AUTHOR=Yang Xiaoguo , Zheng Yanyan , Mei Chenyang , Jiang Gaoqiang , Tian Bihan , Wang Lei TITLE=UGLS: an uncertainty guided deep learning strategy for accurate image segmentation JOURNAL=Frontiers in Physiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1362386 DOI=10.3389/fphys.2024.1362386 ISSN=1664-042X ABSTRACT=

Accurate image segmentation plays a crucial role in computer vision and medical image analysis. In this study, we developed a novel uncertainty guided deep learning strategy (UGLS) to enhance the performance of an existing neural network (i.e., U-Net) in segmenting multiple objects of interest from images with varying modalities. In the developed UGLS, a boundary uncertainty map was introduced for each object based on its coarse segmentation (obtained by the U-Net) and then combined with input images for the fine segmentation of the objects. We validated the developed method by segmenting optic cup (OC) regions from color fundus images and left and right lung regions from Xray images. Experiments on public fundus and Xray image datasets showed that the developed method achieved a average Dice Score (DS) of 0.8791 and a sensitivity (SEN) of 0.8858 for the OC segmentation, and 0.9605, 0.9607, 0.9621, and 0.9668 for the left and right lung segmentation, respectively. Our method significantly improved the segmentation performance of the U-Net, making it comparable or superior to five sophisticated networks (i.e., AU-Net, BiO-Net, AS-Net, Swin-Unet, and TransUNet).