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Epilepsy is a disease caused by abnormal neural discharge, which severely harms
the health of patients. Its pathogenesis is complex and variable with various forms
of seizures, leading to significant differences in epilepsy manifestations among
different patients. The changes of brain network are strongly correlated with
related pathologies. Therefore, it is crucial to effectively and deeply explore the
intrinsic features of epilepsy signals to reveal the rules of epilepsy occurrence and
achieve accurate detection. Existing methods have faced the following issues: 1)
single approach for feature extraction, resulting in insufficient classification
information due to the lack of rich dimensions in captured features; 2)
inability to deeply analyze the essential commonality of epilepsy signal after
feature extraction, making the model susceptible to data distribution and noise
interference. Thus, we proposed a high-precision and robust model for epileptic
seizure detection, which, for the first time, applies hypergraph convolution to the
field of epilepsy detection. Through a hypergraph network structure constructed
based on relationships between channels in electroencephalogram (EEG) signals,
the model explores higher-order characteristics of epilepsy EEG data.
Specifically, we use the Conv-LSTM module and Power spectral density (PSD),
a two-branch parallel method, to extract channel features from space-time and
frequency domains to solve the problem of insufficient feature extraction, and
can adequately describe the data structure and distribution from multiple
perspectives through double-branch parallel feature extraction. In addition,
we construct a hypergraph on the captured features to explore the intrinsic
features in the high-dimensional space in an attempt to reveal the essential
commonality of epileptic signal feature extraction. Finally, using the ensemble
learning concept, we accomplished epilepsy detection on the dual-branch
hypergraph convolution. The model underwent leave-one-out cross-
validation on the TUH dataset, achieving an average accuracy of 96.9%,
F1 score of 97.3%, Pre of 98.2% and Re of 96.7%. In addition, the model was
generalized performance tested on CHB-MIT scalp EEG dataset with leave-one-
out cross-validation, and the average ACC, F1 score, Pre and Re were 94.4%,
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95.1%, 95.8%, and 93.9% respectively. Experimental results indicate that the model
outperforms related literature, providing valuable reference for the clinical
application of epilepsy detection.
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1 Introduction

The human brain contains approximately 100 billion neurons,
making it the most complex organ in the human body. The brain
organizes itself through various means such as synaptic connections,
forming a complex neural network that dominates our
consciousness and behavior (Poo et al., 2016; Sala et al., 2022;
Thiebaut de Schotten and Forkel, 2022). Increasing research
findings have indicated that the implementation of advanced
human functions relies on the connections and communication
between different brain regions (Sporns et al., 2005; Yan et al., 2019).
In other words, the realization of brain functions primarily depends
on highly complex interactions between different areas of the brain
in a large-scale network. As a result, the concept of the brain as a
network is gaining widespread attention from researchers and
clinical practitioners. Currently, the study of interregional
relationships in the brain relies heavily on functional connectivity
analysis. This method involves analyzing the correlation of
neurophysiological activities between brain regions in terms of
temporal and frequency domains. It provides objective
quantification and interpretable metric information, contributing
to the understanding of cognitive function principles and the
detection of neurological disorders.

Epilepsy, as a typical neurological disorder, is caused by
abnormal neuronal discharges in the brain, leading to a
disruption of neural functions. The pathogenesis of epilepsy has
been confirmed to be associated with abnormalities in functional
connections between relevant brain regions (Shuting et al., 2019; van
den Heuvel and Hulshoff Pol, 2010). Neuroscientists are paying
attentions to the tools and concepts of network science on a
widespread basis, applying them to researches in brain science.
These tools and concepts allow for a consistent description and
interpretation of interactions among various neural systems within
the complex topology of the brain and its networks. This approach
has been proven to be successful in systems biology and social
network analysis (Michel et al., 2004; Sakkalis, 2011; Fornito et al.,
2016; Presigny and De Vico Fallani, 2022).

For the collection of electroencephalographic (EEG) signals, the
commonly employed method is electroencephalogram (EEG). EEG
is a technique that utilizes electrophysiological metrics to record
brain activities. It captures the electrical wave changes during brain
activity, serving as a comprehensive reflection of the
electrophysiological activity of brain neurons on the cerebral
cortex or the surface of the scalp. In recent years, the use of EEG
for epileptic seizure detection has drawn widespread attention in the
academic circle due to its advantages of easy collection, affordability,
and high temporal resolution of data. The installation of EEG
collecting channels follows the international 10–20 system, which
provides precise positions for channel installation. Each channel’s
location corresponds to specific brain regions, facilitating the

possibility of analyzing interregional relationships in further
analysis (Ein Shoka et al., 2023).

The key innovations of this study include:

(1) for the first time, proposing the neural network model that is
based on hypergraph convolution and suitable for epilepsy
detection. The model extracted features from each channel by
using Conv-LSTM module and PSD, constructed
hypergraphs respectively based on the extracted features,
and then realized automatic epilepsy detection by adopting
hypergraph convolution.

(2) conducting comprehensive experimental tests on the TUH
epilepsy dataset and the CHB-MIT scalp EEG dataset to
validate the model’s performance. The result indicates that
the model can achieve optimal detection performance in
epilepsy detection tasks. This approach provides valuable
reference for clinical epilepsy detection.

This study is structured as the following: Part 1 provides an
overview. Part 2 introduces relevant technologies in epilepsy
detection. Part 3 proposes the epilepsy detection model based on
multi-dimensional feature extraction and dual-branch hypergraph
convolutional network. Part 4 presents the comparative experiments
with relevant literature by adopting benchmark dataset. Part
5 discusses the model’s superiority through ablation experiments
and various parameter configurations. Part 6 gives the conclusion.

2 Related works

Regarding the task of neurological disease detection, existing
detection methods are often as the following: 1) Artificial feature
extraction is adopted, and the extracted features are calculated by
filtering and energy evaluation algorithms such as Multi-variable
Fast Iterative Filter (MFIF) (Sharma et al., 2023) and dynamic
approximate entropy (Zhang et al., 2023). Then the data is
classified by machine learning, for example, decision tree
classifier (Nithya et al., 2023) and random forest (Sharma et al.,
2018). 2) Applying deep learning model to automatically extract
features and performing classification.

In the application of epilepsy detection, some researchers used
individual patients’ historical data to train models and then applied
these models to test new data from the same patients. Representative
achievements in this area include: Hu et al. (2020) proposed an
epileptic seizure detection method based on the deep bidirectional
long short-term memory (Bi-LSTM) network, achieving an average
sensitivity of 93.61% and an average specificity of 91.85% on the
long-term scalp EEG database. To address the challenge of limited
data samples in individual patient detection tasks, Yang et al. (2022)
introduced a specific patient epilepsy detection and analysis method
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based on data augmentation and deep learning, this approach
achieved an average accuracy of 95.47%, an average sensitivity of
93.89%, and an average specificity of 96.48% respectively on the
CHB-MIT dataset. Zhou et al. (2018) proposed an epileptic seizure
recognition model based on convolutional neural networks (CNN),
achieving an average accuracy of 97.5% on the CHB-MIT dataset.
Poorani and Balasubramanie (2023) presented a one-dimensional
CNN model and a hybrid CNN-LSTM model, where the one-
dimensional CNN model achieved an average accuracy of
91.50%, and the CNN-LSTM model achieved an average
accuracy of 92.11% on the CHB-MIT dataset. Similarly, Wang
et al. (2023) also used the persistent homology method to
calculate the complex filter bar code of virtual reality on the
CHB-MIT dataset to extract topological features and input them
into GoogLeNet for classification. The average accuracy, sensitivity
and specificity were 97.05%, 96.71%, and 97.38%, respectively.
However, these methods are limited to training and testing on
individual subjects, having poor model generalization.

Another research approach involves designing network
models with generalization capabilities and utilizing leave-one-
out cross-validation. Specifically, this method involves
partitioning epilepsy datasets with data from multiple patients.
One patient’s data is selected for testing, while the data from
other patients are used for training. This approach enhances the
model’s generalization capability. Representative achievements
include: Zhang et al. (2020) employed feature separation and
adversarial representation learning to decompose data into
category (seizure and normal) relevant features and patient-
specific features, achieved an average accuracy of 80.5% on the
TUH EEG dataset. Dissanayake et al. (2021) utilized CNN
network structure and Siamese network structure, achieved an
accuracy of 88.81% on the CHB-MIT dataset. Yang et al. (2023)
applied feature separation adversarial training, achieved an
average accuracy of 85.7% on the TUH EEG dataset.

The two aforementioned approaches involve overall feature
extraction from a data segment without capturing information
transmitting among channels. However, for epilepsy EEG data,
the interregional relationships in the brain are highly relevant to
seizure patterns, which includes higher-order information of EEG
signals and holds important reference significance for epilepsy
detection. In the exploration of advanced network feature
information from data, researchers have conducted extensive
work. Feng et al. (2019a) were among the pioneers who
introduced hypergraph neural networks, while Yadati et al.
(2019) proposed hypergraph convolutional networks. Jiang et al.
(2019) introduced a dynamic hypergraph convolutional neural
network, this network utilizes KNN and K-Means to dynamically
update the hypergraph structure, enhancing its ability to capture
data relationships, it can extract both partial and overall
relationships within the data.

In the field of brain science research, some researchers have
proposed using graph models to describe pairwise relationships
among multi-channel EEG signals. For instance, Zhang et al. (2019)
introduced a graph-based hierarchical model that classifies motor
intentions based on the relationships between EEG signals and their
spatial information. Li et al. (2023) proposed a spatial-temporal
hypergraph convolutional network (STHGCN) to capture higher-
order relationships in EEG emotion recognition, achieved leading

results on the SEED and SEED-IV datasets. Recently, Wagh and
Varatharajah (2020) employed graph convolutional neural networks
(GCNN) for the classification of epilepsy and normal data, achieving
an AUC of 0.90. Currently, there isn’t related research found
regarding the application of hypergraph convolution in the field
of epilepsy detection. Therefore, taking use of hypergraph
convolution can be considered as an important research
approach for exploring higher-order information among brain
regions in epilepsy patients.

3 Methodology

In the study, we proposed an epilepsy detection model based on
hypergraph convolution, as illustrated in Figure 1. The processing
flow of the model consisted of three stages: 1) feature extraction
stage, 2) hypergraph construction stage, and 3) hypergraph
convolution stage. The approach in feature extraction stage was
depicted in Figure 2. To thoroughly extract multidimensional
features from the data, two parallel extraction methods were
employed. PSD was used to extract spectral features, and Conv-
LSTM neural network was utilized to capture spatiotemporal
features. In the hypergraph construction stage, a hypergraph was
generated by combining multidimensional features. Hyperedges
were adopted to characterize the vertices connected to them,
encoding high-order feature information to represent complex
data structures in a more flexible manner. In the hypergraph
convolution stage, a hypergraph spectral domain convolution
method was applied to thoroughly extract high-order data
features from epilepsy data, thereby enhancing the model’s
generalization capability and classification performance.

3.1 Data preprocessing

The EEG is a bioelectrical signal generated by brain activity,
which is characterized by uncertainty and randomness. Therefore,
prior to analyzing raw data, preprocessing is necessary to eliminate
the negative impact of different units and numerical ranges between
features on subsequent data analysis. Additionally, it is helpful to
improve data quality by adopting various interference elimination
techniques, thus to enhance the accuracy of later analyses. This
paper adopted min-max regularization technology (Sola and Sevilla,
1997) to regularize the EEG data. The min-max regularization
method was shown as the formula (1):

X � Xi −Xmin

Xmax −Xmin
(1)

where,Xi represented the original data,X represented the data after
data regularization. Xmin and Xmax represented the minimum and
maximum values in the original data.

After regularization of EEG data, in order to extract the features
of EEG data, the EEG data were processed in segments. In the study,
X(M,N, T) represented the collected EEG data, where M �
1, 2,/, m{ } denoted the m − th subject, N � 1, 2,/, n{ } denoted
the n − th signal channel, and T denoted the length of original data.
Additionally, for the purpose of facilitating feature extraction, the
original data was segmented with a length of t. Then, the original
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data consisted of S � T/t EEG data segments, with each signal
segment s ∈ S being represented as x(m, s, n, t).

3.2 Feature extraction

For data feature extraction, we proposed a dual-branch epilepsy
feature extraction method in the study. It utilizes PSD to extract
spectral features and the Conv-LSTM neural network to capture

spatiotemporal features. By extracting data features from multiple
dimensions, this approach can provide more information for
hypergraph construction, ensuring that the model achieves higher
classification accuracy.

3.2.1 Feature extraction using PSD
PSD is a method for calculating the energy distribution of EEG

signals at different frequencies from a frequency domain
perspective. It helps reveal the essence of brain activity and

FIGURE 1
Model structure.

FIGURE 2
The process of feature extraction stage.
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function. Currently, the frequency domain features of EEG signals
represent the most intuitive and convenient characteristics. They are
widely utilized in the diagnosis and treatment of neurological
disorders. By implementing this algorithm, it is possible to
thoroughly extract the energy information of EEG data at
different frequency bands, analyzing subjects’ changes in energy
across different stages and frequency bands. Consequently, this
provides reliable clues for the diagnosis and treatment of relevant
neurological disorders.

For the process of extracting PSD features, the first step involved
applying Fast Fourier Transform (FFT) to the input data x(m, s, n, t)
(Yudhana et al., 2020), which was defined as Eq. (2):

XFFT f( ) � FFT Ham, sft, x( ) (2)
where, FFT represented the Fast Fourier Transform operator,Ham
denoted the Hamming window, and sft denoted the frequency
domain sampling rate.

Then, performed PSD calculation as Eq. (3) on the obtained
XFFT(f) (Alam et al., 2021):

PSD x( ) � XFFT f( )∣∣∣∣ ∣∣∣∣2
L

(3)

where, L represented the length of signal. To extract the energy
distribution features of data in different frequency bands, we
extracted features from the following six sub-frequency bands: δ
(0–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), γ (30–80 Hz) and
high-frequency oscillations HFO (80 Hz–120 Hz), obtaining the
power spectral features P � pδ , pθ , pα, pβ, pγ, pHFO{ } of the input
data x(m, n, t).

By integrating, we obtained the PSD features fPSD ∈ RM×S×N×6

for M subjects, all segments S, channels N, and 6 sub-
frequency bands.

3.2.2 Feature extraction using Conv-LSTM
EEG signals are temporal signals, and solely capturing PSD

features may not sufficiently acquire the spatiotemporal features of
the signal. In the study, we employed the Conv-LSTM
spatiotemporal convolutional network (Shi et al., 2015) to
automatically extract one-dimensional spatial features and
temporal features from EEG signals. This approach allows for a
more comprehensive and in-depth extraction of EEG signal features,
thereby enhancing the detection accuracy of the model.

In the study, we adopted LSTM networks, which are powerful in
representing the extracted temporal domain features, and used the
states and outputs of the network’s memory cells at each time step, to
construct spatial convolutional norms learning and the sequential
accumulation of effective signal features. Therefore, between
adjacent time steps, parameters are selectively inherited, aiding in
the construction of contextual information and ensuring the
integrity of feature structures presentation.

In the current time segment S, the state and output of the LSTM
memory cell were represented by Cs and fs−1 respectively, while Cs−1
andfs−1 represented the state and output of the cell in the previous time
segment s − 1. The calculation process for extracting features from a
single-channel x(m, s, 1, t) input was defined as Eqs (4)–(7):

hs � σ ψ3×3
1 fs−1 ⊕ x m, 1, t( )( )( ) (4)

~Cs � σ ψ3×3
2 fs−1 ⊕ x m, 1, t( )( )( ) (5)

Cs � hs+ ~Cs + Cs−1( ) (6)
fs � hs+Cs (7)

where, + and ⊕ represented Hadamard product and dimension
concatenation respectively, ψ3×3

1 and ψ3×3
2 represented the feature

tensor convolution and state tensor convolution for 3 × 3
respectively. The output of the spatiotemporal convolution
branch fConv−LSTM ∈ RM×S×N×t was obtained by extracting
features from all channels.

3.3 Hypergraph construction

Building on the foundation of feature extraction, we constructed
a hypergraph GF � (V, E,W) based on the distance relationships
between features, with F ∈ fConv−LSTM, fPSD{ } being the extracted
feature set. Each EEG data channel serving as a vertex ] ∈ V in the
hypergraph and each hyperedge e ∈ E being formed by connecting a
vertex ] with its k-nearest neighboring vertices at the minimum
Euclidean distance. Among which k ∈ 2, 3, 4, 5, 6{ }, five hypergraph
adjacency matrices were formed. Each hyperedge e ∈ E contained
two or more vertices and was assigned a positive weightWe, forming
a diagonal matrix WN×N from integrating all the weights. A
hypergraph GF � (V, E,W) can be equivalently represented by
|V| × |E| to be an adjacency matrix H ∈ R|V|×|E|, with entries
defined as Eq. (8) (Feng et al., 2019b):

h ], e( ) � 1, ] ∈ e
0, ] ∉ e

{ (8)

For any given feature vertex ] ∈ V, its degree was expressed as
Eq. (9):

d ]( ) � ∑
e∈E

w e( )h ], e( ) (9)

where, w(e) represented the weight corresponding to the
hyperedge e.

For any given hyperedge e ∈ E, the expression d(e) for its degree
was defined as Eq. (10):

d e( ) � ∑
]∈V

h ], e( ) (10)

All expressions for the degrees of feature vertices ] and
hyperedges e were recorded in diagonal matrices Dv ∈ R|V|×|V|

and De ∈ R|E|×|E|. HPSD, DPSD
] and DPSD

e obtained by constructing
hypergraphs through PSD features; while HConv−LSTM, DConv−LSTM

]
and DConv−LSTM

e obtained by constructing hypergraphs through
spatiotemporal convolution features.

3.4 Hypergraph convolution

Based on the H, Dv and De generated during the hypergraph
construction process, as well as the subject features input
fConv−LSTM ∈ RM×S×Num1 and fPSD ∈ RM×S×Num2, where Num1 �
N × t represented the feature dimension of the spatiotemporal
convolution branch and Num2 � N × 6 represented the feature
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dimension of the PSD branch, hypergraph convolutions were
conducted for each branch (Li et al., 2023), which were defined
as Eq. (11). The construction process is shown in Algorithm 1.

Algorithm 1. The Proposed Hypergraph Convolution Approach.

Hconv � D−1/2
] HWD−1

e HTD−1/2
] FΘ (11)

where, Θ ∈ RNum×Num represented the model parameters updated
during the training process through backpropagation of the cross-
entropy loss on training data. For the spatiotemporal convolution
branch after Relu mapping, the result of the hypergraph convolution
was defined as Eq. (12):

yConv−LSTM � Relu Hconv fConv−LSTM,HConv−LSTM,Θ( )( ) (12)

For the PSD branch, the hypergraph convolution after Relu
mapping was defined as Eq. (13):

yPSD � Relu Hconv fPSD,HPSD,Θ( )( ) (13)

To enhance the model’s generalization and robustness, we have
introduced a convolutional expansion factor Q, expanding the feature
output to YConv−LSTM � yq

Conv−LSTM{ }Qq�1 and YPSD � yq
PSD{ }Qq�1.

Through the dual-branch hypergraph convolution, we obtained
the frequency domain features and spatiotemporal features
representations of the data respectively. These two representations
were then connected in a cascaded manner. Finally, label prediction
was achieved through two convolutional layers ψ1×1 for 1 × 1 and the
softmax function was defined as Eq. (14):

P X( ) � softmax ψ1×1 ψ1×1 YConv−LSTM ⊕ YPSD( )( )( ) (14)

To complete the model training, we introduced the cross-
entropy loss function in the study. The cross-entropy loss
function measured the difference between the predicted
probability distribution of the proposed model and the true
probability distribution. During backpropagation, gradients were
used to constrain the hyperparameters and convolutional
parameters in the model, aiming to improve the model’s
predictive accuracy. It was specifically represented by Eq. (15):

L � −Pp log ylabel( ) − 1 − P( )p log 1 − ylabel( ) (15)

where, P ∈ (0, 1) represented the predicted probability of the
network, and ylabel denoted the data label.

4 Experiments

4.1 Datasets and evaluation metrics

The proposed model in the study was extensively evaluated on
the publicly available dataset, TUH epilepsy dataset (Obeid and
Picone, 2016), to thoroughly assess and validate the effectiveness of
the model and its components. The dataset included 2,993 records of
at least 15 min duration obtained from 2,329 unique patients and
consisted of a developed and separate final assessment set. It
contains records of male and female patients from a variety of
age ranges (7 days −96 years), and therefore includes infants,
children, adolescents, adults, and elderly patients. Pathologies
diagnosed in patients in the dataset include (but are not limited
to) epilepsy, stroke, depression, and Alzheimer’s disease, however,
only binary labels are provided. The dataset includes physician
reports that provide additional information about each EEG
record, such as major EEG findings, the patient’s ongoing
medication, and medical history. In the description of the
dataset, TUH reported an inter-rater confidence of 97%–100%. In
the literature, the reported scores are usually much lower. The nearly
perfect rating may be the result of a review of the survey results by
medical students who were aware of the diagnosis in advance. The
dataset followed the international 10–20 system to perform channel
installation and data collection, with 21 channels and a sampling
rate of 250 Hz. We randomly selected subjects with seizure duration
being more than 250 s, forming 14 TUH subsets as the experimental
datasets. For each subject, we used 500 s of EEG signals (half normal
data and half seizure data), with each EEG segment having
250 sampling points (lasting for 1 s), i.e., t = 250, and adjacent
segments overlapping by 50%. For each EEG segment, the seizure
state ones being categorized as positive were assigned a label of 1,
while the normal state ones being categorized as negative were
assigned a label of 0. Then, the 14 TUH subsets were divided into
training set and testing set according to leave-one-out cross-
validation.

The leave-one-out cross-validation method used in this paper is
a special cross-validation method. Specifically, the TUH dataset
contains 14 patient data subsets, and through 14 experimental
trainings, only 1 patient sample is retained as the validation set
each time, and the remaining 13 patients are used as the training set.
Because each sample is independently verified, the model is not
affected by the division of training set and verification set, and the
validity and robustness of experimental data are guaranteed. To be
more specific, the designed diagnosis model with robustness must
handle both intra-patient factors and inter-patient noise to embrace
clinical and more complex situations needs such as patient-
independent: the testing patient is unseen in the training stage
(Zhang et al., 2020). Therefore, the leave-one-out cross-validation
method provides a patient-independent validation of the differences
in data structures among patients during training and testing. The
high average accuracy obtained by leave-one-out cross-validation
method can reflect the anti-noise interference ability and robustness
of the proposed model. At the same time, we evaluated the training

Frontiers in Physiology frontiersin.org06

Liu et al. 10.3389/fphys.2024.1364880

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1364880


time and test delay of our method. The results showed that the test
required only 0.03 s (0.01 s for EEG decomposition and 0.02 s for
attentional epilepsy diagnosis), while a single training session
required 1,852.7 s. In conclusion, in a potential online seizure
diagnosis system, the diagnostic delay of our approach is acceptable.

At the same time, we used the epilepsy scalp EEG dataset from
Boston Children’s Hospital, United States (Goldberger et al., 2000),
which is named as CHB-MIT scalp EEG, to further verify the validity
of the proposed model. This dataset contains 24 consecutive scalp
EEG recordings from 23 patients. The first and 21st records were from
the same patient, and the 24th record did not provide personal
information. The dataset followed the international 10–20 system
to perform channel installation and data collection with a signal
sampling frequency of 256 Hz and a resolution of 16 bits per second.
In the dataset, 23 channels were used for most records. For the
convenience of research, only EEG data containing 23 channels were
retained in this paper, and records with channel number less than or
greater than 23 would be discarded. The number of channels recorded
in the 12th and 15th sections was not sufficient for the requirements of
this experiment, so the data recorded in the 12th and 15th sections
were discarded. Table 1 shows the personal information and the
number of seizures recorded in the CHB-MIT scalp EEG dataset.

ACC � TP + TN

TP + FP + TN + FN
(16)

Pr e � TP

TP + FP
(17)

Re � TP

TP + FN
(18)

F1 � 2 Pr e · Re
Pr e + Re

(19)

In the above equations from (16) to (19), TP (True Positive)
denoted the samples judged as positive that are actually positive, TN
(True Negative) denoted the samples judged as negative that are
actually negative, FP (False Positive) denoted the samples judged as
positive that are actually negative, FN (False Negative) denoted the
samples judged as negative that are actually positive.

4.2 Benchmark

On the TUH dataset, using the same data segment length and
employing leave-one-out cross-validation, we compared our
approach with seven other methods. The comparative results of

TABLE 1 CHB-MIT scalp EEG dataset information.

ID Gender Age/year Number of seizures

1 Female 11 7

2 Male 11 3

3 Female 14 7

4 Male 22 4

5 Female 7 5

6 Female 1.5 10

7 Female 14.5 3

8 Male 3.5 5

9 Female 10 4

10 Male 3 7

11 Female 12 3

13 Female 3 10

14 Female 9 8

16 Female 7 8

17 Female 12 3

18 Female 18 6

19 Female 19 3

20 Female 6 8

21 Female 13 4

22 Female 9 3

23 Female 6 7

24 — — 16

The performance of the algorithm was evaluated using accuracy (ACC), Precision (Pre), Recall (Re), and F1 in the experiment.
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ACC are presented in Table 2 and Heatmap in Figure 3.
Meanwhile, the comparison results of multiple indicators are
shown in Table 3.

Zabihi et al. (2013) used discrete wavelet transform (DWT) to
calculate indicators such as relative scale energy and Shannon entropy
as features. Support vector machines are used for data classification.

Fergus et al. (2015) used PSD and calculated metrics such as
peak frequency and maximum frequency as features; KNN is used
for data classification.

Schirrmeister et al. (2017) used convolutional neural networks
to decode task-related information from EEG signals to distinguish
epileptic fragments.

Kiral-Kornek et al. (2018) designed deep neural networks for
epilepsy diagnosis and further developed predictive systems for
wearable devices.

Zhang et al. (2020) propose an adversarial representation
learning strategy to achieve robust and interpretable seizure detection.

Dissanayake et al. (2021) used CNNnetwork structure and Siamese
network structure to improve the generalization ability of the model.

Yang et al. (2023) used multistage time-spectrum feature
extraction network, feature separation network and invariant
feature extraction network to extract the essence of features in
depth to avoid differences in data distribution between patients.

TABLE 2 Comparative results.

Methods Subject ID Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Zabihi et al. (2013) 82.1 74.6 71.9 70.6 72.6 77.3 80.4 86.3 76.2 75.8 83.2 75.8 78.4 81.6 77.6

Fergus et al. (2015) 80.3 77.5 86.5 75.1 80.1 71.8 85.3 89.8 72.2 75.8 86.6 72.5 79.1 82.3 79.6

Schirrmeister et al. (2017) 79.3 74.3 96.5 75.8 78.9 66.5 81.3 87.1 61.9 63.4 91.9 57.1 74.4 71.1 76.0

Kiral-Kornek et al. (2018) 80.5 66.9 85.5 70.9 77.2 61.9 82.3 83.6 74.6 59.8 83.5 55.6 74.5 72.6 73.6

Zhang et al. (2020) 84.1 82.6 97.8 77.4 84.2 73.3 91.1 91.4 69.7 65.2 92.3 60.4 77.2 78.7 80.5

Dissanayake et al. (2021) 80.4 83.1 79.2 72.6 81.4 83.4 87.9 75.8 80.8 78.2 89.2 88.5 85.6 85.5 82.3

Yang et al. (2023) 82.0 72.8 92.4 60.4 86.0 94.4 98.4 90.4 87.6 88.4 90.0 93.2 81.2 83.6 85.7

Ours 98.5 97.2 94.8 96.2 95.9 96.5 97.4 98.7 97.7 95.5 96.9 97.2 96.9 97.5 96.9

FIGURE 3
Heatmap visualization results from the comparative experiment.

TABLE 3 Comparison results of multiple indexes.

Methods Evaluation metrics

ACC F1 Pre Re

Zabihi et al. (2013) 77.6 82.8 81.5 84.1

Fergus et al. (2015) 79.6 83.3 85.4 81.4

Schirrmeister et al. (2017) 76.0 79.4 78.5 81.1

Kiral-Kornek et al. (2018) 73.6 77.0 74.8 78.9

Zhang et al. (2020) 80.5 84.4 86.4 82.6

Dissanayake et al. (2021) 82.3 86.8 89.5 84.9

Yang et al. (2023) 85.7 89.6 90.9 88.1

Ours 96.9 97.3 98.2 96.7
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Through comparative analysis, Schirrmeister (Schirrmeister et al.,
2017) and Kiral (Kiral-Kornek et al., 2018) initially applied deep neural
networks to epilepsy detection but failed to consider the diversity in
patient data. This lack of extracting consistent features from the data
negatively impacted themodel training, reducing the detection accuracy
for new patients. In this context, Zabihi (Zabihi et al., 2013) used relative
scale energy and Shannon entropy, etc. as features, and Fergus (Fergus
et al., 2015) used peak frequency and maximum frequency, etc. as
features, to capture common features in the data. However, these
approaches were unable to identify common features at higher-
dimensional levels. Therefore, the proposed method in the study
demonstrated better detection accuracy comparing to Schirrmeister’s
(Schirrmeister et al., 2017) and Kiral’s (Kiral-Kornek et al., 2018).
Additionally, shallow feature commonality extraction cannot
thoroughly explore the essence of features, resulting in test results
lower than those achieved by Zhang (Zhang et al., 2020), Dissanayake
(Dissanayake et al., 2021), and Yang (Yang et al., 2023). Zhang (Zhang
et al., 2020) and Dissanayake (Dissanayake et al., 2021) employed deep
learning methods such as adversarial training and contrastive training,
etc., reducing the negative impact of differences in data distribution
between patients. Their results were superior to those not considering
removing the negative impact of data distribution shift between
patients. Furthermore, Yang (Yang et al., 2023) first used a multi-
level time-spectrum feature extraction network to capture common
features and then input it into a feature separation network and an
invariant feature extraction network, achieving more excellent accuracy
performance by deeply extracting the essence of features and avoiding
differences in data distribution between patients. We introduced in the
study, for the first time, a hypergraph convolutional neural network
model suitable for epilepsy detection. It captures multidimensional
features through parallel dual branches while constructing hypergraph
convolution. This exploration of high-order common information
between brain regions of epilepsy patients can project essential
features of data structure from a higher dimension, thereby reducing
the impact of skewed distribution.

Through comprehensive analysis of several evaluation indicators,
the proposed model reached 96.9% (ACC), 97.3% (F1), 98.2% (Pre)
and 96.7% (Re) on the TUH dataset. Compared with the epilepsy
detection study in the preface, Yang’s method has an 11.2%
improvement in ACC, 7.7% improvement in F1, 7.1%
improvement in Pre and 8.6% improvement in Re (Yang et al.,
2023). Compared with the traditional support vector machine
method (Zabihi et al., 2013), it has a greater improvement: 19.3%,
14.5%, 16.7%, and 12.6% corresponding to ACC, F1, Pre and Re,
respectively. The excellent performance of the proposed model is
further described through multiple evaluation dimensions.

On the CHB-MIT scalp EEG dataset, we used the model and the
leave-one-out cross-validation method to conduct a full experiment
on this dataset. The experimental results (ACC) are shown in Table 4.

The generalization ability of the proposed model was tested on the
CHB-MIT scalp EEGdataset. From the experimental results in the table, it
can be concluded that the ACC, F1, Pre and Re of 22 patients evaluated by
the model were as high as 94.4%, 95.1%, 95.8%, and 93.9%. Each
evaluation index is above 90%, and the comprehensive ability is
outstanding. Among them, the EEG test results of patient 17 were as
high as 98.8%, and the model’s worst performance was patient 16, at
89.4%. The experimental data of the two datasets show that the proposed
model has good generalization ability and robustness.

5 Discussions

In order to analyze the effectiveness of the proposed method, we
conducted extensive ablation experiments on TUH dataset with its
components and parameters. First, in the feature extraction stage, to
validate the effectiveness of the dual-branch structure, we conducted two
sets of experiments: “Only Conv-LSTM,” “Only PSD,” “Only Conv-Att”
and “Only Ene,” which respectively represented only using Conv-LSTM
to extract features, only using PSD to extract features, using only channel
attention convolution and only energy representations. Secondly, for the
important parameters k ∈ 2, 3, 4, 5, 6{ } required for hypergraph
construction, we conducted sequential k-value experiments to explore
the impact of the hypergraph constructed by different k values, the
individual k-value and the combined six k values on the network
detection accuracy. All experiments were conducted using leave-one-
out cross-validation on the TUH dataset. The ACC results of the branch
ablation experiment are shown in Table 5; Figure 4, and the hypergraph
parameter experiment results are shown in Table 6.

To validate the effectiveness of the proposed dual-branch structure, a
comparison between the results of single-branch experiments and dual-
branch experiments revealed that themodel testing average accuracywas
95.4% when only using Conv-LSTM to extract features, while the model
testing average accuracy was 95.6% when only using PSD to extract
features. At the same time, “Only Conv-Att” and “Only Ene” performed
significantly lower in ACC at 82.9% and 83.3%, respectively, than “Only
Conv-LSTM” and “Only PSD.” This shows that the essential ability of
hypergraph convolutional representation data constructed after spatial
attention extraction branch and energy branch extraction is inferior to
Conv-LSTM branch and PSD branch. Therefore, Conv-LSTM branch
and PSD branch are selected as more effective feature extraction
methods in this paper.

By comparing the model performance of using only the Conv-
LSTM feature extraction branch and using only the PSD feature
extraction branch, it was found that the model performance using
only the PSD feature extraction branch was superior to the model
performance using only the Conv-LSTM feature extraction branch.
We conducted a model performance comparison using an area
chart, as shown in Figure 2, where the model performance using

TABLE 4 Experimental results.

Subject ID

1 2 3 4 5 6

92.8 90.1 98.3 92.7 91.5 96.3

7 8 9 10 11 13

95 96.4 93.3 98.1 94.5 95.9

14 16 17 18 19 20

91.8 98.2 98.8 96.7 97.5 97.1

21 22 23 24

92.6 94.8 93.1 97.8

Evaluation metrics

Average ACC Average F1 Average Pre Average Re

94.4 95.1 95.8 93.9
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only the PSD feature extraction branch dominated in total area,
highlighting its outstanding testing performance. The reason for this
result may be that frequency domain features have advantages in
explaining the essence of epilepsy EEG information, while
spatiotemporal domain information is more focused on
connecting temporal information to construct context. Therefore,

after extracting frequency domain features, the fusion of temporal
information can effectively reveal multiple aspects of the essential
characteristics of epilepsy EEG signals, achieving a superior
detection accuracy of 96.9%.

Upon completing the dual-branch feature extraction, it is crucial
to effectively construct the hypergraph for feature representation and

TABLE 5 Experimental results of branch ablation.

Methods Subject ID Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Only Conv-LSTM 96.1 95.2 93.3 94.1 96.2 95.7 96.9 94.9 94.3 93.7 96.6 96 94.9 97.1 95.4

Only PSD 95.3 95 94.3 95.4 95.1 95.5 96.3 97.8 95.1 94.4 96.1 96.4 95.6 96.3 95.6

Only Conv-Att 85.7 79.1 84.4 76.9 77.8 86.6 85.9 84.8 83.2 86.7 81.6 85.2 88.4 75.3 82.9

Only Ene 89.2 86.6 74.9 79.7 71.1 90.7 82.4 75.3 88 84.5 87.2 83.9 81.8 91.3 83.3

All (Conv-LSTM + PSD) 98.5 97.2 94.8 96.2 95.9 96.5 97.4 98.7 97.7 95.5 96.9 97.2 96.9 97.5 96.9

FIGURE 4
Area of experimental results for branch ablation.

TABLE 6 Experimental results of hypergraph parameters.

Methods Subject ID Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13

k = 2 94.5 91.6 88 89.3 92.1 91.2 90.7 91.6 88.3 92.5 94.3 92.3 91.8 89.5 91.3

k = 3 90.7 87.6 90.1 88.6 89.9 90.6 89.7 91.7 91.1 90.1 93.6 93.8 92.3 90.3 90.7

k = 4 93.6 89.4 91.6 94.5 91.5 93.9 94.7 91.4 90.5 90.9 90.1 94.2 89.1 91.2 91.9

k = 5 94.8 91.1 89.5 90.2 93.2 91.0 92.1 92.5 93.5 91.2 93.4 93.5 91.5 94.4 92.3

k = 6 92.8 94.5 92.8 93.0 92.8 92.6 88.6 92.7 93.8 93.3 93.6 94.7 92.1 93.9 92.9

All 98.5 97.2 94.8 96.2 95.9 96.5 97.4 98.7 97.7 95.5 96.9 97.2 96.9 97.5 96.9
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hypergraph learning. In hypergraph construction, each EEG data
channel served as a vertex ] ∈ V in the hypergraph, and each
hyperedge e ∈ E was formed by connecting a vertex ] with its
k-nearest neighboring vertices at the minimum Euclidean distance.
The parameter k determined the number of adjacency matrices and
the dimensionality of hypergraph information, reflecting the quality
of hypergraph construction and the richness of classification
information. To investigate the impact of different k ∈ 2, 3, 4, 5, 6{ }
on model performance, experiments were conducted. By comparing
experiment results with different k value: ACC (k = 2) = 91.3%, ACC
(k = 3) = 90.7%, ACC (k = 4) = 91.9%, ACC (k = 5) = 92.3%, ACC (k =
6) = 92.9%, ACC [k= (Sporns et al., 2005; Shuting et al., 2019; Yan
et al., 2019; Sala et al., 2022; Thiebaut de Schotten and Forkel, 2022)] =
96.9%, it was observed that ACC (k = 6) = 92.9% outperformed ACC
(k = 2) = 91.3%. During the hypergraph construction process, this
occurred due to that the more adjacent vertices ] ∈ V found by the
minimum Euclidean distance allows the hypergraph to contain more
feature information, and the constructed hyperedges can better reflect
common features. However, the situation as ACC (k = 3) = 90.7%
being lower than ACC (k = 2) = 91.3% also existed. This could be
because: for the three adjacency matrices constructed via the three
nearest neighboring vertices (searched through the KNN algorithm),
comparing with k = 2, the additionally constructed adjacency matrix
may introduce distant noise information for the original vertex, which
did not effectively contribute to the construction of the hypergraph for
the original vertex. To effectively mitigate the impact of the k value on
the model’s performance, we employed multiple k values in the study
to construct hypergraphs respectively and adopted a systematic
ensemble approach, resulting in ACC [k= (Sporns et al., 2005;
Shuting et al., 2019; Yan et al., 2019; Sala et al., 2022; Thiebaut de
Schotten and Forkel, 2022)] = 96.9%.

In future study, we propose three recommendations as
the following:

Firstly, the proposed method employed a dual-branch parallel
extraction and hypergraph learning structure, capturing
frequency domain information and spatiotemporal domain
information respectively. Next, we can increase the data
volume in parallel branches to extract more discriminative
features from multiple dimensions, thereby enhancing the
model’s performance.

Secondly, in the hypergraph construction stage, the current
approach only utilized the KNN method to search for vertices
and construct hyperedges. Next, we can explore various ways of
constructing hypergraphs and integrate them to enhance the feature
representation capability of hypergraphs.

Lastly, the proposed method was trained and tested only on two
public datasets, lacking validation on real clinical datasets.
Therefore, we will conduct validation on the actual performance
of the model using clinical data in the future.

6 Conclusion

In the study, we have first ever introduced a novel neural
network model for epilepsy detection based on hypergraph
convolution. Addressing the insufficient feature extraction in
traditional methods for epilepsy datasets, which fails to deeply
reveal the high-order characteristics of seizure data, we have

proposed the dual-branch approach to extract features from each
channel using Conv-LSTMmodule and PSD. This has been a highly
effective way to explore both the frequency domain features and
spatiotemporal domain features information of epilepsy signals.
Based on this, hypergraphs were constructed using the KNN
algorithm, exploring the commonalities and intrinsic information
of epilepsy data in the hypergraph structure. Finally, hypergraph
convolution was applied to achieve graph feature extraction and
automatic epilepsy detection. In the testing and validation phase, we
conducted leave-one-out cross-validation with 14 patients’ data
selected from the TUH dataset according to experimental
requirements and compared the results with relevant literature.
The proposed method achieved the best results. In addition, the
effectiveness and generalization ability of the proposed model are
verified on CHB-MIT Scalp EEG dataset. It indicates that the high-
order hypergraph features, which the model explores, are highly
discriminative, being able to achieve higher detection accuracy and
provide valuable reference for the clinical application of
epilepsy detection.
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