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Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia,
which is clinically identified with irregular and rapid heartbeat rhythm. AF puts
a patient at risk of forming blood clots, which can eventually lead to heart
failure, stroke, or even sudden death. Electrocardiography (ECG), which involves
acquiring bioelectrical signals from the body surface to reflect heart activity,
is a standard procedure for detecting AF. However, the occurrence of AF is
often intermittent, costing a significant amount of time and effort from medical
doctors to identify AF episodes. Moreover, human error is inevitable, as even
experienced medical professionals can overlook or misinterpret subtle signs of
AF. As such, it is of critical importance to develop an advanced analytical model
that can automatically interpret ECG signals and provide decision support for AF
diagnostics.

Methods: In this paper, we propose an innovative deep-learning method for
automated AF identification using single-lead ECGs. We first extract time-
frequency features from ECG signals using continuouswavelet transform (CWT).
Second, the convolutional neural networks enhanced with residual learning
(ReNet) are employed as the functional approximator to interpret the time-
frequency features extracted by CWT. Third, we propose to incorporate a multi-
branching structure into the ResNet to address the issue of class imbalance,
where normal ECGs significantly outnumber instances of AF in ECG datasets.

Results and Discussion: We evaluate the proposed Multi-branching Resnet
with CWT (CWT-MB-Resnet) with two ECG datasets, i.e., PhysioNet/CinC
challenge 2017 and ECGs obtained from the University of Oklahoma Health
Sciences Center (OUHSC). The proposed CWT-MB-Resnet demonstrates robust
prediction performance, achieving an F1 score of 0.8865 for the PhysioNet
dataset and 0.7369 for the OUHSC dataset. The experimental results signify the
model’s superior capability in balancing precision and recall, which is a desired
attribute for ensuring reliable medical diagnoses.

KEYWORDS

convolutional neural network, residual network, wavelet transform, multi-branching
outputs, ECG signal analysis, imbalanced data, atrial fibrillation

1 Introduction

Cardiovascular diseases have been the leading cause of mortality globally. The
World Health Organization (WHO) states that about 17.9 million people perish due to
cardiovascular disease each year (World Health Organization, 2024), contributing 32% to
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the worldwide death toll (University of Washington, 2024). Atrial
fibrillation (AF) is the most common cardiac arrhythmia caused
by uncoordinated electrical activities in the atria (Nesheiwat et al.,
2023). Although AF itself does not lead to a lethal condition, it
will substantially increase the risk of catastrophic diseases such
as heart failure, stroke, and sudden death (Lubitz et al., 2013;
Bernstein et al., 2021).Theprevalence ofAF plagues over 2.7 million
people in the United States, and this number is estimated to rise to
12.1 million in 2030, as the population ages (Colilla et al., 2013). In
healthcare practice, the electrocardiogram (ECG) is a cost-effective
and noninvasivemedical approach to record the electrical signals on
the body surface as a reflection of cardiac health conditions (Yao and
Yang, 2016; Yao and Yang, 2020; Yao et al., 2021; Xie and Yao, 2023).

Historically, the utilization of ECG for cardiac monitoring
has been substantially constrained by the need for expensive
equipment and the involvement of specialized medical doctors to
interpret complex ECG recordings. However, recent advancements
in portable ECG sensors, such as the AliveCor (aliveCor, 2024),
AD8232 (Analog Devices, 2024), and consumer-grade devices like
the smartwatch (Isakadze and Martin, 2020), have revolutionized
the way to detect heart abnormalities. These portable devices
now enable the capture of high-fidelity ECG signals outside
of traditional clinical settings. While multi-lead ECGs provide
comprehensive cardiac activity information, single-lead ECGsmake
cardiac monitoring more accessible and less obtrusive for long-
term rhythm surveillance or frequent measurements (Abdou and
Krishnan, 2022). This is especially valuable in ambulatory settings,
home monitoring, and situations where rapid and non-invasive
monitoring is desired. Single-lead ECGs offer a simplified yet
effective method for the early detection of AF and other cardiac
anomalies (Boriani et al., 2021).

In conjunction with advanced sensing technologies, there has
been a parallel development in machine learning methodologies.
Given the prevalence of AF, a significant number of machine
learning models have been developed specifically for the task of
distinguishing AF from normal heart rhythms. Traditional machine
learning models focus on extracting morphological features and
heart rate variability from ECG signals to detect AF, which
depends heavily on manual feature engineering (Ye et al., 2012;
Da Silva-Filarder and Marzbanrad, 2017; Athif et al., 2018). Deep
Neural Network (DNN), which does not require explicit feature
engineering, is another powerful tool that has achieved promising
results in data-driven disease detection. VariousDNN-basedmodels
such as convolutional and recurrent neural networks (i.e., CNNs,
RNNs) have been designed for AF detection and outperformed
conventional machine learning methods (Andreotti et al., 2017;
Schwab et al., 2017; Gao et al., 2021). Despite the performance
improvement achieved by DNNs in detecting AF with single-lead
ECG, there remains potential for further prediction enhancements.
Four major challenges remain to be tackled: 1) ECG recordings
collected from clinics are often in Protable Document Format
(PDF). An effective preprocessing procedure is needed to retrieve
digital ECG signals from the PDFs before being fed to the machine
learning models. 2) ECG signals are generally composed of a
wide spectrum of frequency components. DNN models built upon
raw ECG time series may not fully exploit the time-frequency
information inherent in the signals. 3) Note that the learning
capacity for a DNN often increases when the network goes deeper.

However, the deeper structure can result in gradient dissipation
problems, leading to unsatisfactory prediction performance. 4)
Data-driven AF detection also suffers from the common issue
of imbalanced data in machine learning (e.g., AF samples are
much less compared to normal ECGs). The classifier directly built
from the imbalanced data will generate biased and inaccurate
predictions.

In this paper, we develop an automatic AF detector based
on continuous wavelet transform (CWT) and 18-layer Residual
Neural Network (ResNet18) with a multi-branching structure
(CWT-MB-ResNet). We first develop a preprocessing procedure
to extract ECG signals from ECG PDFs and leverage the
CWT to transform the extracted signals into the time-frequency
domain. Second, ResNet18 is engaged to alleviate the gradient
dissipation problem in deep-structured networks, allowing it
to learn deeper features from 2D time-frequency images and
achieve better performance. Finally, we propose to incorporate a
multi-branching output structure adapted from our prior work
(Wang and Yao, 2021) into the ResNet to deal with the issue
induced by the imbalanced dataset in AF identification. The multi-
branching technique exempts artificial data augmentation and
does not require any preassumptions in solving the imbalanced
data issue. The performance of the proposed framework is
evaluated by two real-world datasets: PhysioNet/CinC challenge
2017 (Goldberger et al., 2000; Clifford et al., 2017) and ECG data
obtained from the University of Oklahoma Health Sciences Center
(OUHSC). Experimental results show that our CWT-MB-ResNet
significantly outperforms existing methods commonly used in
current practice.

The rest of this paper is organized as follows: Section 2 presents
the literature review of existing data-driven methods for AF
detection. Section 3 introduces the data processing details and the
proposed prediction method. Section 4 shows the experimental
results in AF identification. Section 6 concludes the present
investigation.

2 Research background

Traditionalmachine learning approaches focus on the extraction
of ECG morphological features (De Chazal et al., 2004) and heart
rate variability information (Park et al., 2009) to identify AF
conditions. Those methods are mostly in light of two aspects of AF-
altered ECGcharacteristics: 1) the absence of distinct Pwaves, which
are replaced by irregular fibrillatory waves or F waves as oscillations
in low amplitude around the baseline (Ladavich and Ghoraani,
2015); 2) irregular R-R intervals (Oster and Clifford, 2015).
Multiple feature-based automation techniques have been proposed
to classify AF-altered ECGs, such as linear discriminant analysis
(De Chazal et al., 2004), support vector machine (Billeci et al., 2017;
Islam et al., 2017), independent component analysis (Ye et al., 2012).
When there exists a high level of noise or faulty detection, the
performance of feature-extraction methods that solely study the P
wave deteriorates significantly due to the chaotic signal baseline
introduced by the noise (Larburu et al., 2011). Most R-R interval-
based methods (Tateno and Glass, 2001; Lian et al., 2011) usually
require long ECG segments to detect AF episodes, and become
ineffective when it comes to short ECG signals (less than 60s) or in
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the presence of significant sinus arrhythmia or frequent premature
atrial contractions (Xia et al., 2018). Moreover, traditional methods
require a separate feature extraction process before feeding
the data into the classifier, as well as manually establishing
the detection rules and threshold. This can be computationally
expensive and may not generalize well when applied to a larger
population.

In the past few decades, deep learning or deep neural network
(DNN) has emerged as a powerful tool for pattern recognition
that can learn the abstracted features from complex data and
yield state-of-the-art predictions (Mousavi et al., 2019; Xie and Yao,
2022a; Xie and Yao, 2022b; Chen et al., 2022; Wang et al., 2022).
As opposed to traditional machine learning, deep learning presents
strong robustness and fault tolerance to uncertain factors, which
makes it suitable for beat and rhythm classification from ECGs
(Tutuko et al., 2021). Moreover, existing research has indicated
that deep learning methods demonstrate more efficient and
more potent predictive power than classical machine learning
methods for AF identification (Cai et al., 2020; Murat et al., 2021).
There has been a significant surge in leveraging deep learning
for AF detection using single-lead ECGs, showing promising
potential in enhancing diagnostic accuracy. We summarized four
commonly used network structures in discerning AF samples using
single-lead ECGs:

1) Convolutional neural networks (CNNs): CNNs, specifically
1-dimensional CNNs (1D-CNNs), have been widely
applied to extracting hierarchical features from ECG
data for distinguishing AF from normal heart rhythms
(Andreotti et al., 2017; Fan et al., 2018; Lai et al., 2019;
Phukan et al., 2023). For example, Andreotti et al.
Andreotti et al. (2017) balanced the PhysioNet/CinC 2017
dataset by augmenting AF samples from various sources to
address the class imbalance issue. They employed a ResNet
model with 34 convolutional layers for AF detection, achieving
a final F1 score of 0.79. Lai et al. Lai et al. (2019) developed a
streamlined two-stream CNN with each stream containing
only 8 layers. This model achieved a sensitivity of 89.5% and
a specificity of 82.7% on the PhysioBank dataset (PhysioBank,
2000). The extracted cardiac rhythm features, specifically RR
intervals and F-wave frequency spectra, served as dual inputs
for the neural network. Similarly, Fan et al. Fan et al. (2018)
developed a multi-scaled two-stream network with different
filter sizes at each stream to capture features of different
scales using single-lead ECGs from PhysioNet/Cinc 2017,
achieving an F1 score of 0.8355. Phukan et al. Phukan et al.
(2023) did a systematic experiment on selections of filter
size, number of layers, and activation function on multiple
standard datasets. They concluded that the best 5-layer CNN
with activation function of exponential linear unit and kernel
size 4 × 1 provides the highest accuracy of 99.84% for 5s
ECG segments.

2) Recurrent Neural Networks (RNNs): An RNN is a type
of neural network designed to effectively process sequential
data by maintaining a memory of previous inputs, making it
suitable for classifying time-series signals, e.g., AF detection.
For example, Schwab et al. Schwab et al. (2017) built an
ensemble of RNNs to jointly distinguish AF from normal

ECGs, resulting in 0.79 of F1 score on the PhysioNet/Cinc
2017 dataset. Faust et al. Faust et al. (2018) utilized RNNs,
specifically the long short-term memory (LSTM) architecture,
to analyze ECGs from the MIT-BIH Atrial Fibrillation
Database, achieving an accuracy rate of 99.77% for AF
detection. Wang et al. Wang et al. (2023a) proposed a dual-
path RNN which includes the intra- and inter-RNN modules
to study the global and local aspects for end-to-end AF
recognition. They used the PhysioNet/Cinc 2017 dataset to
validate their model and achieved an F1 score of 0.842. More
recently, bidirectional long short-term memory (Bi-LSTM), a
type of RNN architecture capable of capturing both past and
future context in sequential data, has been used to discern
AF. Ramkumar et al. Ramkumar et al. (2022) created an auto-
encoder and Bi-LSTM-based network to detect AF among
others. This method integrated a reconstruction error from
the auto-encoder into the total loss function, leading to a
sensitivity of 92% and specificity of 97%on the PhysioNet/Cinc
2017 dataset.

3) CNN-RNNs: CNN-RNN hybrids combine the morphological
feature extraction capabilities of 1D-CNNs with the temporal
pattern recognition strengths of RNNs to address complex
tasks such as AF detection from ECG signals. For example,
Limam et al. Limam and Precioso, (2017) used dual CNNs
to process the inputs consisting of both ECGs and heart
rates independently, and then the processed features were
merged into RNN to learn the temporal patterns, achieving
a validated F1 score of 0.856 on the PhysioNet/CinC 2017
dataset. Wang et al. Wang and Li, (2020) combined CNN with
Bi-LSTM, exploring two concatenation strategies: a parallel
concatenation of CNN and Bi-LSTM, and a sequential one
where the CNNoutput feeds into the Bi-LSTM.They evaluated
themethods on theMIT-BIHdataset, reporting a final F1 score
of 0.82 for the sequential strategy. Zhang et al. developed a
model that merges a multi-branch CNN (MCNN) with Bi-
LSTM to improve AF detection from short ECG recordings
(Zhang et al., 2022). Unlike our multi-branching approach for
addressing the imbalanced data issue, their model extracted
features from various segments of a single-lead ECG, which
were then processed by the Bi-LSTM. They tested the model
on the PhysioNet/CinC 2017 dataset, achieving an F1 score
of 0.7894.

4) Attention-based networks: The attention mechanism
(Bahdanau et al., 2014; Vaswani et al., 2017) in deep learning
dynamically weighs the importance of different input features,
allowing models to focus more on relevant data while
processing a task. This special capability can facilitate pattern
recognition in ECG signals, enhancing the accuracy and
efficiency of AF detection. For example, Gao et al. Gao et al.
(2021) designed a residual-based temporal attention CNN,
generating temporal informative features related to AF, so
as to consider the semantic information to achieve better
performance. This model achieved an accuracy of 85.43%
on the PhysioNet/CinC 2017 dataset. Nankani et al. Nankani
and Baruah, (2022) investigated the transformer network
for AF detection and underscored clinically relevant signal
timestamps triggering the diagnosis, achieving an F1 score
of 0.87 on the PhysioNet/Cinc 2017 dataset. Rohr et al.
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Rohr et al. (2022) explored and assessed two advanced models
for AF detection: a transformer-based DualNet architecture
and a CNN-LSTM hybrid model, achieving F1 scores of
0.9127 and 0.9072, respectively, on the PhysioNet/CinC
2017 dataset.

As highlighted above (Andreotti et al., 2017; Fan et al.,
2018; Lai et al., 2019; Phukan et al., 2023), 1D-CNNs have
exhibited their effectiveness in identifying morphological features
and comprehending temporal variations in time series data,
demonstrating superior capability in AF detection using single-
lead ECG signals. However, despite the promising utility of
1D-CNNs in time series analysis, comparative studies in the
literature Ullah et al. (2021) and Wu et al. (2018) indicate that
1D-CNNs often yield lower prediction accuracies than their
2D counterparts under similar network configurations for ECG
classification tasks.

This discrepancy can be attributed to the richer, more
comprehensive information encapsulated in 2D input data, coupled
with the inherently superior capacity of 2D CNNs for feature
extraction and interpretation.

Owing to the outstanding performance and strong ability
in pattern recognition, 2D CNN has been explored for ECG
classification by virtue of its capacity to smartly suppress
measurement noises and extract pertinent feature maps using
convolutional and pooling layers (Huang et al., 2019). For example,
Izci et al. Izci et al. (2019) engaged a 2D CNN model to investigate
ECG signals for arrhythmia identification.They segmented the ECG
signals by heartbeats and directly converted each heartbeat into
grayscale images, which served as the input of the 2D CNN model.
Similarly, Jun et al. Jun et al. (2018) proposed to combine 2D CNN
and data augmentation with different image cropping techniques
to classify 2D grayscale images of ECG beats. However, these end-
to-end 2D CNNs are directly fed with original ECG beat segments
without considering the possible noise contamination. Moreover,
the 2D input data were created by directly plotting each ECG
beat as a grayscale image with unavoided redundant information
residing in the image background. This procedure requires extra
storage space for training data and increases the computational
burden without extracting relative features inherent in the
ECG beats.

ECG signals generally consist of various frequency components,
which can be used to identify disease-altered cardiac conditions.
Wavelet transform (WT) (Daubechies, 1990; Yao et al., 2017;
van Wyk et al., 2019) has been proven to be a useful technique for
extracting critical time-frequency information pertinent to disease-
altered ECG patterns (Kutlu and Kuntalp, 2012; He et al., 2018).
As such, WT is favored as a feature-preprocessing procedure that
converts 1D ECG signals into 2D images containing time-frequency
features. The resulting 2D feature images then serve as the input
of CNNs for ECG classification instead of the original 2D ECG
plots. For instance, Xia et al. Xia et al. (2018) engaged the short-
term Fourier transform (STFT) and stationary wavelet transform to
convert ECG segments into 2D matrices which were then fed into
a three-layer CNN for AF detection. Wang et al. Wang et al. (2021)
combined the time-frequency features extracted by Continuous
Wavelet Transform (CWT) and R-interval features to train a 2D
CNN model for ECG signal classification. Wu et al. Wu et al. (2019)

built a 2D CNN based on time-frequency features of short-time
single-lead ECGs extracted from three methods, i.e., STFT, CWT,
and pseudoWigner-Ville distribution, to detect arrhythmias. Huang
et al. Huang et al. (2019) developed an ECG classification model
by transforming ECG signals into time-frequency spectrograms
using STFT and feeding them into a three-layer 2D CNN. Li
et al. Li et al. (2019) included three different types of wavelet
transform (i.e., Morlet wavelet, Paul wavelet, Gaussian Derivative)
to create 2D time-frequency images as the input data to the
2D CNN-based ECG classifier. The above literature unequivocally
demonstrates that incorporating frequency information through the
WT can significantly enhance the efficacy of ECG classification,
underscoring the vital role of frequency domain analysis in AF
identification.

In addition to effective information extraction from ECG time
series, the realization of the full data potential is heavily reliant on
advanced analytical models. Although the abovementioned works
have validated the superiority of 2D CNN-based approaches, the
shallow network structures with a limited number of layers can
potentially hinder the extraction of deeper features. Naturally,
the capacity for a neural network to learn is enhanced by an
increase in the number of layers. However, having a deeper
network structure can result in a gradient dissipation problem,
which impedes convergence during network training, leading
to suboptimal prediction performance. To cope with this issue,
the residual neural network (ResNet) has been developed with
an important modification, i.e., identity mapping, induced by
the skip connection technique (He et al., 2016), which has wide
applications in classifying the ECG signals. For example, Jing
et al. Jing et al. (2021) developed an improved ResNet with 18
layers for single heartbeat classification. Park et al. Park et al.
(2022) used a squeeze-and-excitation ResNet with 152 layers
and compared the model performance trained by ECGs from
a 12-lead ECG system and single-lead ECG data. Guan et al.
Guan et al. (2022) proposed a hidden attention ResNet to capture
the deep spatiotemporal features using 2D images converted from
ECG signals.

Automated ECG classification also suffers from the long-
standing issue of imbalanced data in machine learning. Diverse
sampling and synthetic strategies have been proposed to address
the imbalanced data issue, which focuses on creating a balanced
training dataset out from the original imbalanced data tomitigatethe
potential bias introduced by imbalanced data distribution during
model training (He and Garcia, 2009). Frequently employed
techniques consist of random over-sampling and under-sampling,
informed adaptive undersampling, and synthetic minority over-
sampling technique (SMOTE) (Gao et al., 2019; Wang and Yao,
2021; Qiu et al., 2022). For example, Luo et al. Luo et al. (2021)
engaged SMOTE to synthesize minority samples and create a
balanced training dataset for automated arrhythmia classification.
Ramaraj et al. Ramaraj and Clement Virgeniya, (2021) incorporated
an adaptive synthetic sampling process into the training of deep
learning models built with gated recurrent units to address the class
imbalance problem for ECG pattern recognition. Nurmaini et al.
Nurmaini et al. (2020) compared sampling schemes of SMOTE and
random oversampling with RNN and concluded that the balanced
dataset created by SMOTE significantly improved the classification
performance. In addition to fabricating balanced ECG datasets,
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Gao et al. Gao et al. (2019) and Petmezas et al. Petmezas et al.
(2021) proposed to engage dynamically-scaled focal loss function
to suppress the weight of loss corresponding to the majority class,
so that their contribution to the total loss is reduced to alleviate
the class imbalance problem. However, this method requires the
preassumption of a focusing parameter to modulate the effect of
the majority class on the total loss. Existing methods mainly focus
on using sampling and synthetic strategies or modifying the loss
function, little has been done to create new network structures
without making extra assumptions and feature engineering to
cope with the imbalanced data issue in AF identification from
ECG signals.

3 Materials and methods

3.1 Dataset

In this study, two AF databases from different sources, i.e., ECG
recordings from PhysioNet/CinC challenge 2017 (Goldberger et al.,
2000; Clifford et al., 2017) and ECG PDFs from OUHSC, are used
to evaluate the performance of data-driven detection methods.
Both databases consist of short single-lead ECG recordings for
AF and non-AF patients. PhysioNet/CinC Challenge 2017 is an
open database including 8,528 single-lead ECG signals and their
annotations. Among them, 5050 ECG recordings are labeled as
normal sinus rhythm while 738 signals are annotated as AF. The
sampling frequency of recordings is 300 Hz and the duration of ECG
signals varies from 9s to 30s. The OUHSC database contains ECG
signals in PDF format with 33 recordings from AF subjects and 227
normal samples, which are annotated by cardiologists fromOUHSC.
Each recording has a duration of around 30s with a sampling
frequency of 60 Hz.

3.2 ECG signal preprocessing

Note that the original ECG recordings from OUHSC are in
PDF format, as shown in Figure 1A. It is necessary to accurately
extract the numerical ECG readings from the PDF files for further
data preprocessing and analysis, which is achieved by the following
procedure:

• Transforming PDF files into gray-scale images represented by 2D-
pixel matrices: We discretize the 2D image into a pixel matrix.
Then, each pixel is converted to a fixed number of bits to
represent the gray-scale intensity of the corresponding point in
the image.As shown in Figure 1A, the ECG signals are displayed
in the darkest color on the plot with the color intensity of 1, i.e.,
h(m,n) = 1, while the grid lines appear in a lighter color, i.e.,
0 < h(m,n) < 1, where h(m,n) denotes the color intensity of the
pixel at column m and row n. Note that the background color
intensity is 0.
• Removing grid lines from the ECG plot: We replace the pixel

shade values of the grid lines with the background color
value: i.e., h(m,n ∣ h(m,n) < 1) = 0. This allows the ECG signals
to distinguishably stand out, as illustrated in Figure 1B. The
quantized image is thus encoded into a binary digital format,

FIGURE 1
An example of (A) a raw image recording of an ECG segment in PDF
format, (B) the ECG image that filters out the grid background, (C) the
digitalized ECG time series signal.

i.e., black as “1” and white as “0”. As such, the entire ECG
image is transformed into a binary digital matrix without the
grid lines.
• Extracting the digital ECG time series: The positions of black

pixels (i.e., ECG signal) in the binary matrix are further
extracted, which are represented as a set of (m,n) pairs:

S = {(m,n) |h (m,n) = 1}

The resulting S is then used to reconstruct the digital ECG time
series, where m stands for the time course, and n corresponds to
the magnitude of the ECG signal. As such, we are able to extract
the ECG recordings from the PDFs to digitalized ECG time series
signals (Figure 1C), which will be used for further processing and
model training.

Raw ECG recordings are often contaminated by noises, such
as baseline wandering, electromyography disturbance, and power-
line interference (Mian Qaisar, 2020), which will negatively impact
the information extraction and model performance. In this work,
we engage BioSPPy, a toolbox for biosignal processing written in
Python, for ECG signal denoising. The BioSPPy library provides
comprehensive functions for processing ECG signals including
functions for importing ECGs, filtering out interfering components,
and correcting baseline wandering (PIA-Group, 2021). Specifically,
after loading the ECG data, we apply a high-pass filter to remove
the low-frequency noise (e.g., baseline wandering), a notch filter to
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remove power-line interference, and a low-pass filter to filter out the
high-frequency noise.

3.3 Continuous wavelet transform

ECG signals encompass multiple feature components in both
the time and frequency domains. In this study, we engage the
continuous wavelet transform (CWT) to extract time-frequency
features from ECGs due to its excellent performance in the analysis
of transient and non-stationary time series signals (Keissar et al.,
2009). CWT is the most popular tool for time-frequency analysis
that reflects the frequency components of data changing with time.
CWT is verified to outperform the traditional STFT due to its
ability to provide multi-resolution decompositions of the signal,
which allows for a trade-off between time and frequency resolution,
i.e., higher frequency resolution for signals with sharp transients
and higher time resolution for signals with slow-varying frequency
content (Dokur and Ölmez, 2001). Additionally, compared to
discrete wavelet transform (DWT), CWT remedies non-stationarity
and coarse time-frequency resolution defects and supports the
extraction of arbitrarily high-resolution features in the time-
frequency domain (Addison, 2005).

The CWT of the ECG time-series signal denoted as x(t) is
achieved according to:

T (a,b) = 1
√a
∫
+∞

−∞
x (t)ψ( t− b

a
)dt (1)

where T(a,b) stands for the intensity of transformed signals, ψ(⋅) is
the wavelet basis (also known as the mother wavelet), a is the scale
factor quantifying the compressed or stretched degree of a wavelet,
and b is the time shift parameter defining the location of the wavelet.
The scale can be used to derive the characteristic frequency of the
wavelet as (Wu et al., 2019):

F =
Fc × fs

a
(2)

where Fc is the center frequency of the mother wavelet and fs is
the sampling frequency of the signal. This relationship shows that
smaller (larger) values of a correspond to higher (lower) frequency
components. In CWT, the mother wavelet plays a critical role
in time-frequency analysis, the choice of which depends on its
similarity with the original signal (Ngui et al., 2013). Here, the
Mexican hat wavelet (mexh) is chosen to serve as themother wavelet
because its shape is similar to theQRSwaves and it is commonly used
in ECG signal analysis (Wang et al., 2021). Specifically, the mexh is
the second derivative of a Gaussian function (Addison, 2005), which
is defined as:

ψ (t) = 2
√3 4√π

exp(− t
2

2
)(1− t2) (3)

Continuously changing the scale factor a and time shift parameter
b generates the 2D wavelet coefficients T(a,b), which can be viewed
as a 2D scalogram of the ECG signal in both the time and frequency
domain (Wang et al., 2021).

Figures 2A–D show the healthy and AF examples of the
raw ECG signals obtained from PhysioNet and their 2D time-
frequency patterns after CWT transformation with mexh wavelet,

respectively. The colors in the scalogram indicate the energy density
of the signal component at the corresponding frequency and
time (Addison, 2005; He et al., 2018). According to Figure 2A,C,
two general differences can be observed: 1) The AF ECG signal
lacks a distinct P wave, while it shows a fast and chaotic F
wave due to the atrial fluttering (Figure 2C), in comparison to
a normal ECG signal (Figure 2A); 2) Irregular RR intervals are
observed in AF ECG (Figure 2C) caused by a non-synchronized
ventricular response to the abnormal atrial excitation (He et al.,
2018). The discriminative information in the time domain can
also be captured by the CWT scalograms shown in Figures 2B,D.
By using a 2D CNN to analyze the visual representation of 2D
time-frequency scalograms, we can better understand the features
that distinguish AF from normal heart rhythms and make more
accurate predictions.

3.4 Convolutional neural network

We engage CNN to build a data-driven classifier for
differentiating AF samples from normal ECG samples. CNN is
a type of network architecture specifically designed to process
data that has a grid-like structure such as images (Khan et al.,
2020). As opposed to traditional multilayer perceptron networks
(MLPs), where the input of each neuron consists of the outputs
of all the neurons from the previous layer, the neuron in CNN
only receives its input from a localized region of the previous
layer, known as its receptive field. The main building blocks
of a CNN are convolutional layers, pooling layers, and fully
connected layers.

Convolutional layers are responsible for performing a
convolution operation on the input data, using a set of filters to
extract local features in the data, and producing a feature map that
summarizes such local information. Let θ and X denote the filter
(also known as the kernel) and the input. The convolution operation
works as follows:

(X⊗ θ)ij =
s1−1

∑
m=0

s2−1

∑
n=0

X (i+m, j+ n)θ (m,n) (4)

where s1 and s2 denote the size of the 2D kernel, and (i, j) denotes
the location on the 2D input (e.g., image). After being applied with
the activation function, the feature map of the input is obtained as
(LeCun and Bengio, 1995; Jing et al., 2021):

Xl
q = σ(∑

p
θlpq ⊗Xl−1

p + blq) (5)

where Xl
q is the qth feature at layer l, Xl−1

p is the pth input
feature map of the previous (l− 1)-th layer, σ denotes the activation
function to induce the non-linearity in the functional mapping,
and bq represents the bias. This procedure is repeated by applying
multiple filters to generate multiple feature maps to capture different
characteristics of the input. Note that kernels are shared across all the
input positions, which is also called weight sharing, the key feature
of CNN. The weight-sharing technique guarantees the extracted
local patterns are translation invariant and increases computational
efficiency by reducing themodel parameters to learn compared with
fully connected neural networks.
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FIGURE 2
(A) The raw ECG signal from Physionet labeled as normal and (B) its corresponding 2D CWT scalogram. (C) The raw ECG signal from Physionet labeled
as AF and (D) its corresponding 2D CWT scalogram. Note that the RR intervals are different in the AF sample and irregular F waves (circled) appear in (C).

Thepooling layermimics the human visual systemby combining
the outputs of multiple neurons (i.e., clusters) into a single neuron
in the next layer, effectively creating a condensed representation of
the input. The pooling significantly reduces the spatial resolution
and only focuses on the prominent patterns of the feature maps,
making the networkmore robust to small translations and distortion
in the input data (Xia et al., 2018). Popular pooling techniques
include maximum pooling, average pooling, stochastic pooling, and
adaptive pooling. They are typically performed on the values in a
sub-region of the feature map (Akhtar and Ragavendran, 2020).

The fully-connected layers form a dense network that can learn
complex non-linear relationships between the inputs and outputs.
It takes the output of the previous layer, which is typically a
high-dimensional tensor containing discriminant features extracted
by convolutional and pooling layers, and flattens it into a one-
dimensional vector. This vector is then used as the input to a fully
connected layer. The fully-connected layer is similar to an MLP in
that every neuron in one layer is connected to every neuron in the
next layer. By using a proper activation function, the neural network
is able to produce classification decisions (Nurmaini et al., 2020).
By stacking these building blocks (convolutional layers, pooling
layers, and fully connected layers) in various combinations, CNN
is able to learn complex features in the input data, allowing them to
effectively solve a wide range of image and signal processing tasks
(Andreotti et al., 2017).

3.5 2D CNN with ResNet

We propose to engage 2D CNN to investigate the 2D time-
frequency scalograms converted from denoised ECG signals by
CWT for AF identification. It has been demonstrated that the

substantial depth of the convolutional network is beneficial to the
network performance (Simonyan and Zisserman, 2014). However,
as the number of convolutional layers increases, the training
loss stops further decreasing and becomes saturated because of
the gradient dissipation issue. As such, a CNN with a deeper
architecture, counterintuitively, sometimes incurs a larger training
error compared to its shallow counterpart upon convergence
(He et al., 2016). To solve such network degradation and gradient
vanishing problems, the residual network (ResNet) has been
developed to improve the accuracy of CNNs with considerably
increased depth.

The core of ResNet is the residual learning technique (He et al.,
2016). Specifically, instead of using the stacked convolutional layers
to directly fit the underlying mapping from the input to the output,
ResNet focuses on fitting a residual mapping. Figure 3 shows a
ResNet building block with input X and its corresponding output
mapping Y. The residual block engages a shortcut connection
that bypasses one or more convolutional layers and allows the
information to flow directly from the input to the output. As
such, the input X is added to the output of the block F(X)
(enclosed by the dashed circle in Figure 3, allowing the network to
learn the residual mapping represented as Y = F(X) +X instead of
learning the direct mapping as Y = F(X). This design mitigates the
gradient vanishing problem and allows for deeper networks to be
trained effectively.

In our study, we engage the ResNet with 18 layers (ResNet18)
to build the AF classifier because ResNet18 has been proven
to be able to generate a comparable result with a faster
convergence compared to a deeper counterpart (He et al., 2016).
Figure 4 shows the detailed structure of ResNet18. Note that the
notation of 2DConv(ninput ,noutput ,nfdim1 × nfdim2) denotes that,
in the current 2D convolutional layer, there are ninput input

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2024.1362185
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Xie et al. 10.3389/fphys.2024.1362185

FIGURE 3
A building block of the ResNet.

channels, noutput output channels (i.e., number of filters) with
the 2D filter size of nfdim1 × nfdim2. For example, (64,128,3× 3)
indicates that this convolutional layer is composed of 128
filters with the filter size of 3× 3 applied on the input data
with 64 channels.

3.6 Multi-branching convolutional network

Data-driven identification of AF fromECG recordings generally
suffers from imbalanced data issues. Figure 5A presents the
distribution of AF and normal samples in Physionet/CinC 2017
and OUHSC datasets, illustrating a normal to AF sample ratio
of approximately 7:1 for both. To address the data imbalance
issue, we create Nb balanced datasets from the original data
D = {D−,D+}, where D− denotes the majority normal ECG samples
and D+ stands for the minorityset, i.e., the entire AF training
samples. D− is partitioned into multiple subsets D− = ∪

Nb
i=1D

i
−,

where each subset Di is roughly equivalent in size to D+.
The normal subsets Di for i = 1, ...,Nb are then paired with
D+ to formulate balanced sub-datasets. Each balanced subset,
denoted as Di = {Di

−,D+} for i = 1, ...,Nb, is processed through
the ResNet core, with individual branches trained on their
respective balanced sub-datasets. Figure 5B visualizes this method
of partitioning the original dataset D intoNb balanced sub-datasets,
i.e., Di for i = 1, ...,Nb, which serve as the balanced input in
Figure 6. This strategic partitioning and training approach ensures
a comprehensive model learning from a balanced representation of
AF and normal ECG samples (Wang and Yao, 2021; Wang et al.,
2022; Wang et al., 2023b).

In the current investigation, we aim to identify AF samples from
normal ECG samples. The neural network is expected to produce
high probabilities (close to 1) for AF samples and low probabilities
(close to 0) for normal ECG samples. We choose the binary cross-
entropy as the loss function for MB-ResNet, which is defined as:

L (ω;D) = −
Nd

∑
j=1

Nb

∑
i=1

I ( j ∈ Di)(yj log(P̂i (ω;X
j))

+(1− yj) log(1− P̂i (ω;X
j))) (6)

where ω denotes the neural network parameter set, Xj and
yj stand for one input sample and its corresponding true label
respectively, I(⋅) denotes the indicator function, Nd is the total
number of the training samples, and P̂i (ω;Xj) represents the
predicted probability for AF at the ith branching output given the
input signal Xj.

The adaptive momentum method (Adam) (Kingma and Ba,
2014) is adopted to minimize the loss function and update the
network parameters. In the inference stage, the MB network
generatesNb predictions for AF probability, which correspond to the
Nb branching outputs. The final predicted probability for AF (P̂) is
determined by taking the average of the Nb outputs:

P̂ = 1
Nb

Nb

∑
i=1

P̂i

where P̂i is the predicted probability of ith branching output.

4 Experimental design and results

4.1 Experimental design

We validate and evaluate the performance of the proposed
CWT-MB-ResNet framework using both OUHSC and Physionet
Challenge datasets. In this study, the training and testing datasets
are split interpatiently for both data sources. This ensures that no
overlap exists between the patients in the training set and those
in the testing set. We allocate 80% of the total samples for the
training purpose and the remaining 20% for testing, applied on
both datasets.

We first explore the impact of the learning rate on the training
outcomes of the proposed CWT-MB-ResNet. We then conducted a
comparison study to showcase the significance of ECGdigitalization
for the proposed multi-branching ResNet (MB-ResNet) model in
identifying the AF samples. Next, we compare the performance
of our CWT-MB-ResNet with 1D-CNN (Figure 7A), 1D-CNN
with the multi-branching network (1D-MB-CNN) (Figure 7B),
and ResNet with CWT features (CWT-ResNet). Note that the
input of 1D-CNN and 1D-MB-CNN consists of the denoised
ECG time series. The detailed 1D-CNN architecture is illustrated
in Figure 8, including three convolutional layers followed by
pooling layers to reduce the dimensionality of the data, a batch-
normalization layer to stabilize the network training, and one
fully connected layer to make the final prediction. Note that
the notation of 1DConv(ninput ,noutput ,nfdim) indicates that, in the
current 1D convolutional layer, there are ninput input channels
and noutput output channels (i.e., number of filters) with a 1D
filter size of nfdim.

The classification performance will be evaluated with
three metrics: Receiver-Operating-Characteristic (ROC) Curve,
Precision-Recall (PR) Curve, and F1 score, which will be calculated
using the test set. The ROC provides the graphic representation
of the trade-off between the true positive rate (TPR) and the false
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FIGURE 4
The detailed architecture of ResNet18.

FIGURE 5
(A) Class distribution in PhysioNet/Cinc 2017 and OUHSC datasets. (B) Illustration of creating Nb balanced sub-datasets to train our MB-ResNet model.

positive rate (FPR) for different threshold settings. The area under
ROC (AUROC) is often used as a metric to compare different
models, with a larger AUROC indicating a better-performing
classifier. A good model typically has a ROC curve that is situated

toward the top-left corner of the graph. The PRC illustrates the
interplay between a predictive model’s precision and recall metrics
across a range of probability thresholds. A good classifier has the
PR curve towards the top-right corner. A higher area under PRC
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FIGURE 6
Illustration of the multi-branching architecture.

(AUPRC) value suggests a more effective model. The F1 score
quantifies the equilibrium between a model’s precision and recall
for a binary classifier system by computing their harmonic mean,
which is defined as

F1 = 2× Precision×Recall
Precision+Recall

Note that the F1 score ranges from 0 to 1, where a score of 1 indicates
a perfect balance between precision and recall and a good overall
prediction performance.

4.2 The effect of the learning rate on
CWT-MB-ResNet

In this study, we initiate the analysis by transforming ECG time
series data into 2D scalograms utilizing CWT. These scalograms
encapsulating both time and frequency information are input into
our tailored MB-ResNet model. Specifically, we employ ResNet18
due to its proven efficacy in achieving results comparable to those
of its deeper counterparts, while also ensuring faster convergence
rates (He et al., 2016).The architecture of ResNet18, as adopted from
He et al. (2016) and illustrated in Figure 4, comes with a predefined
set of network architecture parameters, including number of layers,
kernel size, and number of residual blocks.

In addition to selecting ResNet18 for its balance between
efficiency and performance, the learning rate has a critical influence
on the training outcomes. To further optimize our model, we
conducted an experiment specifically focused on assessing the
impact of various learning rates on the model’s performance,
particularly looking at the F1 score on the test set across both
datasets used in our study. Table 1 summarizes the performance of
the MB-ResNet given different learning rates. For both datasets, the
highest F1 score achieved is 0.8865 for PhysioNet/CinC 2017 and
0.7396 for OUHSC datasets when the learning rate is set as 0.001.
This indicates that a learning rate of 0.001 is the most effective in
training our MB-ResNet model.

4.3 The effect of ECG digitalization from
PDFs on CWT-MB-ResNet

We carry out a comparative analysis to demonstrate the
importance of digitizing ECG records from their original PDF
format. Specifically, we transform the original ECG PDFs into
image files (i.e., Portable Network Graphic (.PNG) files) and apply
segmentation to augment the sample sizes. Figure 9 illustrates
examples of the resulting ECG images from normal and AF
categories, which directly serve as inputs for ourMB-ResNetwithout
further preprocessing.

Figure 10 displays the ROC and PR curves generated by two
variants of the MB-ResNet model: one trained on 2D scalograms
derived fromdigitalized ECGs after undergoing denoising andCWT
(referred to as CWT-MB-ResNet), and the other trained on pure
ECG images converted directly from rawPDF files (denoted as PDF-
MB-ResNet). Utilizing the same MB-ResNet model, we observed a
substantial increase in the area under bothROCandPR curveswhen
the model inputs were 2D scalograms processed from digitalized
ECGs compared with using raw ECG images directly. Specifically,
our CWT-MB-ResNet model demonstrates superior performance
with an AUROC of 0.9351, AUPRC of 0.7930, and an F1 score
of 0.7396. This performance significantly surpasses that of the
PDF-MB-ResNet trained by raw ECG images with an AUROC of
0.8683, AUPRC of 0.6462, and an F1 score of 0.6257, highlighting
the efficacy of our digitalization and preprocessing procedure. The
enhanced performance of the MB-ResNet model trained with 2D
scalograms from digitalized ECGs, as compared to training with raw
ECG images, is be attributed to several factors:
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FIGURE 7
The flowchart of the experimental design: (A) 1D-CNN; (B) 1D-MB-CNN; (C) CWT-MB-ResNet; (D) CWT-ResNet.

TABLE 1 F1 scores on the testing set given different learning rates for MB-ResNet training.

learning rate 0.0001 0.0005 0.001 0.005 0.01

F1 (PhysioNet) 0.8493 0.8759 0.8865 0.8652 0.8580

F1 (OUHSC) 0.6854 0.7273 0.7396 0.7385 0.7151

• The 2D scalograms provide a rich representation of temporal
and frequency features, offering a more comprehensive dataset
for the model to learn from.
• The raw ECG segmentation images contain large blank

areas devoid of any ECG-related information, which do not
contribute to learning discriminative features.
• The superimposed gridlines in the area could introduce

noise into the data, potentially hindering the model’s training
efficiency.

By training with 2D scalograms, the abovementioned issues
are mitigated, allowing the MB-ResNet to focus on more relevant
ECG features, leading to significant improvement in overall model
performance.

4.4 Experimental results from the OUHSC
dataset

Figure 11 displays the ROC and PR curves of all four models
using theOUHSCdataset.The2DResNetmodels (i.e., CWT-ResNet

andCWT-MB-ResNet), which use 2D scalograms transformed from
ECG signals as the input, produce a larger area under the curves
(both ROC and PR) compared to their 1D counterparts (i.e., 1D-
CNN and 1D-MB-CNN). This demonstrates the efficacy of using
the CWT to extract time-frequency features in the ECG signal
analysis. Additionally, the models with an MB architecture (i.e., 1D-
MB-CNN and CWT-MB-ResNet) produce a larger AUROC and
AUPRC compared to models without MB outputs (i.e., 1D-CNN
and CWT-ResNet), which highlights the effectiveness of using the
MB structure in addressing imbalanced data issues. The ROC and
PR plots demonstrate the superiority and robustness of the proposed
CWT-MB-ResNet framework for identifying the AF samples.

Table 2 shows AUROC, AUPRC, and F1 scores generated from
the four methods using the OUHSC dataset. The proposed CWT-
MB-ResNet method generates the best AUROC, AUPRC, and F1
scores with values of 93.51%, 79.30%, and 0.7396. Note that the
MB technique demonstrates its effectiveness on both 1D-CNN and
CWT-ResNet as the AUROC, AUPRC, and F1 scores provided by
the MB-based neural network models are higher than their non-
MB counterparts. Moreover, the AF classifier using 2D-CNN-based
ResNet18 supported by the time-frequency transformation of ECG
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FIGURE 8
The 1D-CNN architecture.

time series presents a more potent predictive power than time
sequence classification using 1D CNN. For example, CWT-MB-
ResNet improves the AUROC, AUPRC, and F1 scores from 87.55%,
69.97%, and 0.6384% to 93.51%, 79.30%, and 0.7396 respectively
compared with the 1D-MB-CNN.

4.5 Experimental results from the
Physionet/CinC 2017 challenge dataset

Figure 12 further shows the ROC and PRC analysis for the
Physionet/Cinc 2017 challenge dataset. Similar to the results from

the OUHSC dataset, the 2D ResNet models (CWT-ResNet and
CWT-MB-ResNet) outperform their 1D counterparts (1D-CNN
and 1D-MB-CNN) in both the ROC and PR spaces. Furthermore,
the MB-based models (1D-MB-CNN and CWT-MB-ResNet)
effectively account for the imbalanced data issues, exhibiting better
performance compared to the non-MB-basedmodels (1D-CNNand
CWT-ResNet). Table 3 demonstrates the comparison of AUROC,
AUPRC, and F1 scores provided by 1D-CNN, 1D-MB-CNN, CWT-
ResNet, and CWT-MB-ResNet. Our CWT-MB-ResNet yields the
best classification performance among the four methods, generating
the highest AUROC, AUPRC, and F1 scores of 97.41%, 93.53%,
and 0.8865. Especially, our CWT-MB-ResNet model improves the
F1 score by 46.2% percent compared to the pure 1D-CNN with no
CWT transform or MB structure.

5 Discussion

5.1 Strengths of the proposed pipeline

This paper proposes a pipeline of CWT-MB-ResNet to
identify the AF condition. The unique strengths of the proposed
framework are:

1) Digitalization of ECG readings in PDF: This pipeline
designed an ECGpreprocessingmethod that can automatically
convert ECG PDFs into digitalized, ready-to-use ECG time
series data.This step is crucial for integratingmachine learning
models into clinical workflows, where ECGs are often archived
in non-digitalized formats.

2) Effectiveness of CWT representation: The integration of
CWTenhances feature extraction, enabling themodel to better
identify AF characteristics that might be missed by directly
learning from raw time-series analysis alone. The resulted 2D
ECG scalograms offer a rich representation of ECG data by
encapsulating both time series and frequency components.The
CWT-based feature reformulation can significantly enhance
the model’s performance by providing more comprehensive
information for classifying ECG signals.

3) Advantage of the network design:The use of ResNet18 as the
foundation allows our model to benefit from the strengths in
deep residual learning, enabling it to learn from significantly
deepened convolutional layers with improved accuracy. The
ResNet18 has demonstrated comparable results to its deeper
counterparts, meanwhile keeping its computational efficiency.
This is further enhanced by our innovative multi-branching
design, which addresses the class imbalance issue by training
each branch on a balanced subset of the original dataset
while the core network is exposed to the entire range of
samples. This approach ensures that both AF and normal
class is adequately represented and learned during the
training process, significantly enhancing the network’s ability
to generalize across the imbalanced classes.

5.2 Discussion on the limitations

The proposed CWT-MB-ResNet framework, while effective,
is not devoid of limitations. In our study, ECG segments were
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FIGURE 9
Examples of ECG segments: (A) normal sample; (B) AF sample.

FIGURE 10
Comparison of (A) ROC and (B) PR curves for the MB-ResNet model trained with two different data preparation techniques: one involving 2D
scalograms derived from digitalized ECGs which are denoised and processed through CWT (CWT-MB-ResNet), and the other using unprocessed ECG
images directly from raw PDF files (PDF-MB-ResNet).

FIGURE 11
The comparison of (A) ROC and (B) PRC among different models using the OUHSC data.
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TABLE 2 The comparison of AUROC, AUPRC, and F1 scores generated from 1D-CNN, 1D-MB-CNN, CWT-ResNet, and the proposed CWT-MB-ResNet
using OUHSC data.

1D-CNN 1D-MB-CNN CWT-ResNet CWT-MB-ResNet

AUROC 86.41% 87.55% 86.99% 93.51%

AUPRC 68.70% 69.97% 71.96% 79.30%

F1 0.6370 0.6384 0.7150 0.7396

FIGURE 12
The comparison of (A) ROC and (B) PRC between different models using data from Physionet/Cinc 2017 challenge.

TABLE 3 The comparison of AUROC, AUPRC, and F1 scores generated from 1D-CNN, 1D-MB-CNN, CWT-ResNet, and the proposed CWT-MB-ResNet
using data from Physionet/CinC 2017 challenge.

1D-CNN 1D-MB-CNN CWT-ResNet CWT-MB-ResNet

AUROC 89.55% 92.60% 97.02% 97.61%

AUPRC 73.38% 76.63% 92.23% 93.53%

F1 0.7219 0.7380 0.8690 0.8865

around 5 s long. However, analyzing longer ECG recordings will
significantly increase computational complexity. This is due to the
CWT method of processing data across both time and frequency
domains at various scales, demanding more computational
resources. Additionally, while our method effectively addresses class
imbalance, its performance remains influenced by the quality and
diversity of the training data, which is a long-lasting limitation of
most data-driven machine learning models. This is evident from
the differing performances on the PhysioNet and OUHSC datasets.
Specifically, PhysioNet, with its larger and more diverse pool of
5,788 subjects, provides a richer training environment compared to
OUHSC, which is limited to ECG samples from only 260 subjects.
Despite utilizing segmentation to expand the sample size of the
OUHSCdataset to 5,809, notable differences in performancemetrics
remain, as detailed in Tables 2 and 3. This suggests that merely
increasing the sample size by segmentation cannot fully address the
limitations posed by data diversity and quality. Additionally, deep
learning models, including the proposed CWT-MB-ResNet, are

often criticized for their “black box” nature. This means that while
those models can make accurate predictions, the reasoning behind
the predictions is not always clear or understandable to humans.
This lack of interpretability can be a significant hurdle in clinical
settings, making clinicians less confident in implementing machine
learningmodels for automated diagnosis. One of our future research
directions will focus on the development of interpretable models for
AF detection.

5.3 Comparison with existing work

The direct comparison of our results with the values of
performance metrics reported in other studies mentioned in
Section 2 is neither fair nor feasible due to several factors:
1) variations in ECG duration used for training/testing data;
2) employment of non-unified metrics for evaluating model
performance across studies; 3) variations in the proportions of
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TABLE 4 The comparison of F1 scores between the proposed CWT-MB-ResNet method with existing literature using data from Physionet/CinC 2017
and OUHSC.

Authors Methods F1 (PhysioNet) F1 (OUHSC)

Andreotti et al. Andreotti et al. (2017) ResNet 0.8405 0.7054

Limam et al. Limam and Precioso, (2017) CRNN 0.8310 0.7323

Wang et al. Wang and Li, (2020) CNN-Bi-LSTM 0.7094 0.6996

Gao et al. Gao et al. (2021) Residual-based temporal attention 0.8172 0.7368

This paper CWT-MB-ResNet 0.8865 0.7396

training/testing data splits; 4) the model implementation on
different databases. To enable a fairer and more meaningful
comparison, we applied the ECG data from both the
PhysioNet/CinC 2017 database and OUHSC to four deep learning
models reviewed in Section 2, ensuring that the comparison is based
on consistent data and preprocessing steps.

Table 4 summarizes the comparison results in terms of F1
score. Even though the proposed CWT-MB-ResNet model does
not resort to complex neural network designs, it demonstrates
the best F1 score compared with the other network structures
developed in Andreotti et al. (2017); Limam and Precioso, (2017);
Wang and Li, (2020); Gao et al. (2021). Specifically, the utilization
of CWT distills both frequency and temporal insights from
ECG signals, converting them into an image data format that
significantly enriches the input information. We integrate the
widely recognized image model, ResNet18 to achieve a robust
interpretation of image data andmeanwhile circumvent the gradient
vanishing problem. Furthermore, the multi-branching structure is
meticulously designed to address issues of data imbalance, ensuring
that our model remains sensitive and accurate for both normal and
AF classes.

6 Conclusion

In this paper, we develop a novel framework based onContinous
Wavelet Transform (CWT) and multi-branching ResNet for AF
identification. We first transform the 1D ECG time series into 2D
time-frequency scalograms to take into account various frequency
components, which can serve as the input to the 2D CNN-based
classifier. Second, we leverage the ResNet architecture to cope with
the gradient dissipation problems in deep 2D CNN and increase
the effectiveness of network training. Moreover, a multi-branching
architecture is incorporated into the ResNet to mitigate the possible
prediction bias caused by the imbalanced data issue. Finally, we
implement the proposed CWT-MB-ResNet to predict AF using the
ECG recordings fromPhysioNet/CinCChallenge 2017 and the ECG
PDFs from OUHSC. Experimental results show that the proposed
CWT-MB-ResNet achieves the best prediction performance for
both datasets in AF detection. The CWT-MB-ResNet framework
has great potential to be applied in clinical practice to improve the
accuracy in ECG-based diagnosis of heart disease.
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