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Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a
concentration higher than the other nucleosides. As a simple metabolite, uridine
plays a pivotal role in various biological processes. In addition to nucleic acid
synthesis, uridine is critical to glycogen synthesis through the formation of uridine
diphosphate glucose in which promotes the production of UDP-GlcNAc in the
hexosamine biosynthetic pathway and supplies UDP-GlcNAc for
O-GlcNAcylation. This process can regulate protein modification and affect its
function. Moreover, Uridine has an effect on body temperature and circadian
rhythms, which can regulate the metabolic rate and the expression of metabolic
genes. Abnormal levels of blood uridine have been found in people with diabetes
and obesity, suggesting a link of uridine dysregulation andmetabolic disorders. At
present, the role of uridine in glucose metabolism and lipid metabolism is
controversial, and the mechanism is not clear, but it shows the trend of long-
term damage and short-term benefit. Therefore, maintaining uridine
homeostasis is essential for maintaining basic functions and normal
metabolism. This article summarizes the latest findings about the metabolic
effects of uridine and the potential of uridine metabolism as therapeutic target
in treatment of metabolic disorders.
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1 Introduction

Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a
concentration higher than the other nucleosides (Dobolyi et al., 2011; Altaweraqi et al.,
2020). As a simple metabolite, uridine plays a pivotal role in various biological processes,
including macromolecule synthesis, circadian rhythms, inflammatory response (Jeengar
et al., 2017), antioxidant process (Lai et al., 2023), and aging (Jiang and Zhao, 2022; Zhang
et al., 2022). Plasma uridine enters cells through nucleoside transporter. In addition to
nucleic acid synthesis (Yamamoto et al., 2011), uridine is critical to glycogen synthesis
through the formation of uridine diphosphate glucose (UDPG) (Roach et al., 2012). Uridine
also promotes the production of UDP-GlcNAc in the hexosamine biosynthetic pathway
(HBP), which supplies UDP-GlcNAc for O-GlcNAcylation (referred to as O-GlcNAc), a
posttranslational modification on the hydroxyl groups of serine/threonine residues
catalyzed by O-GlcNAc transferase (OGT) (Banerjee et al., 2016; D Alessandris et al.,
2004). Uridine promotes the formation of cell membranes and synaptic structures in
neurons, rejuvenates aged stem cells, stimulates regeneration of various tissues, and even
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have anti-aging effects (Liu et al., 2022). It is shown that uridine has
an effect on body temperature (Peters et al., 1987a; Peters et al.,
1987b) and circadian rhythms (Zhang et al., 2018). Uridine can also
reduce oxidative stress and inflammation by inhibiting the MAPK
and NF-kB signaling pathways under pathological conditions (Luo
et al., 2021). Therefore, maintaining moderate levels of uridine,
especially plasma uridine levels, is critical for keeping cellular
basic functions.

The circulating plasma concentration of uridine is strictly
controlled between 3–8 μM in different species and individuals

(Yamamoto et al., 2011). Under physiological conditions, uridine
is mainly produced in the liver (during normal feeding) and adipose
tissue (during fasting) through de novo synthesis. The clearance of
blood uridine is mediated through bile (Deng et al., 2017). The
balance between production and clearance determines the
homeostatic level of circulating uridine (Ohno et al., 2008; Le
et al., 2013) (Figure 1). Uridine uptake is via the nucleoside
transport system (Tetsuya Yamamoto Yuji et al., 2000;
Altaweraqi et al., 2020). Intracellular uridine levels are associated
with ATP consumption and glycogen synthesis (Yamamoto et al.,

FIGURE 1
Uridine and its metabolism (A). The mechanism of uridine synthesis and catabolism and the role of uridine in the hexosamine biosynthetic pathway
and glycogen synthesis (B). Relationship between ATP consumption and uridine. UTP is produced by the phosphorylation of UDP with ATP used as
phosphate donor, a decrease in ATP concentration results in decreased phosphorylation of UDP to UTP, leading to increased UDP and uridine-5′-
monophosphate (UMP). These changes accelerate the degradation of uracil nucleotides (UTP→UDP→UMP→ uridine). G-6-P: glucose-6-
phosphate; F-6-P: fructose-6-phosphate; GlcN:glucosamine; GlcNAc:N-acetyl glucosamine; UDP:uridine-5′-diphosphate; UTP:uridine-5′-
triphosphate; PPi:inorganic pyrophosphate; ADP:cytidine -5′-diphosphate; ATP:cytidine -5′-triphosphate.
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2011; Chen et al., 2014). Changes in plasma uridine levels are
associated with neurodegenerative diseases (de Leeuw et al.,
2020), diabetes (Yamamoto et al., 2010; Dudzinska, 2011), and
obesity (Kohli et al., 2018). Studies in rodents report that chronic
high plasma uridine leads to fatty liver and impaired glucose
tolerance (Urasaki et al., 2016), suggesting a causal role of
uridine in the progression of those metabolic disorders. This
review will focus on the metabolic effects of uridine to reveal the
pathophysiological relevance of uridine to metabolic disorders.

2 Uridine in the regulation of body
temperature and circadian rhythm

2.1 Uridine and body temperature

The physiological fluctuations in blood uridine levels can result
in changes in body temperature. Elevated plasma uridine levels in
fasted mice are accompanied by a decrease in body temperature,
which is restored through uridine clearance mediated by bile
excretion after refeeding (Deng et al., 2017). Uridine, as a simple
metabolite that can cross the blood-brain barrier, is also crucial for
maintaining brain function through sustained supply (Dobolyi et al.,
2011). The specific molecular mechanism linking peripheral plasma
uridine and hypothalamus-mediated temperature regulation is
unclear. Compared to wild-type mice fed a high-fat diet (HFD),
ob/obmice (deficient in functional leptin) show a significant delay in

body temperature recovery after uridine-induced hypothermia
(Deng et al., 2017), suggesting leptin might be involved in body
temperature control by uridine. This is consistent with the finding
that leptin acts through the hypothalamus-adrenal medulla-brown
adipose tissue axis (Fischer et al., 2020; Perry et al., 2020). However,
leptin deficiency does not prevent uridine-induced
hypothermia (Figure 2).

Uridine-induced change in body temperature is dose- and
species-dependent. A low dose of uridine (100 mg/kg) causes a
mild increase in body temperature in rodents (Peters et al.,
1987a), while high doses (500–3,500 mg/kg) cause severe
hypothermia. In contrast, uridine (300–700 mg/kg) causes fever
in humans and rabbits (Peters et al., 1987b). It is suggested that
uridine-mediated thermoregulation is through its degradation
products. Uridine phosphorylase 1 (UPase1), a key enzyme in
uridine degradation, is expressed in multiple organs and tissues
(Wang et al., 2020; Gonçalves da Silva et al., 2021; Lai et al., 2023).
Inhibition of Upase1 prevents the temperature change by uridine in
rabbits and rodents (Le et al., 2013). Consistently, the administration
of uridine degradative products, such as dihydrouracil and
aminoacetyl-β-alanine induces changes in body temperature
(Peters et al., 1987b). However, it remains unclear whether the
differential response to uridine in rodents and rabbits is simply a
species differences or a dose-dependent effect. So far, no studies
reported a use of uridine at the dose of or over 1,000 mg/kg in
humans or rabbits. Body temperature is regulated by heat
production and heat dissipation in mammals. Uridine-mediated

FIGURE 2
Mechanism of uridine involved in thermoregulation. During fasting, uridine is synthesized mainly by adipose tissue, a process that accompanies the
breakdown of fat. The elevated plasma uridine is expected to signal to hypothalamus so that the oxygen consumption and body temperature will
decrease. After refeeding, plasma uridine level is decreased through bile, which allows the recovery of oxygen consumption and body temperature.
Leptin is not necessary for uridine-induced hypothermia, but leptin-deficiency slows down the recovery of body temperature post uridine
administration.
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fall of body temperature in mice is attributed to reduced metabolic
rate and heat production which results from reduced energy demand
and oxygen consumption (Deng et al., 2017). Conversely, uridine-
induced hyperthermia in rabbits and humans is associated with
increased heat production, which results from an upward shift of the
set point for body temperature at hypothalamus (Agnati et al., 1986).

It is of great clinical significance to study the impact of uridine
on body temperature. It has been demonstrated in mice that the
regulation of body temperature by uridine is related to metabolic
rate, in which leptin is also involved. Therefore, uridine might be
used to treat obesity through its impact on basal metabolic rate.
Meanwhile, high-dose oral uridine can reverse 5-fluorouracil (5-
FU)-induced leukopenia within several weeks, which subsequently
reverses 5-FU-induced bone marrow suppression. This action of
uridine enables the use of high-dose 5-FU for cancer treatment (van
Groeningen et al., 1989; Ma et al., 2017). However, high doses of
uridine can cause fever in humans, an effect that contradicts the use
of uridine to combat the side effects of 5-FU. Further studies are
warranted to understand the mechanism of uridine-induced fever
before uridine can be used as a treatment to alleviate the side effects
of anticancer drugs such as 5-FU.

2.2 Uridine and circadian rhythm

Food and light are the timing cues for the circadian clocks that
are reset in a daily cycle (Xin et al., 2021). Since plasma uridine
exhibits diurnal fluctuation (el Kouni et al., 1990) and uridine
modifies feeding behavior (Hanssen et al., 2023), plasma uridine
might play a critical role in circadian rhythm. The circulating
uridine is elevated during fasting, which promotes the synthesis
of uridine diphosphate (UDP) in the central nervous system
(Cansev, 2006; Ipata, 2011). UDP stimulates the orexigenic
agouti-related protein/neuropeptide Y (AgRP/NPY) neurons in
the hypothalamic arcuate nucleus, which increases appetite and
promotes food intake (Steculorum et al., 2015). It has been shown

that the level of plasma uridine was positively correlated with the
degree of hunger and food intake (Hanssen et al., 2023), and
decreases in proportion with food intake. Obesity can alter this
regulation. Thus, circulating uridine is involved in energy
homeostasis and the development of obesity (as discussed in
section 5.2 below).

Plasma uridine levels in light cycle are higher than dark cycle in
mice, which is concordant with increased activity of Upase1 in the liver
at night, the key enzyme for uridine degradation (el Kouni et al., 1990).
Uridine supplementation changes the fluctuation pattern of plasma
uridine and causes altered rhythmic expression of many genes that are
involved in lipid, glucose, and nucleotide metabolism (Zhang et al.,
2018; Liu et al., 2019) (Table1). When uridine is supplemented at night,
the expression of genes for bile acid transport and cholesterol excretion
are increased compared to uridine supplemented during the day. In
contrast, the expression of genes for cholesterol absorption is decreased
by uridine supplemented at night compared to daytime. It appears
possible to use uridine supplements at night to treat
hypercholesterolemia in mice (Zhang et al., 2018; Liu et al., 2019).
The circadian rhythm of rodents is not consistent with that of humans,
but it still has guiding significance for the application of uridine in
humans. Another study suggests that daytime uridine supplementation
inhibits lipid synthesis, reduces polyunsaturated fatty acid synthesis and
increases the proportion of saturated fatty acids by inhibiting the
expression of Acyl-CoA synthetase long-chain family member 4
(ACSL4) (Lai et al., 2023), an enzyme is known associated with
obesity and fatty liver (Zhang et al., 2018). Thus, it is critical to
choose right time for uridine supplementation (such as when
uridine phosphorylase activity is low) to achieve better
therapeutic outcomes.

3 The effect of uridine on protein
modification and its related diseases

Uridine is known to affect protein metabolism through
O-GlcNAc modification (Zachara et al., 2015). Supplementation
of uridine increases cellular level of UDP-GlcNAc, which leads to an
increase in protein O-GlcNAcylation. This modification alters the
physical property and biological activity of proteins, leading to a
shift in proteins’ function, a potential mechanism for various
diseases. Moreover, many O-GlcNAcylation sites are located at or
near the phosphorylation sites in the same protein, indicating a
competition of O-GlcNAcylation and phosphorylation, which could
affect the propagation of phosphorylation events of signaling
proteins (Wells et al., 2001). O-GlcNAc modification has been
found in almost all functional proteins, including those involved
in transcription, translation, and structural composition (Zachara
et al., 2015). Current research on O-GlcNAcylation is focused on its
significance to neurodegenerative diseases, diabetes (emphasized in
Section 6), and tumor (Peterson and Hart, 2016; Su et al.,
2020) (Figure 3).

3.1 Uridine and tumor

Uridine metabolism plays a critical role in tumorogenesis by
supplying UDP-GlcNAc (Cao et al., 2016). Elevated protein

TABLE 1 Genes whose expression is altered after day/night uridine
supplementation.

Gene name Physiological role

SLC29A1 Uridine transport

UPP,UGT1A1 Uridine degradation

DHODH, UMPS De novo synthesis of uridine

FASN NEFA synthesis

LCAT Cholesterol transport

G6PC,PC,PCK1 Glucose metabolism

GSK3B Glycogen synthesis

GLUT2 Glucose transport

FXR,SHP Bile acid metabolism in liver

ASBT, IBABP, NPC1L1, ABCG8 Bile acid metabolism in ileum

SLC29A1, DHODH, UMPS, UPP, RRM 2,
CMPK 2

Nucleotide metabolism in
duodenum
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O-GlcNAcylation promotes tumorigenesis, whereas reduced protein
O-GlcNAcylation lowers tumor incidence and increases cancer cell
death (Zachara et al., 2015; Wang et al., 2020). The increase in
protein O-GlcNAcylaiton has been observed in various cancer cells,
including prostate, breast, lung, colon, and liver cancer cells.
Oncogenic signals activate O-GlcNAc transferase (OGT) via the
Akt/mTOR pathway. Whereas O-GlcNAcylation of various
transcription factors leads to increased cell proliferation,
decreased cell death, and activation of cell invasion.

O-GlcNAcylation enhances the inhibition of e-cadherin by the
transcription factor Snail, which makes cells more prone to
dissemination (Zhu et al., 2012). Similarly, O-GlcNAcylation of
β-Catenin, the key regulator of intracellular adhesion, promotes
tumor migration and development. Conversely, O-GlcNAcylaiton
of NF-κB and c-Myc reduces their inhibitory activity, leading to
reduced protein turnover and increased cell survival and
proliferation (Lam et al., 2021). In addition to regulating cell
migration through modifying signaling pathways,

FIGURE 3
Effect of uridine on disease through O-GlcNAcylation. Uridine can impact diseases by increasing O-GlcNAc of important functional proteins.
Current research focuses mainly on diabetes, Alzheimer’s disease, and cancer. Elevated O-GlcNAc levels of specific proteins can worsen blood glucose
status by promoting βcell apoptosis, exacerbating insulin resistance, inhibiting glycogen synthesis, promoting gluconeogenesis, among other
mechanisms. However, in the short term, it can also promote insulin secretion, partially explaining the differences in the effects of urinary
nucleosides on diabetic patients in the short and long term. The typical pathological manifestation of Alzheimer’s disease is hyperphosphorylation of Tau
protein and deposition of β-amyloid protein. Supplementation with uridine can provide neuroprotection by increasing O-GlcNAc of Tau protein,
reducing Tau phosphorylation, and preventing Tau aggregation. It can also shift the processing of amyloid precursor protein (APP) towards the non-
amyloidogenic pathway mediated by α-secretase and away from the amyloidogenic pathway mediated by β-secretase, reducing the production and
deposition of β-amyloid protein-induced neurotoxicity. However, high levels of O-GlcNAc can promote tumor development by promoting tumor cell
proliferation, inhibiting tumor cell apoptosis, and promoting tumor cell migration. PDX-1:pancreatic and duodenal homeobox-1; NeuroD1:neurogenic
differentiation 1; AKT: kinase B; G6PD: Glucose-6-phosphate dehydrogenase; PDK1: phosphoinositide-dependent kinase 1; PFK1: Phosphofructokinase-
1; PKM2: pyruvate kinase M2 isoform; IRS: insulin receptor substrate; APP: Amyloid precursor protein; FoxO1:forkhead box O1; HIF-1α:hypoxia-inducible
factor 1 α; CREB:cAMP response element-binding protein; Id2:inhibitor of differentiation 2.
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O-GlcNAcylation also promotes cancer progression through its
impact on cancer cell metabolism. It is reported that
O-GlcNAcylation of phosphofructokinase 1 (PFK1) decreases its
activity, resulting in a shift of metabolic flux to the pentose
phosphate pathway, which increases glutathione and enhance the
resistance of cancer cells to oxidative stress (Wurtman, 2017).

In addition, under conditions of glucose restriction, cancer cells
can upregulate the expression of UPP1 through the Kras-MAPK
pathway, promoting the breakdown and utilization of uridine as a
source of nutrients and energy (Nwosu et al., 2023). Because plasma
uridine level is positively associated tissue protein O-GlcNAcylation
content and UPP1 expression, strategies that aim to alter plasma/
tissue uridine concentration and disrupt the utilization of uridine by
cancer might be potential treatments for cancer (Banerjee
et al., 2016).

Overall, uridine promotes cancer development. This is achieved
by using uridine as an energy supplier and changing the key protein
O-GlcNAcylation to improve the proliferation, spread and survival
of cancer cells.

3.2 Uridine and AD

Exogenous uridine supplementation has been shown beneficial
for patients with Alzheimer’s disease (AD) (de Leeuw et al., 2020).
Animal studies also found that oral administration of uridine
prodrug PN401 improves novel object recognition impairment in
AD mice (Saydoff et al., 2013). It is suggested that the increase of
protein O-GlcNAcylation by uridine is part of the mechanism for
the beneficial effect of uridine observed for AD.

Phosphorylation of tau protein and amyloid precursor protein
(APP) mediated β-amyloid (Aβ) plaque deposition directly
contribute to the pathogenesis of AD (Connolly et al., 1996). The
O-GlcNAcylation levels of Tau protein are negatively correlated
with its phosphorylation. Levels of total protein O-GlcNAcylation
are reduced in the brain tissue of AD patients. Upregulation of Tau
protein O-GlcNAcylation levels not only prevents its toxic
hyperphosphorylation but also stabilizes its structure, thereby
reducing the formation of toxic PHF-Tau (Banerjee et al., 2016).
The increase in APP protein O-GlcNAcylation activates the α-
secretase process, leading to an increase in soluble amyloid
precursor protein α (sAPPα), which inhibits the secretion and
accumulation of Aβin brain. Together these data suggest that the
increase in protein O-GlcNAcylation may be beneficial for patients
with neurodegenerative diseases (Nie et al., 2019). In addition to Tau
and APP proteins, O-GlcNAcylation has been observed on proteins
involved in processes including signal transduction, transcription,
and proteasome degradation.

Uridine supplementation not only increases protein
O-GlcNAcylation, but also promotes synaptic membrane
synthesis in the cerebral cortex and the hippocampus. Uridine is
the substrate for synthesis of cytidine triphosphate, the nucleotide
used for production of CDP-choline and CDP-ethanolamine. The
increase of CDP-Choline and CDP-ethanolamine production
thereby conceivably increases the number of synapses in AD and
improves synaptic function (Wurtman et al., 2009; Wurtman, 2017).
In addition to AD, uridine has been shown neuroprotective for
Parkinson’s and Huntington’s disease in animal models.

Treatment with PN401 reduces the loss of dopamine neurons
induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), an inhibitor of mitochondrial complex I, in Parkinson’s
disease mouse models (Richardson et al., 2007). PN401 also prevents
motor impairment, neurodegeneration and death induced by
complex II inhibitors in two Huntington’s disease mouse models
(Davidoff, 2006). A single drug can benefit neurodegenerative
diseases in multiple ways, making uridine a great potential as a
therapeutic agent.

4 Uridine and peripheral neuropathy

Uridine exerts profound impact on the peripheral nervous
system. Multiple lines of evidence suggest that uridine promotes
the growth of nerve cells. Uridine treatment increases neurite
outgrowth and branching in neuronal pheochromocytoma
(PC12)cells (Pooler et al., 2005). Animal studies also
demonstrated a dose-dependent decrease by uridine of
apoptotic markers Caspase-3, oxidative markers
myeloperoxidase (MPO) and malondialdehyde (MDA) in sciatic
nerve tissue of rats with sciatic nerve injury. Mechanistically,
uridine serves as a precursor for the synthesis of cytidine-5′-
diphosphocholine (CDP-choline), a rate-limiting endogenous
intermediate in phospholipid synthesis, which is necessary for
nerve growth (Khezri et al., 2021).

Diabetic peripheral neuropathy is a type of neuropathy
frequently observed in metabolic diseases. Previous studies have
found that 6 months of oral uridine treatment improves nerve
function in patients with diabetic neuropathy, which is reflected
by increased nerve conduction velocity, nerve fiber regeneration,
and myelin sheath surface area and axonal thickness (Gallai et al.,
1992). The nutritive and reparative effects of uridine on neurons is
through uridine-mediated synthesis of membrane components such
as CDP-choline, phosphatidylinositol, and phosphatidylcholine
(Dempsey and Raghavendra Rao, 2003). Meanwhile, uridine also
exerts its beneficial effects on diabetic neuropathy by promoting
glycogen synthesis via the formation of uridine diphosphate glucose,
which reduces local glucose accumulation and mitigates the toxic
effects of sorbitol on neuronal cells (Akamine et al., 2018).

5 Uridine and obesity

5.1 Uridine and fatty liver

The relationship between uridine and fatty liver is not set in
stone. Uridine supplementation under different conditions leads to
opposite conclusions. Short-term uridine supplementation reverses
drug-induced (e.g., tamoxifen (Le et al., 2014), Zalcitabine (Lebrecht
et al., 2007)), hepatic steatosis (Le et al., 2013). It is suggested that the
synthesis of membrane phospholipids is stimulated by uridine and
those drug, which reduces the accumulation of triglyceride in cells,
thereby decreases the incidence of fatty liver. Meanwhile,
overexpression of Upase1 in hepatocytes leads to a decrease in
blood uridine levels but leads to fatty liver (Le et al., 2013). In
contrast to mouse models with altered uridine metabolism through
genetic modification of Upase1, wild type mice after short-term
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uridine supplementation have increased rates of fatty acid beta-
oxidation and are resistant to hepatic steatosis. However,long-term
(16 weeks) uridine supplementation induces fatty liver due to the
inhibition of liver-specific fatty acid binding protein 1 (FABP1). This
may be related to the upregulation of liver P2Y6 receptors leading to
the downregulation of PPARα (Jain et al., 2020; Wu et al., 2022).
Deficiency of FABP1 is known to promote excessive accumulation of
fatty acids in the liver (Guzman et al., 2013; Martin et al., 2015;
Urasaki et al., 2016).

5.2 Uridine is associated with obesity by
regulating energy intake, lipid storage
and breakdown

Obesity is a metabolic disorder characterized by excessive
expansion of fat mass. An increasing body of research suggests
that uridine may be linked to obesity through its involvement in
energy intake, storage and expenditure, andmay be a potential target
for treating obesity. Uridine levels were higher in the fasting state
than after a meal. High levels of plasma uridine are suggested to
generate the sensation of hunger and promote feeding behavior by
stimulating the feeding center (P2Y6-Dependent AgRP Neurons in
hypothalamic). With energy intake, plasma uridine and uridine-
stimulated sense of hunger decreased in proportion until the end of
feeding behavior (Hanssen et al., 2023). Fasting uridine in obese
patients is higher compared with healthy people (Steculorum et al.,
2015), and the dynamic decline of postprandial uridine is weakened
(Kohli et al., 2018). This indicates that obesity disrupts the plasma
uridine homeostasis and may be associated with the development of
obesity by promoting energy intake. Whether obesity can be
reversed by regulating uridine is a topic worthy of further study.

Uridine can also regulate the lipid content in adipose tissue. Long-
term supplementation of uridine to mice on a regular diet leads to an
increase in body weight (Urasaki et al., 2016). Recent research indicates
that blood cells, the brain, lungs, immune cells, and other tissues all have
the potential to utilize uridine as a source of nutrition and energy
through glycolysis. This unregulated capacity, coupled with chronic
energy accumulation, promotes lipid synthesis and contributes to the
explanation for obesity, fatty liver, and diabetes resulting from long-
term uridine supplementation (Skinner et al., 2023). On the other hand,
uridine supplementation reduces weight gain in mice fed on high-fat
diet (HFD) (Liu et al., 2019). This difference may be related to the fat
content in the diet and the obesity status, with leptin possibly playing a
role. The knockout of UDP-activated P2Y6 receptors in adipose tissue
exerts resistance to diet-induced obesity through the JNK-PPARα-
PGC1α axis (Jain et al., 2020). Meanwhile, the overexpression of
mitochondrial complex MIC19 in the liver enhances mitochondrial
cristae formation, mitochondrial respiration, and fatty acid oxidation,
while suppressing gluconeogenesis, resulting in a similar resistance to
diet-induced obesity and an improvement in glucose homeostasis (Sohn
et al., 2023). It is suggested that uridine-mediated prevention of weight
gain is associated with reprogramming of genes for uridine and lipid
metabolism.

Adipose tissue is the major source of uridine supply in fasted state
(Deng et al., 2017). The time of uridine synthesis in adipose tissue is in
accordance with lipolysis, suggesting a link between uridine synthesis
and lipolysis. X-box binding protein 1 (Xbp1) is a transcription factor

activated in response to endoplasmic reticulum (ER) stress. Adipocyte
selective Xbp1 overexpression stimulates uridine synthesis through the
enzyme CAD (a multifunctional protein composed of glutamine-
dependent amidotransferase, aspartate carbamoyltransferase, and
dihydroorotase). The increased activity of uridine synthesis by
Xbp1 is suggested to promote the breakdown of TG in adipose
tissue (Deng et al., 2018). The relationship between uridine and
obesity is a comprehensive reflection of energy intake, lipid storage
and decomposition. In summary, within a short period, both exogenous
uridine supplementation and uridine synthesis in adipose tissue appear
to protect mice from obesity. Chronic supplementation of uridine may
potentially promote the occurrence of obesity. Whether the differential
effect of uridine on lipidmetabolism is related to the caloric intake status
and body fat status of the subjects still needs further research in order to
correctly understand the causal relationship and drug value of uridine
and obesity.

6 The effect of uridine on
glycemic control

Uridine is closely related to glucose homeostasis. Changes in gut
microbiota are positively correlated with the elevation of uridine in
its metabolic products and the presence of impaired fasting glucose,
although the mechanism is not yet clear (Nogal et al., 2023). Plasma
uridine concentrations are increased inpatients with type 1 and type
2 diabetes (Belosludtseva et al., 2022). However, similar to lipid
metabolism, the relationship between uridine and glycemic control
has a similar dual side (Figure 4). Uridine promotes glycogen
synthesis, and short-term (within 4 weeks) uridine supplementation
improves glucose tolerance in mice (Deng et al., 2018; Belosludtseva
et al., 2022). In contrast, long-term uridine supplementation
increases blood glucose levels and triggers insulin resistance in
mice (Urasaki et al., 2014).

6.1 The effect of uridine on β cell function
mediated by O-GlcNAcylation

Pancreatic β-cells are responsible for secreting insulin,
hypoglycemic hormone. The functionality of β-cells determines
the category and prognosis of diabetes. Gene expression of
insulin is regulated by transcription factors Pdx-1 (pancreatic and
duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1),
and MafA (V-maf musculoaponeurotic fifibrosarcoma oncogene
homolog A). O-GlcNAcylation modification has been shown to
increase insulin gene expression and secretion by enhancing the
affinity of PDX-1 for DNA (Konrad and Kudlow, 2002; Banerjee
et al., 2016). In addition, extracellular nucleotides, such as UTP,
UDP, and UDP-glucose conjugates, activate P2 receptors on
pancreatic β-cells. Upon P2Y6 receptor is stimulated, the
accumulation of IP3 increases the cytoplasmic-free Ca2+, which
activates protein kinase C (PKC) and enhances insulin secretion
(Parandeh et al., 2008).

However, long-term elevation of total protein O-GlcNAcylation
within β-cells is detrimental. Studies have shown that under high-
glucose conditions, the increase in O-GlcNAcylation of certain
proteins is associated with β-cell death. Glucosamine treatment
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induces mouse β-cell apoptosis by increasing the
Ser473 O-GlcNAcylation of the anti-apoptotic protein Akt1, a
modification concomitnatly decreases Akt1 phosphorylation
(Kang et al., 2008). This may be one of the mechanisms by
which long-term uridine supplementation leads to impaired
glucose tolerance.

6.2 The effect of uridine on insulin resistance
mediated by O-GlcNAc modification

Insulin resistance is the main cause of type 2 diabetes (T2D).
Blood uridine levels in T2D patients are higher than non-diabetic
individuals, and blood uridine levels are positively correlated with
insulin resistance (HOMA-R) (Yamamoto et al., 2010), suggesting

uridine as a potential biomarker for insulin resistance. Proper
functioning of insulin signal in cell is necessary for the glucose-
lowering effect of insulin. Urasaki.et al. found that uridine
supplementation increases O-GlcNAcylation levels of insulin
receptor substrates (IRS), Akt, mammalian target of rapamycin
(mTOR) and p70S6 kinase (p70S6K), which are key components of
insulin signaling propagation and modification in liver (Le et al.,
2014). O-GlcNAcylation of those components diminishes the
cellular response to insulin, resulting in insulin resistance (D
Alessandris et al., 2004; Issad et al., 2010). Meanwhile,
increased O-GlcNAcylation of glucose transporter 4 (GLUT4)
and/or GLUT4-associated proteins reduces glucose uptake by
skeletal muscle cells, which precipitates insulin resistance
(Hawkins et al., 1997; Boström et al., 2012; Kang et al., 2012).
Reducing the formation of uridine or promoting the catabolism to

FIGURE 4
Relationship between uridine and eating behavior, glucose, and lipid metabolism. (A). The role of uridine in a single meal. During fasting, the
expression of CAD, a key enzyme in the synthesis of uridine consisting of glutamine-dependent carbamoyl phosphate synthase, aspartate
carbamyltransferase and dihydrogen rotamase, in adipose tissue increases, leading to increased uridine synthesis and release into the blood. Uridine
diphosphate (UDP) in the central nervous system is synthesized directly dependent on peripheral circulating uridine levels, and increased UDP
synthesis stimulates the appetite center to produce hunger and promote eating. Eating promotes bile clearance, which lowers blood uridine levels while
increasing uridine concentration in the gallbladder. The decrease in blood uridine concentration reduces UDP synthesis in the central nervous system,
leading to a decrease in hunger and cessation of eating. (B). Short-term effects of uridine supplementation on glucose/lipidmetabolism. In animal studies,
short-term uridine supplementation in high-fat-fed mice promotes insulin secretion and improves glucose tolerance. It can reduce fat accumulation in
the liver and alleviate drug-induced fatty liver. It also results in decreased white adipose tissue inmultiple locations andweight loss. (C). Long-term effects
of uridine supplementation on glucose/lipid metabolism. In animal studies, long-term uridine supplementation in high-fat-fedmice promotes pancreatic
beta-cell apoptosis, increases hepatic gluconeogenesis, reduces effective insulin signaling and decreases peripheral utilization of glucose leading to
impaired glucose tolerance. Meanwhile, long-term uridine supplementation in mice results in liver fat accumulation and the development of fatty liver.
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lower the level of uridine may be one of the ways to improve insulin
resistance.

6.3 Uridine and vascular complications of
diabetes mellitus

Uridine adenosine tetraphosphate (Up4A), a synthetic product
of uridine, is an endothelium-derived vasoconstrictive factor
(EDCF). It can stimulate the proliferation and migration of
vascular smooth muscle cell (VSMC) through the extracellular
signal-regulated kinases 1 and 2 (ERK1/2) pathway, which plays a
dominant role in the formation of atherosclerotic lesions (Wiedon
et al., 2012). The high uridine status of diabetes mellitus further
promotes this pathological process. Moreover uridine-induced
O-GlcNAcylation has been detected for many regulators of
vascular homeostasis such as protein kinase C (PKC),
phosphatidylinositol 3-kinase (PI3K), and endothelial nitric
oxide synthase (eNOS) (De Vriese et al., 2000). The increase in
eNOS O-GlcNAcylation impairs its function and reduces nitric
oxide (NO) release. NO relaxes vascular smooth muscle, dilates
blood vessels, and increases blood flow. The reduction of NO will
decrease local blood flow, causing relative hypoxia, oxidative stress,
and vascular damage (Aulak et al., 2020). Overall, diabetic patients
have higher uridine levels than healthy individuals, which is
expected to exacerbate diabetic vascular complications, by
promoting the formation of pathological cells and exacerbating
local hypoxia. Whether lowering plasma uridine levels will prevent
or delay the onset of diabetic vascular diseases warrants
further study.

7 Summary

Uridine is a versatile metabolite that plays a role in various
metabolic processes. Although the significance of uridine to
metabolic disease remains elusive, multiple studies have indicated
disrupted uridine homeostasis is involved in the onset and
development of diabetes, neurodegeneration, fatty liver, and

obesity. Since uridine administration study in rodents reveals a
complex impact of uridine on glucose and lipid metabolism, it is
instrumental to understand the underlying mechanisms.

In summary, uridine has been linked to the metabolism of
proteins, carbohydrates and lipids. Study focusing on the role of
uridine in metabolic regulation will likely provide new insights for
the diagnosis and treatment of metabolic diseases.
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