff y i,j( ) l + 1( )( )<f y i,j( ) l( )( )

⎧⎪⎪⎨⎪⎪⎩ .

(28)
The evaluation measures considered for this research are

accuracy, precision, sensitivity, and F1-score, which are expressed
in Eqs 29–32.

Accuracy � TP + TN

TN + TP + FN + FP
× 100, (29)

Precision � TP

TP + FP
× 100, (30)

Sensitivity � TP

TP + FN
× 100, (31)

F1 − score � 2 ×
Sensitivity × Precision

Sensitivity + Precision
× 100, (32)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Furthermore, the measure of the
AUROC is used to know how well the model differentiates among
the classes according to the true-positive rate versus the false-
positive rate. Moreover, the AUPRC computes an amount of true
positives divided by the addition of true positives and false positives.
These AUROC and AUPRC are computed for multi-class
classification via a macro averaging process. In macro averaging,
AUROC and AUPRC are individually computed for each class, and
the average value is taken among all classes.

4 Results and discussion

The proposed eye movement detection is implemented and
simulated using MATLAB R 2020a software, where the system
functions with an i5 processor and 8 GB RAM. The proposed
method is used to classify the eye movements of disabled people.

FIGURE 5
Architecture of BILSTM.
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4.1 Performance analysis

Eye movement event detection is an important objective of this
proposed method, which is specifically designed for disabled people.
For performing eye movement event detection and classification,
data from the Lund2013 and collected datasets acquired in real-time
are used for analysis. However, event detection using eye movement
is not implemented by many types of research; hence, two more
datasets: GazeBaseR dataset (https://figshare.com/articles/dataset/
GazeBase_Data_Repository/12912257.) and UTMultiView
(Sugano et al., 2014) are considered for further analyzing the
proposed method. A total of 322 subjects are included in the
GazeBaseR dataset, where everyone has completed two recording
sessions. Moreover, UTMultiView has 24,320 samples, which
include head pose and gaze directions. The training and testing
ratio of 70:30 is considered for evaluating the BILSTM–LICRSA. In
this section, the proposed method is evaluated with different
classifiers and optimization algorithms for the hyperparameter
tuning process.

4.1.1 BILSTM–LICRSA evaluation with different
classifiers

This section shows the performance of BILSTM with different
classifiers such as GAN, RNN, and LSTM. The confusion matrix
(CM) of the GAN, RNN, LSTM, and BILSTM for the
Lund2013 dataset is shown in Figure 6. The numbers 0, 1, and
2 represent the classes of fixations, saccades, and post-saccadic

oscillations, respectively. This CM is used to determine how well
the developed model performs an effective classification. From the
analysis, it is concluded that BILSTM offers a better performance
than the GAN, RNN, and LSTM.

Here, the LICRSA-based hyperparameter tuning is incorporated
into the classifiers. The analysis of BILSTM with different classifiers
is shown in Tables 2–5 for Lund2013, collected, GazeBaseR, and
UTMultiView datasets, respectively. From these analyses, it is found
that the proposed BILSTM method provides better performance
than the GAN, RNN, and LSTM. For example, the accuracy of
BILSTM for the GazeBaseR dataset is 98.95%, whereas the GAN
obtains 95.93%, RNN obtains 96.80%, and LSTM obtains 97.40%.
The reasons for BILSTM having superior performances are stated as
follows: 1) the combined information of both the past and upcoming
data is used to avoid misclassification while classifying the data and
2) the hyperparameter tuning process developed for BILSTM further
enhances the classification.

The performance evaluation for the BILSTM–LICRSA
according to the augmentation is shown in Table 6. This shows
that BILSTM–LICRSA with augmented data from the FDA
improves the classification than the actual input. The
BILSTM–LICRSA with FDA achieves enhanced performance
compared to the classifier with actual input by avoiding the
overfitting issue.

The bootstrapping average precision (AP) and rank for different
classifiers is shown in Table 7. According to the statistics, an average
precision is investigated from a single test set sample, that is, the point

FIGURE 6
Confusion matrix. (A) GAN, (B) RNN, (C) LSTM, and (D) BILSTM.
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TABLE 2 BILSTM–LICRSA evaluation with different classifiers for the Lund2013 dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

GAN 95.65 94.68 94.11 95.73 0.914 0.927

RNN 96.28 97.50 96.27 96.81 0.930 0.942

LSTM 97.57 98.56 98.78 97.42 0.951 0.962

BILSTM 99.32 99.86 99.80 99.05 0.971 0.983

TABLE 3 BILSTM–LICRSA evaluation with different classifiers for the collected dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

GAN 92.44 92.88 93.64 93.25 0.908 0.914

RNN 94.81 94.70 94.88 94.78 0.911 0.922

LSTM 96.10 96.06 95.05 95.55 0.937 0.940

BILSTM 97.64 96.58 97.15 96.86 0.954 0.962

TABLE 4 BILSTM–LICRSA evaluation with different classifiers for the GazeBaseR dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

GAN 95.93 95.18 94.39 95.61 0.928 0.939

RNN 96.80 95.30 95.81 96.88 0.931 0.944

LSTM 97.40 96.39 96.71 97.88 0.942 0.956

BILSTM 98.95 99.37 98.76 98.99 0.964 0.971

TABLE 5 BILSTM–LICRSA evaluation with different classifiers for the UTMultiView dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

GAN 95.31 95.49 94.15 95.04 0.919 0.923

RNN 96.49 96.08 97.04 97.06 0.930 0.942

LSTM 98.15 98.35 98.27 98.02 0.951 0.960

BILSTM 98.96 99.34 99.22 98.91 0.966 0.971

TABLE 6 Analysis of accuracy based on FDA.

Dataset Accuracy (%)

Actual input Actual with augmented input from FDA

Lund2013 95.11 99.32

Collected dataset 93.57 97.64

GazeBaseR 94.57 98.95

UTMultiView 95.81 98.96
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evaluation. The point evaluation is varied with the usage of various test
sets for investigation, which falls into confidence intervals with a definite
probability. These confidence intervals are utilized for evaluating the
difference among the algorithms. This analysis represents that BILSTM
has the first grade among other classifiers.

4.1.2 BILSTM–LICRSA evaluation with different
optimizations

This section shows the performance of the LICRSA with different
optimization algorithms such as PSO, GWO, and RSA. The evaluation
of BILSTM–LICRSA with different optimization algorithms for
Lund2013, collected, GazeBaseR, and UTMultiView datasets is given
in Tables 8–11, respectively. This analysis shows that the LICRSA
achieves improved classification than PSO, GWO, and RSA. The
LICRSA with BILSTM for the GazeBaseR dataset achieves an

accuracy of 98.95%, whereas the PSO obtains 93.56%, GWO obtains
96.24%, and RSA obtains 97.89%. In LICRSA, the Lévy flight and
interactive crossover are used for searching the local solutions and
enhancing the ability to search, which is further used to achieve the
optimal set of hyperparameters. This helps improve the classification of
eye movement.

4.2 Comparative analysis

The comparative analysis of BILSTM–LICRSA with existing
methods such as the gazeNet (Zemblys et al., 2019), HMC
(Friedman et al., 2023), and MSIEA (Yuan et al., 2021) is
provided in this section. The comparative analysis is provided for
three different datasets: Lund2013, GazeBaseR, and UTMultiView.
Here, the gazeNet (Zemblys et al., 2019), HMC (Friedman et al.,
2023), andMSIEA (Yuan et al., 2021) are considered for comparisons
of the Lund2013 dataset, GazeBaseR dataset, and UTMultiView
dataset, respectively. The evaluation of BILSTM–LICRSA with
gazeNet (Zemblys et al., 2019), HMC (Friedman et al., 2023), and
MSIEA (Yuan et al., 2021) is shown in Tables 12–14. This
comparison denotes that the BILSTM–LICRSA accomplishes
improved classification than the gazeNet (Zemblys et al., 2019),
HMC (Friedman et al., 2023), and MSIEA (Yuan et al., 2021).
The LICRSA is used to identify the optimal set of
hyperparameters, alongside the utilization of past and upcoming
data in BILSTM being utilized to enhance the classification.

TABLE 7 Analysis of bootstrapping AP and rank.

Classifiers AP range Rank

0.025 0.5 0.975

GAN 93.19 94.21 95.64 4

RNN 94.55 94.80 96.79 3

LSTM 95.17 96.04 97.98 2

BILSTM 95.68 97.58 99.77 1

TABLE 8 BILSTM–LICRSA evaluation with different optimization algorithms for the Lund2013 dataset.

Optimization algorithms Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

PSO 94.14 94.07 95.84 95.58 0.930 0.939

GWO 96.39 97.73 96.47 96.53 0.942 0.951

RSA 97.87 98.46 97.74 97.93 0.957 0.964

LICRSA 99.32 99.86 99.80 99.05 0.971 0.983

TABLE 9 BILSTM–LICRSA evaluation with different optimization algorithms for the collected dataset.

Optimization algorithms Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

PSO 93.81 93.84 94.05 93.94 0.912 0.921

GWO 95.28 95.04 95.79 95.41 0.927 0.949

RSA 96.50 95.68 96.45 96.06 0.942 0.953

LICRSA 97.64 96.58 97.15 96.86 0.954 0.962

TABLE 10 BILSTM–LICRSA evaluation with different optimization algorithms for the GazeBaseR dataset.

Optimization algorithms Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

PSO 93.56 94.62 93.80 93.24 0.925 0.930

GWO 96.24 95.61 95.93 95.72 0.931 0.949

RSA 97.89 96.87 96.88 96.68 0.950 0.953

LICRSA 98.95 99.37 98.76 98.99 0.964 0.971
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4.3 Discussion

This section offers a detailed discussion related to the outcomes
of BILSTM–LICRSA developed for eye movement event
classification. Initially, the results of BILSTM were investigated
with different state-of-the-art classifiers such as the GAN, RNN,
and LSTM. Next, different optimization algorithms such as PSO,
GWO, and RSA were used to investigate the efficiency of optimal
hyperparameters discovered from the LICRSA. The developed
BILSTM–LICRSA method is analyzed with four datasets:
Lund2013, collected dataset, GazeBaseR, and UTMultiView. The
evaluation of results represents that the BILSTM–LICRSA achieves a
better performance than the GAN, RNN, LSTM, PSO, GWO, and
RSA. Moreover, the BILSTM–LICRSA has better performance than
the existing gazeNet (Zemblys et al., 2019), HMC (Friedman et al.,
2023), and MSIEA (Yuan et al., 2021). BILSTM presents robust
classification by integrating both the past and upcoming data during
the recognition. Moreover, the optimum hyperparameters obtained
from the LICRSA additionally help improve the classification.

5 Conclusion

In this paper, an effective eye movement event classification is
achieved by using BILSTM with a hyperparameter tuning process. The
LICRSA-based hyperparameter tuning is done according to the accuracy
for improving the classification process. The Lévy flight and interactive

crossover are used for searching the local solutions and improving the
searching ability to achieve the optimal set of hyperparameters. On the
other hand, the utilization of past and upcoming data in BILSTM further
enhances the classification. The issue related to overfitting is avoided by
using FDA-based augmentation. Therefore, the combination of BILSTM
and the LICRSA achieves better classification of eye movements. The
outcomes of the BILSTM–LICRSA show that it outperforms the
gazeNet, HMC, and MSIEA. The F1-score of BILSTM–LICRSA for
the GazeBaseR dataset is 98.99%, which is superior to that of theMSIEA.
In future, different ways of feature aggregation can be studied to enhance
the performance of the proposed eye movement event classification.
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TABLE 11 BILSTM–LICRSA evaluation with different optimization algorithms the UTMultiView dataset.

Optimization algorithms Accuracy (%) Sensitivity (%) Precision (%) F1-score (%) AUROC AUPRC

PSO 94.35 94.53 93.66 94.51 0.929 0.921

GWO 95.49 95.95 96.53 95.74 0.937 0.941

RSA 98.40 97.26 97.96 97.18 0.954 0.969

LICRSA 98.96 99.34 99.22 98.91 0.966 0.971

TABLE 12 Comparison for the Lund2013 dataset.

Methods Accuracy (%) F1-score (%)

gazeNet Zemblys et al. (2019) 88.97 98

BILSTM–LICRSA 99.32 99.05

TABLE 13 Comparison for the GazeBaseR dataset.

Methods F1-score (%)

HMC (Friedman et al., 2023) 93.46

BILSTM–LICRSA 98.99

TABLE 14 Comparison for the UTMultiView dataset.

Methods F1-score (%)

MSIEA (Yuan et al., 2021) 52.9

BILSTM–LICRSA 98.91
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