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The human epidermal growth factor receptor (HER) family consists of four
members, activated by two families of ligands. They are known for mediating
cell–cell interactions in organogenesis, and their deregulation has been
associated with various cancers, including breast and esophageal cancers. In
particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling
drive disease progression and result in poorer patient outcomes. Nitric oxide (NO)
has been proposed as an alternative activator of the HER family and may play a
role in this aberrant activation due to its ability to induce s-nitrosation and
phosphorylation of the EGFR. This review discusses the potential impact of
NO on HER family activation and downstream signaling, along with its role in
the efficacy of therapeutics targeting the family.
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1 Introduction

Nitric oxide (NO) is a gaseous signaling molecule with a short half-life. In 1987, it was
discovered to be the molecule responsible for the ability of endothelium-derived relaxing
factor to induce the relaxation of vascular smooth muscle (Ignarro et al., 1987). NO has also
been associated with the regulation of other biological systems, including the
cardiovascular, nervous, and immune systems (Ignarro, 2000). NO is generated
physiologically from oxygen, NADPH, and L-arginine by a family of three nitric oxide
synthases: neuronal (nNOS/NOS1), inducible (iNOS/NOS2), and endothelial (eNOS/
NOS3). NO synthesis requires the binding of NOS and calmodulin. High levels of
intracellular calcium are needed to facilitate the binding of nNOS and eNOS to
calmodulin (Nathan and Xie, 1994). This results in the generation of nanomolar levels
of NO over a short period of time (seconds/minutes) (Michel and Feron, 1997). However,
iNOS has a high affinity for calmodulin, so it does not require high calcium levels, allowing
it to produce micromolar NO levels over long periods of time (hours/days). nNOS is
predominantly expressed in neurons, where it plays a role in synaptic plasticity and the
regulation of blood pressure. The expression of iNOS can be induced in various cell types,
following an interaction with stimuli such as lipopolysaccharide or cytokines. The large
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amounts of NO generated by iNOS have protective effects against
pathogens. eNOS is expressed in endothelial cells, where it functions
to regulate vasodilation and blood pressure (Förstermann and
Sessa, 2012).

NO generated enzymatically by NOS can be rapidly inactivated
through conversion to inorganic nitrate (NO3) and nitrite (NO2

−).
However, NO can also be produced from dietary nitrate and nitrite.
Bacteria in the mouth reduce nitrate to nitrite, which travels to the
stomach. In the stomach, nitrite undergoes non-enzymatic
disproportionation (Lundberg and Weitzberg, 2013). There are
various other methods, both enzymatic and non-enzymatic, that
convert nitrate to NO, all of which occur at an accelerated rate in
acidic and hypoxic conditions, where NOS enzymes may be inactive.
NO generated by this pathway is also involved in NO signaling
(Lundberg and Weitzberg, 2022).

NO is a key component of redox signaling within biological
systems. Its unpaired electron allows it to act as both a reductant and
a weak oxidant (Kanner et al., 1991). NO is not stored but simply
diffuses to its active site and covalently binds to its targets. These
targets include the ions of transition metals such as iron. NO’s
interaction with heme facilitates its interactions with hemoglobin
and soluble guanylate cyclase (sGC) (Ignarro, 1989). sGC activation
by NOmediates NO’s effects on vasodilation and blood pressure and
is considered to be classical NO signaling. An alternative signaling
mechanism of NO is via s-nitrosation. NO and the related
nitrosonium ion (NO+) also react with proteins to form
S-nitrosothiols (R-SNO), which, as discussed later in this review,
allows NO to regulate protein signaling via s-nitrosation.

NO has been found to play a role in various cancers, such as
breast, prostate, lung, pancreas, and colon cancers (Fujimoto et al.,
1997; Reveneau et al., 1999; Hundley and Rigas, 2006; Stewart et al.,
2009; Wang et al., 2016). In cancer, NO can regulate various key
components, such as tumor growth, metastasis, and angiogenesis.
The effects of NO in cancer are dichotomous and based on the
concentration, duration of exposure, NOS isoform, tumor
microenvironment, and type of cancer (Burke et al., 2013; Kamm
et al., 2019). Low NO concentrations are associated with metastasis
and drug resistance, whereas high NO concentrations are linked to
increased apoptosis (Vannini et al., 2015).

The human epidermal growth factor receptor (HER) family’s
discovery began in the 1960s, when epidermal growth factor (EGF)
was first discovered (Cohen, 1965). It was not until the 1980s that the
corresponding receptor, epidermal growth factor receptor (EGFR),
was successfully cloned and found to be amplified in
A431 epidermoid carcinoma cells (Ullrich et al., 1984). It was
subsequently discovered that the avian erythroblastosis tumor
virus encoded an aberrant variant of EGFR (HER1) (Downward
et al., 1984a). This led to the investigation into the oncogenic role of
EGFR. Following this, a gene similar to EGFR, which is known as the
human epidermal growth factor receptor 2 (HER2) gene, was found
to be amplified in a human breast cancer cell line (King et al., 1985).
HER2 (human) and neu (rodent) are homologs of a growth factor
receptor that were discovered independently and found to be
oncogenic. Neu was initially found to be homologous to v-erbB
(avian erythroblastosis virus), a viral oncogene, and the EGFR
(Schechter et al., 1984; 1985). It was later discovered that
HER2 also had tyrosine kinase activity (Akiyama et al., 1986).
HER2 gene amplification by 2–50 fold was found in ~30% of

breast tumors and was found to be a significant predictor of both
overall survival and time to relapse (Slamon et al., 1987). HER3 and
HER4 were discovered in the early 1990s (Plowman et al., 1990;
1993). This led to the completion of the HER family as we know it
today, consisting of EGFR (HER1, erbB1), HER2 (erbB2, HER2/
neu), HER3 (erbB3), and HER4 (erbB4).

HER family members are expressed throughout the body in
non-hematopoietic cells. The predominant physiological role of the
HER family is in the mediation of cell–cell interactions both during
organogenesis and adulthood (Burden and Yarden, 1997). They play
a key role in the development of several organ systems, such as the
nervous system, heart, skin, lungs, and gastrointestinal tract (Lee
et al., 1995; Miettinen et al., 1995). The family has also been shown to
play a role in the development of the mammary gland during
puberty (Xie et al., 1997; Andrechek et al., 2005). The HER
family, particularly EGFR and HER2, has also been implicated in
various cancers. Tumors with dysregulated EGFR or HER2 are
linked to more aggressive disease and poor clinical outcomes
(Slamon et al., 1987; Nicholson et al., 2001).

Classically regulated by ligand binding and dimerization, in this
review, we present an alternative form of HER receptor family
activation via NO. HER family activation by NO may lead to
enhanced tumor HER receptor signaling, with clinical
consequences for patient prognosis and therapeutic outcomes. In
particular, if NO and HER receptors interact to drive tumor
progression, this may represent an opportunity for combination
targeting for the treatment of cancer. This review describes the role
of the HER receptor family in cancer progression and introduces
how these receptors and their downstream signaling pathways are
impacted by NO signaling. Understanding the interplay between
these diverse processes is key for the future design of dual
combinations of HER- and NO-targeting therapeutics.

2 HER family receptor structure and
activation

HER receptors are type I transmembrane growth factor
receptors. They respond to extracellular stimuli by activating
intracellular signaling pathways. Structurally, they consist of four
domains: an extracellular N-terminal containing two cysteine-rich
regions, a transmembrane domain, an intracytoplasmic domain, and
a C-terminal tail (Carpenter, 1987).

The HER family is activated by two families of ligands: EGF-
related ligands and neuregulins. All of these ligands share an EGF-
like domain and three disulfide-bonded loops. The receptor-binding
domain tends to be part of a large precursor that undergoes a highly
regulated cleavage to release the ligand (Prenzel et al., 1999).
Different ligands have differential specificities for each of the
family members, as summarized in Table 1. The EGFR is
predominantly activated by the EGF, whereas HER3/HER4 is
activated by neuregulins. Despite HER2 not having a ligand-
binding domain, it is frequently hyperactivated.

Upon extracellular binding with their given ligand, the
extracellular domain undergoes a conformational change from a
closed inhibited state to an open active state that promotes
dimerization (Figure 1) (Lemmon et al., 1997). Dimer partner
selection is an important factor in determining the downstream
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signaling pathways activated by receptor activation. There is a
hierarchy of interactions between the transmembrane domains of
the four receptors, ranging from non-interactive pairs to strong
dimerization. The preferred dimer partner was found to be HER2,
with HER3 ranking next ahead of EGFR (Duneau et al., 2007).
HER2 has the strongest kinase activity; therefore, dimers containing
HER2 have stronger downstream signaling (Graus-Porta et al.,
1997). The HER3–HER4 heterodimer is the least favored
thermodynamically and could not be induced by ligand binding
(Tzahar et al., 1996). Despite this, HER4 signaling has been

documented in breast and nervous system development
(Tidcombe et al., 2003).

HER2 exists in a constitutively active state (Garrett et al., 2003)
and lacks the ability to bind a ligand; therefore, the ability of ligand
binding to induce HER2 signaling is dependent on a heterodimeric
partnership (Sliwkowski, 2003). On the other hand, HER3 is missing
an ATP-binding site within its catalytic domain, preventing its
kinase activity (Sierke et al., 1997), meaning that HER3’s
downstream signaling is also dependent on a heterodimeric
partnership (Kim et al., 1998). Despite being incomplete

TABLE 1 HER family ligands.

Ligand Family Receptor Reference

EGF EGF-like EGFR Wada et al. (1990)

Amphiregulin EGF-like EGFR Shoyab et al. (1989)

Transforming growth factor-α EGF-like EGFR Marquardt et al. (1984)

Epigen EGF-like EGFR Strachan et al. (2001)

Betacellulin EGF-like EGFR Shing et al. (1993)

Connective tissue growth factor EGF-like EGFR Rayego-Mateos et al. (2013)

Heparin-binding EGF EGF-like EGFR and HER4 Higashiyama et al. (1991)

Epiregulin EGF-like EGFR and HER4 Toyoda et al. (1995)

No known direct ligand N/A HER2 Slamon et al. (1989)

NRG-1a Neuregulins HER3 and HER4 Riese et al. (1995)

NRG-2 Neuregulins HER3 and HER4 Riese et al. (1995), Carraway et al. (1997)

NRG-3 Neuregulins HER4 Riese et al. (1995), Zhang et al. (1997)

NRG-4 Neuregulins HER4 Riese et al. (1995), Harari et al. (1999)

aNeuregulin-1 (NRG-1) is also known as the neu differentiation factor, heregulin, acetylcholine receptor-inducing activity, and glial growth factor.

FIGURE 1
HER family dimerization. HER family ligand interactions, and subsequent dimerization. Ligands are described in Table 1. The dimers shown are
representative. Created with BioRender.com.
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individually, the HER2–HER3 heterodimer is the most active of the
family and is essential for various processes.

The ligand(s) involved in receptor activation can also play a role
in dimer selection. In dimers where two ligands can be present (e.g.,
EGFR–HER3), they are more stabilized by neuregulin than the EGF
(Tzahar et al., 1996). Dimer formation allows for the activation of
the kinase domain and trans-auto-phosphorylation of the
intracellular domain. Each member of the HER family has
different C-terminal sites, which becomes trans-auto-
phosphorylated upon dimer formation. This allows for the
subsequent docking of signaling molecules, triggering
downstream signaling and the various biological effects associated
with HER family signaling (Olayioye et al., 2000).

There are two pathways involved in the post-activation
processing of the HER family. The EGFR undergoes endocytic
degradation, whereas HER2, HER3, and HER4 undergo endocytic
recycling (Baulida et al., 1996). When the EGFR dimerizes with
HER2, such as in HER2 overexpression, it is redirected down the
endocytic recycling pathway. This results in increased levels of
EGFR on the cell membrane, along with longer and more potent
signaling activity (Lenferink et al., 1998; Waterman et al., 1998;
Hendriks et al., 2003). Overall, HER2 is the least frequently
inactivated member of the HER family. HER2-containing dimers
can trigger downstream signaling for prolonged periods by evading
signal attenuation. This leads to increased MAPK and c-Jun

activation in HER2-overexpressing cells, following treatment with
EGFR or HER3 ligands (Karunagaran et al., 1996).

3 Interaction of NO with HER
family signaling

HER family signaling varies in complexity from organism to
organism. In C. elegans, signaling is driven by a single ligand and
receptor; in Drosophila, this increases to four ligands and one
receptor (Lacenere and Sternberg, 2000), whereas in mammals,
there are at least 12 ligands and 4 receptors. The extent of the
HER family in mammals compared to other animals is believed to
result from functional differentiation, requiring all members of the
family to interact in their various heterodimers to carry out different
functions downstream. The fact that HER2 and HER3 are
functionally incomplete facilitates this concept.

The specific tyrosine phosphorylation residues of each member
of the HER family control the binding ability of downstream
signaling molecules. Some molecules are common among
multiple members of the family, such as Grb2 and Shc, whereas
others are more specific, like Cbl, which only binds to the EGFR
(Levkowitz et al., 1996). Therefore, each of the 10 HER family dimers
exhibits differences in the downstream signaling pathways they
activate (Figure 2).

FIGURE 2
Major signaling pathways impacted by NO-HER family interactions. Major downstream signaling pathways activated by each HER family dimer pair
and known interactions of NO. Ras-MAPK signaling regulates proliferation and differentiation. PI3K-Akt signaling regulates proliferation and survival. STAT
signaling regulates hematopoiesis, inflammation, adipogenesis, repair, and apoptosis. Created with BioRender.com.
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Homodimers tend to be less able to stimulate proliferation
compared to heterodimers. Within the heterodimers, those
containing HER2 are the most active, while those containing
HER3–HER4 are the least active, linking into the hierarchal
process of dimer formation. HER2’s highly active signaling is due
to its ability to decrease the rate of NRG and EGF dissociation from
their receptors alongside HER2’s slow endocytosis rate, leading to
the amplification and increased duration of signaling (Graus-Porta
et al., 1995; Karunagaran et al., 1996). HER2 overexpression alters
the profile of HER family dimers by increasing the formation of
HER2–EGFR and HER2–HER3 heterodimers (Karunagaran et al.,
1996; Hendriks et al., 2003).

The functional results of HER family signaling are varied and
include migration, mitosis, adhesion, differentiation, and apoptosis.
The end result is dependent on the cell type and the ligand and
receptor combinations (Yarden and Sliwkowski, 2001). The core
pathways downstream of HER family activation are Ras-MAPK,
PI3K-Akt, and JAK-STAT signaling.

3.1 Ras-MAPK

The Ras-MAPK pathway controls proliferation and
differentiation (Iwakura and Nawa, 2013). MAPK signaling
activated through Ras and Shc is a downstream target of all HER
family dimers (Yarden and Sliwkowski, 2001).

Activated HER family dimers, once phosphorylated at an
appropriate residue, become associated with Shc and Grb2.
Grb2 and Shc both have phospho-tyrosine-binding sites in all
members of the HER family, as outlined above. Grb2 or Shc
binding then recruits SOS, a Ras-guanine nucleotide exchange
factor, leading to the activation of Ras and setting off the kinase
cascade that activates Raf, MEK, and ERK (Iwakura and Nawa,
2013). ERK1/2 further interacts with various molecules that
promote cell division (Yamamoto et al., 2006).

In addition to direct NO action on HER receptors, Ras
s-nitrosation modulates the effects of NO on the Raf/MEK/ERK
and PI3K/Akt pathways (Pervin et al., 2007). Ras is aberrantly
activated in breast cancers overexpressing EGFR or HER2 (von
Lintig et al., 2000). S-nitrosation of Ras has been linked to metastasis
through MAPK-dependent Ets-1 activation (Marshall and Foster,
2012). NO also phosphorylates ERK1/2 and increases cell migration
in an EGFR-ERK1/2-dependent manner in triple-negative breast
cancer (Garrido et al., 2017). NO induces tumor growth through
MEK1/2 and ERK1/2 phosphorylation, potentially due to a
combination of HER receptor and Ras modifications (Rice et al.,
2010; Sen et al., 2013; Chen et al., 2018). In colon cancer, NO’s
phosphorylation of ERK1/2 also leads to the upregulation ofMMP-2
and MMP-9 expression (Babykutty et al., 2012).

3.2 PI3K-Akt

The PI3K-Akt signaling pathway regulates cell growth and anti-
apoptotic signaling (Iwakura and Nawa, 2013). The PI3K pathway is
activated downstream of most HER dimer pairs. However, the
extent and kinetics of the activation are varied. This is due to the
ability of PI3K to directly interact with HER3 and HER4, whereas it

can only interact indirectly with EGFR and HER2 (Soltoff and
Cantley, 1996).

HER3 plays a major role in the activation of pro-survival
signaling through PI3K due to its six binding sites for p85,
PI3K’s regulatory subunit, whereas HER4 only has one p85-
binding site.

Aberrant NOS expression is linked to the ability of oncogenic
PI3K/Akt signaling to induce inflammation and
immunosuppression (Villegas et al., 2018). In breast cancer, Akt
phosphorylation and iNOS expression are strongly correlated
(Smeda et al., 2018). NO is capable of inducing Akt
phosphorylation and tumor growth (Ridnour et al., 2012; Sen
et al., 2013). The threshold for Akt phosphorylation is 100 nM of
NO (Thomas et al., 2008). NO also protects against H2O2-induced
cell death neuroblastoma through Akt phosphorylation (Yoo et al.,
2018). In ovarian cancer, GSNO was found to induce the
s-nitrosation of EGFR and Akt but decrease Akt phosphorylation
(Giri et al., 2014). In gastric cancer, NO has an anti-proliferative
effect and also inhibits Akt phosphorylation (Sang et al., 2011). In
ER-negative breast cancer with high levels of iNOS, Akt
phosphorylation at S473 is present in 87%–89% of tumors,
whereas abundant phosphorylation of Akt at T308 is linked with
co-expression of iNOS and COX2. Downstream of Akt,
phosphorylated forms of BAD and caspase 9 were also more
abundant in tumors co-expressing iNOS and COX2, showing an
association with activation of the Akt signaling pathway.
Additionally, Ras-MAPK and/or PI3K-Akt signaling are required
for NO to induce COX2 expression (Basudhar et al., 2017).

PTEN, the negative regulator of PI3K signaling, is also highly
regulated by NO. S-nitrosation of PTEN at C83 results in the
inhibition of its enzymatic activity and the induction of its
degradation via NEDD4-1-mediated ubiquitination (Kwak
et al., 2010; Numajiri et al., 2011; Ohno et al., 2015).
S-nitrosation of PTEN has been shown to occur via trans-
nitrosation in the brain, with s-nitrosated DJ-1 donating its
NO group to PTEN (Choi et al., 2014). nNOS activity has
been shown to induce s-nitrosation of PTEN, resulting in the
activation of Akt/mTOR signaling and inhibition of autophagy in
nasopharyngeal carcinoma (Zhu et al., 2019). S-sulfhydration of
PTEN at C71 and C124 occurs endogenously and prevents
s-nitrosation of PTEN (Ohno et al., 2015). Therefore,
s-sulfhydration of PTEN allows it to inhibit PI3K signaling,
whereas s-nitrosation of PTEN allows for increased PI3K
signaling. iNOS expression and the resulting increase in PI3K
signaling have been associated with poor clinical outcomes in a
subset of melanoma patients expressing PTEN (Ding et al., 2021).

3.3 JAK-STAT

JAK/STAT signaling is involved in hematopoiesis, tissue repair,
inflammation, apoptosis, and adipogenesis (Bach et al., 1996;
Stephens et al., 1996; Fulda and Debatin, 2002; Owen et al., 2019;
Jaiswal et al., 2023). JAKs are known to be recruited to activated
EGFR, where they become transphosphorylated (Iwakura and
Nawa, 2013). Phosphorylated JAK is active and further
phosphorylates the receptor, forming a STAT docking site. When
STAT binds, it is phosphorylated by JAK, triggering the
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disassociation of active STAT. Active STAT then forms dimers
capable of translocation to the nucleus, where they regulate gene
transcription (Bharadwaj et al., 2020).

EGFR activation leads to STAT1 activation and the
formation of STAT1 and STAT3 complexes with JAK1 and
JAK2 (Andl et al., 2004). JAK2’s phosphorylation of the
EGFR has been linked to the activation of Ras-MAPK
signaling (Wong et al., 1992; Yamauchi et al., 1997). The
EGFR can interact with all STATs, with the exception of
STAT6 (Erdogan et al., 2022). In breast cancer,
HER2 overexpression has been linked to STAT3 expression
and a HER2-STAT3 signaling network (Diaz et al., 2006;
Duru et al., 2012). NRG-1, the ligand for HER3 and HER4,
can activate JAK/STAT signaling through JAK3, STAT3, and
STAT5 in an HER2–HER3-dependent manner. This has been
linked to an induction of proliferation (Liu and Kern, 2002).
HER4 becomes truncated by γ-secretase, forming a soluble
intracellular domain with signaling activity (Ni et al., 2001).
This truncated HER4 acts as a chaperone for the translocation of
STAT5A to the nucleus (Long et al., 2003).

Both STAT3 and its repressor, Pias3, have been reported to
undergo s-nitrosation. S-nitrosation of STAT3 results in a decrease
in its phosphorylation at Y705 (Giri et al., 2014). S-nitrosation of
Pias3 promoted its degradation (Qu et al., 2007). High
concentrations of NO have been reported to induce apoptosis in
ovarian cancer. This has been linked to a decrease in STAT3 and Akt
phosphorylation (Kielbik et al., 2013). The reduction in

phosphorylation may be due to the reported inverse relationship
between s-nitrosation and phosphorylation in STAT3 and Akt (Giri
et al., 2014).

4 HER family post-translational
modifications

The HER family undergoes extensive post-translational
modifications (PTMs) (Figure 3). The PTM of proteins involves
the addition of functional groups, cleavage, or degradation of
translated proteins by various enzymes. This review will focus on
the addition of functional groups. S-nitrosation is a PTM mediated
by NO. Other common PTMs include phosphorylation,
glycosylation, acetylation, methylation, and ubiquitination, all of
which can be regulated by NO signaling. PTMs can be classified by
the amino acids they modify, the type of enzyme, and the
reversibility of the modification (Walsh et al., 2005). The role of
PTMs is to regulate protein function. This can be done allosterically
or through the creation of binding sites to facilitate protein–protein
interactions (Seet et al., 2006).

4.1 Phosphorylation

The phosphorylation of proteins is the most common PTM
and plays a role in the regulation of almost all cellular processes.

FIGURE 3
Post-translational modification sites of HER family receptors. HER family receptor structures indicating the sites of post-translational modification
(PTM): asparagine (N), cysteine (C), lysine (K), serine (S), tyrosine (Y), and threonine (T). The types of modification are color-coded: phosphorylation
(orange), glycosylation (pink), methylation (red), acetylation (green), and S-nitrosation (blue). * denotes PTMs that can be induced by NO. Created with
BioRender.com.
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Kinases are the enzymes that mediate the addition of a phosphate
group to a protein; they catalyze the transfer of γ-phosphate from
ATP to an amino acid. The most commonly phosphorylated amino
acids are serine, threonine, and tyrosine. On the other hand,
phosphatases remove phosphate groups from proteins, further
allowing for the regulation of cellular functions (Ubersax and
Ferrell Jr, 2007).

The HER family functions as kinases and undergoes trans-
phosphorylation in dimer pairs, as previously discussed. Each
member of the HER family has different C-terminal tyrosine sites
that become trans-auto-phosphorylated. These sites act as docking
sites for SH2 and PTB domains on various enzymes and adapter
proteins involved in downstream signaling. Protein microarrays
have been used to screen all SH2 and PTB domains within the
human genome for interactions with the HER family (Jones
et al., 2006).

EGFR’s activation leads to the autophosphorylation of six
tyrosine residues (Downward et al., 1984b; Hsuan et al., 1989;
Margolis et al., 1989; Walton et al., 1990). EGFR’s phospho-
tyrosines then interact with various downstream signaling
molecules (~7.2 proteins per site) (Jones et al., 2006). Some of
these downstream signaling molecules are Shc (Y1173 and Y1148),
PLCγ (Y1173 and Y992), SHP1 (Y1173), Grb2 (Y1068 and Y1086), and Cbl
(Y1045) (Rotin et al., 1992; Batzer et al., 1994; Okabayashi et al., 1994;
Okutani et al., 1994; Keilhack et al., 1998; Sakaguchi et al., 1998;
Chattopadhyay et al., 1999; Levkowitz et al., 1999). The EGFR
phosphorylates PLCγ at Y771 and Y1254 (Wahl et al., 1990). This
increases the phospholipase activity required for EGF-associated cell
motility (Xie et al., 1998). Cbl docking facilitates the ubiquitination
and subsequent degradation of the EGFR (Waterman et al., 2002).
Shc and Grb2 interactions allow for the activation of MAPK/ERK
signaling (Rojas et al., 1996; Sakaguchi et al., 1998). NO signaling via
the EGFR has been well-documented in breast cancer, with high
levels of iNOS expression correlated with EGFR Y1173

phosphorylation in ER-negative patient samples. NO has also
been shown to rapidly induce EGFR Y1045, Y1068, and Y1173

phosphorylation in triple-negative breast cancer cells (Glynn
et al., 2010; Garrido et al., 2017). EGFR phosphorylation at Y1173

by NO has also been documented in lung cancer (Lee et al., 2008). In
contrast, NO has also been shown to inhibit the phosphorylation of
the EGFR by the EGF, causing a downstream reduction in ERK
phosphorylation in gastric cancer cells through the activation of type
II cGMP-dependent protein kinase (PKG II), demonstrating both
pro- and anti-stimulatory effects on the EGFR (YAO et al., 2015).

HER2 activation leads to the autophosphorylation of five
tyrosine residues (Hazan et al., 1990; Segatto et al., 1990). These
phospho-tyrosines then interact with various downstream signaling
molecules (~17 proteins per site) (Jones et al., 2006). Similarly to the
EGFR, HER2’s phospho-tyrosines interact with Shc’s PTB domain
(Y1196 and Y1248), Shc’s SH2 domain (Y1248 and Y1221/2), and Grb2
(Y1139) (Ricci et al., 1995). HER2 also interacts with Chk (Y1248)
(Zrihan-Licht et al., 1998). The HER2-pY1112 site was found to
specifically regulate HER2 ubiquitination, the HER2-pY1196 site is
involved in the regulation of cell motility, and the HER2 pY1248 site
regulates both migration and proliferation (Li et al., 2016).

HER3 activation leads to the autophosphorylation of nine
tyrosine residues These phospho-tyrosines then interact with
various downstream signaling molecules (~8.8 proteins per site)

(Jones et al., 2006). These phospho-tyrosines then interact with
various downstream signaling molecules, such as Shc (Y1309), PI3K’s
p85 subunit (Y1035, Y1178, Y1203, Y1241, Y1257, and Y1270), and Grb7
(Y1180) (Prigent and Gullick, 1994; Fiddes et al., 1998). HER3 differs
from EGFR and HER2 in the absence of a Grb2- and PLCγ-binding
site and the presence of PI3K-binding sites (Prigent and Gullick,
1994; Songyang et al., 1995).

HER4 activation leads to autophosphorylation of three tyrosine
residues. These phospho-tyrosines then interact with various
downstream signaling molecules (~2.3 proteins per site) (Jones
et al., 2006). These phospho-tyrosines then interact with various
downstream signaling molecules, such as Shc (Y1242 and Y1188) and
PI3K’s p85 subunit (Y1056) (Cohen et al., 1996; Elenius et al., 1999).

Little is known about the impact of NO on the activation status
of HER2, HER3, or HER4. Given NO’s ability to regulate the EGFR
and other tyrosine kinase inhibitors, there is potential for NO to
also regulate the other members of this receptor family in a similar
fashion. Indeed, disruption in the equilibrium of tyrosine
phosphorylation has been linked to many disease states,
including cancer (Hunter, 2009). Aberrant phosphorylation of
the HER family occurs in various cancers, including breast,
lung, and brain cancers (Slamon et al., 1987; Moscatello
et al., 1995).

Phosphatases form the other piece of the puzzle that regulates
the equilibrium of phosphorylation. They act by removing the
phosphate groups added by kinases. Therefore, they act as
antagonists to kinase receptor signaling and play a tumor-
suppressive role (Li et al., 1997; Li and Sun, 1997). Two PEST-
containing phosphatases, PTPN12 and BDP1 (PTPN18), have been
identified as potent negative regulators of HER2 signaling.
BDP1 dephosphorylates HER2 at pY1112, pY1196, and pY1248. On
the contrary, PTPN12 acts on EGFR pY1148 and HER2 pY1112, pY1196,
pY1221/1222, and pY1248 (Li et al., 2016). PTPN12 acts as a potent
suppressor of proliferation, transformation, and metastasis through
the inhibition of EGFR/HER2 signaling in mammary epithelial cells
(Sun et al., 2011). NO has been shown to increase PTPN12 activity
via cGMP signaling; therefore, this is a possible mechanism for NO
to downregulate EGFR/HER2 signaling. This also demonstrates a
precedent for NO to regulate phosphatases (Lin et al., 2003).

The HER family is also phosphorylated at serine and threonine
residues. TNFα has been shown to induce the phosphorylation of
EGFR S1046/7 and T669 through the activation of the ERK and
p38 MAPK pathways (Noguchi et al., 2013). The
phosphorylation of S1046/7 is linked to the internalization of the
EGFR, whereas phosphorylation at T669 has been shown to suppress
the constitutive tyrosine phosphorylation in EGFR homo- and
heterodimers (Sato et al., 2013).

4.2 S-nitrosation

S-nitrosation is the reversible addition of NO to cysteine via
sulfur, forming an S-NO bond known as S-nitrosothiol (Gaston
et al., 2003). S-nitrosation occurs spontaneously upon the generation
of NO by the NO synthase enzymes (NOS). Once a protein becomes
s-nitrosated, it can trans-nitrosate other proteins it interacts with,
thus amplifying the signal (Mitchell and Marletta, 2005; Kornberg
et al., 2010; Nakamura and Lipton, 2013). S-nitrosation can also be
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regulated by nitrosylase and denitrosylase enzymes (Kornberg et al.,
2010; Anand et al., 2014). NO is known to interact with over
3,000 proteins, predominantly via s-nitrosation (Mnatsakanyan
et al., 2019). S-nitrosation of cysteines can alter protein activity
and, therefore, cellular signaling (Park, 1988). Alterations in protein
s-nitrosation have been associated with various disease states,
including cancer (Foster et al., 2009).

S-nitrosation of the EGFR at C498 has been shown to activate the
receptor. Downstream of EGFR s-nitrosation, oncogenic signaling
pathways, including c-Myc, Akt, STAT3, and β-catenin, are
activated in breast cancer. The NO concentration threshold for
EGFR activation is between 200 and 300 nM; therefore, an
autoxidation product of NO such as N2O3 is considered to be
responsible (Switzer et al., 2012). Given that NO can s-nitrosate
the EGFR and impact its signaling, it is important that future studies
also examine whether NO plays a similar role on the other HER
family members.

4.3 Other PTMs

The HER family undergoes various other post-translational
modifications, such as glycosylation, acetylation, methylation, and
ubiquitination. However, any role of NO in the formation of these
modifications has yet to be determined.

The extracellular domain of the HER family receptors undergoes
extensive post-translational glycosylation, which regulates their
ability to bind ligands, form dimers, and activate downstream
signaling. Glycosylation has also been shown to modulate the
response to anti-HER2 therapeutics. α2,6-Sialylation of HER has
been associated with increased resistance to trastuzumab and
increased Akt and ERK phosphorylation despite reduced
HER2 phosphorylation (Liu et al., 2018). However, no direct link
between NO and HER family glycosylation has been reported. NO
has been found to increase N-glycan, α2,6-sialylation, and
O-GlcNAcylation levels in neuroblastoma (Van de Wouwer
et al., 2011). In plants, a link was also found between
s-nitrosation and N-glycosylation through the co-substrate
thioglucoside glucohydrolase-2 (Du et al., 2019).

Acetylation of the EGFR has been shown to affect tyrosine
phosphorylation. K-deacetylase inhibition induces EGFR
phosphorylation (Zhou et al., 2006; Song et al., 2011). Receptor
turnover and endocytosis are also regulated (Gao et al., 2010; Goh
et al., 2010). Although no acetylation sites have been reported on
HER2, HER3, or HER4, their structural similarity to the EGFR
makes acetylation likely. Using MusiteDeep, a deep learning
framework (Wang et al., 2020), we predicted the following
acetylation sites: EGFR—K229, K238, K262, K438, K807, K928, K969,
K981, K984, K997, and K1283; HER2—K753 and K854; HER3—K177,
K383, K602, K705, and K926; HER4—K751, K852, K1223, and K1269. NO
has not yet been shown to induce EGFR acetylation. However, NO
has been associated with the modulation of histone acetylation by
s-nitrosation of histone deacetylases (Colussi et al., 2008).

The methylation of HER2 at K175 by SMYD3 results in
increased receptor phosphorylation and formation of
HER2–HER2 homodimers (Yoshioka et al., 2017). There is
neither any literature report on the direct methylation of
EGFR, HER3, or HER4, nor on the ability of NO to induce

acetylation of the HER family. However, NO plays a role in DNA
and histone methylation (Socco et al., 2017). Although no
methylation sites have been reported on EGFR, HER3, or
HER4, their structural similarity to HER2 makes acetylation
likely. We predicted the following methylation sites:
EGFR—K1047; HER3—R525, K959, R1042, and R1089; and
HER4—K2 and K935 (Wang et al., 2020).

All HER family receptors undergo ubiquitination, a regulator
of their degradation. Ubiquitin-specific protease 2a (USP2a)
inhibits EGFR’s endocytosis and subsequent degradation,
therefore increasing its stability (Liu et al., 2013).
PTPN18 ubiquitinates HER2 at K48, triggering rapid
proteasomal degradation. Conversely, PTPN’s de-phosphorylase
activity at Y1112 inhibits the trafficking of HER2 to the lysosome,
preventing degradation (Wang et al., 2014). HER3’s ubiquitination
is mediated by Nrdp1, an E3 enzyme. This regulates receptor
expression levels. In breast cancer, Nrdp1 expression is lost,
facilitating increased HER3 expression and downstream
signaling (Printsev et al., 2014). HER4 is polyubiquitinated
through an interaction with the WW domains of the
E3 enzyme, AIP4/Itch (Omerovic et al., 2007). NO has not been
reported to affect the ubiquitination of the HER family but has
been found to interact with ubiquitination machinery within the
cell. NO alters ubiquitination through the inhibition of ubiquitin
E1 (Kitagaki et al., 2009) and s-nitrosation of E2 and E3 enzymes
(Qu et al., 2007; Bailey et al., 2018).

5 Targeting the NO-HER family axis
in tumors

As all HER family dimers activate the pro-proliferative Ras-
MAPK pathway, the family is frequently dysregulated in cancer.
Aberrant phosphorylation of the family has been documented in
various cancers, including breast, lung, and brain cancers (Slamon
et al., 1987; Moscatello et al., 1995), making the family a well-
exploited drug target in cancer (Table 2). The use of therapeutics
targeting NO and HER family activity is discussed below, along with
interactions between NO signaling and responses to HER family-
targeted therapeutics.

5.1 NOS inhibitors

A variety of NOS inhibitors, with differing specificities for the
three NOS isoforms, are in use by researchers in the NO field.
Commonly used NOS inhibitors such as L-NMMA and L-NAME
are L-arginine analogs (Figure 4). They bind to NOS’s arginine-
binding site, acting as competitive antagonists of the enzyme.
These inhibitors have been investigated in clinical trials for
various disease states, including cancer (Table 3) (Dao et al.,
2021). One such inhibitor, NG-monomethyl-L-arginine
(L-NMMA), is currently being investigated in the context of
triple-negative breast cancer. L-NMMA is a pan-NOS inhibitor
that was well-tolerated in an international phase III placebo-
controlled trial for cardiogenic shock (TRIUMPH Investigators
et al., 2007). L-NMMA, in combination with taxane chemotherapy
in locally advanced and metastatic triple-negative breast cancer,
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was explored in a phase Ib/II clinical trial (Chung et al., 2021). The
phase 1 dose-finding wing of the trial recommended a dose of
20 mg/kg for L-NMMA and 100 mg/m2 for docetaxel, along with
amlodipine and aspirin, to prevent hypertension and
thromboembolism, respectively, for the phase II portion.
L-NMMA was found to significantly reduce serum nitrates and
nitrites, showing successful inhibition of NOS. The overall
response was 45.8%, with immune remodeling and a decrease
in iNOS expression, following treatment seen in responders. Non-

responders had increased levels of circulating fibroblast growth
factor (FGF-2), VEGF, IL-8, IL-12p40, IL-1a, and IL-6, which may
act as a method of monitoring response. IL-6 can induce
STAT3 signaling, a well-known mechanism behind metastasis
and proliferation in cancer (Hemmann et al., 1996). Currently,
L-NMMA, in combination with nab-paclitaxel and the PI3K
inhibitor alpelisib, is being studied in metastatic metaplastic
breast cancer in a phase I/II trial (Trial ID: NCT05660083)
(The Methodist Hospital Research Institute, 2023).

TABLE 2 EMA-approved HER family-targeted therapeutics.

Drug Class Target Indications Reference

Gefitinib TKI EGFR EMA-approved—NSCLC (advanced/metastatic, EGFR-activating
mutations)

EMA (2023d)

Erlotinib TKI EGFR EMA-approved—NSCLC (advanced/metastatic, EGFR-activating
mutations or prior failed chemotherapy) and pancreatic cancer (metastatic,
in combination with gemcitabine)

EMA (2023h)

Afatinib TKI EGFR EMA-approved—NSCLC (advanced/metastatic, EGFR-activating
mutations or prior failed platinum chemotherapy)

EMA (2023b)

HER3

HER2

HER4

Dacomitinib TKI EGFR EMA-approved—NSCLC (advanced/metastatic, EGFR-activating
mutations)

EMA (2021b)

HER2

HER4

Osimertinib TKI EGFR EMA-approved—NSCLC (advanced/metastatic, EGFR-activating
mutations, EGFR exon 19 deletions, EGFR exon 21 (L858R) substitution
mutations, and EGFR T790M mutations)

EMA (2023g)

Lapatinib TKI EGFR EMA-approved—breast (HER2+, metastatic, in combination with
capecitabine/trastuzumab/aromatase inhibitor)

EMA (2023j)

HER2

Neratinib TKI EGFR EMA-approved—breast (HR+, HER2+, and prior trastuzumab therapy) EMA (2023f)

HER2

HER4

Tucatinib TKI HER2 EMA-approved—breast (HER2+, advanced/metastatic, and >2 prior HER2-
targeted therapeutics)

EMA (2023i)

HER3

Cetuximab mAb EGFR EMA-approved—colorectal (metastatic, EGFR+, Ras wild-type, single agent/
in combination with irinotecan/FOLFOX) and head and neck cancer
(squamous, in combination with radiation/platinum chemotherapy)

EMA (2022a)

Panitumumab mAb EGFR EMA-approved—colorectal (metastatic, RAS wild-type, in combination
with FOLFOX/FOLFIRI)

EMA (2022b)

Trastuzumab mAb HER2 EMA-approved—breast (HER2+) and gastric cancers (HER2+, metastatic,
in combination with capecitabine/5-fluorouracil + cisplatin)

EMA (2023c)

Pertuzumab mAb HER2 EMA-approved—breast (HER2+, in combination with trastuzumab and
chemotherapy)

EMA (2021a)

Ado-trastuzumab emtansine ADC HER2 EMA-approved—breast (HER2+, early invasive/advanced/metastatic, prior
taxane/HER2-targeted therapeutics)

EMA (2023e)

Tubulin

Fam-trastuzumab deruxtecan-Nxki ADC HER2 EMA-approved—breast (HER2+, HER2-low, metastatic, prior
chemotherapy/HER2-targeted therapeutics), NSCLC (HER2-activating
mutation, prior platinum chemotherapy), and gastric cancers (HER2+,
advanced, prior trastuzumab therapy)

EMA (2023a)

Topo-isomerase I
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Alternatively, L-NAME, another pan-NOS inhibitor, has been
shown to inhibit ERK activation in triple-negative breast cancer
in vitro (Sciacca et al., 2019). Both STAT3 and ERK signaling are
modulated by both NO and HER family signaling, as
previously discussed.

5.2 Anti-EGFR therapeutics

The overexpression and mutation of the EGFR have been
associated with cancers. EGFR overexpression occurs in gliomas,
NSCLCs, and pancreatic adenocarcinomas (Rusch et al., 1997;
Wikstrand et al., 1998; Ueda et al., 2004). In gliomas, it is
associated with a higher tumor grade and reduced survival
(Wikstrand et al., 1998). An EGFR mutation resulting in the loss

of its extracellular domain in EGFR type III can cause constitutive
activation and has been associated with lung, ovary, and breast
cancers (Moscatello et al., 1995). The EGFR has become one of the
most popular cancer treatment targets. To date, there are two main
drug types for cancer-targeted therapy based on high EGFR
expression: tyrosine kinase inhibitors (TKIs) and EGFR
monoclonal antibodies. These therapeutic agents have been most
successful in the treatment of lung, head and neck, and
colorectal cancers.

EGFR TKIs targeting activating EGFR mutations in NSCLC
have led to a paradigm shift in the treatment of advanced NSCLC.
First- and second-generation TKIs, including gefitinib, erlotinib,
afatinib, and dacomitinib, have shown superior overall survival (OS)
and progression-free survival (PFS) when compared to platinum-
containing chemotherapy (Rosell et al., 2012; Wu et al., 2017;

FIGURE 4
Structure of L-arginine and NOS inhibitors. Chemical structure of L-arginine and NOS inhibitors L-NAME and L-NMMA, showing the structural
similarity between the molecules (NCBI, 2024b; NCBI, 2024a; NCBI, 2024c).

TABLE 3 NO therapeutics used in clinical trials for cancer.

Drug Class Indications Reference

NO-aspirin (NCX
4016)

NO donor Phase I—colorectal cancer Rigas (2009)

L-NMMA Pan NOS
inhibitor

Phase Ib/II—breast cancer (triple negative, advanced/metastatic, in
combination with docetaxel, amlodipine, pegfilgrastim, and enteric-
coated aspirin)

Chung et al. (2021), Niravath (2023)

RRx-001 Hypoxic NO
donor

Phase I—advanced solid tumors Reid et al. (2015), Reid et al. (2023), Oronsky et al.
(2019), Kim et al. (2020), Lee et al. (2021)

NLRP3 inhibitor Phase I/II—brain (metastases, in combination with radiation)

Nrf2 agonist Phase II—SCLC (in combination with Etoposide) and colorectal cancer
(in combination with irinotecan)

Phase III—SCLC (in combination with a platinum doublet)

Nitroglycerin NO donor Phase I—rectal (in combination with 5-fluorouracil and radiation) Siemens et al. (2009), Dingemans et al. (2015), Illum
et al. (2015)

Phase II—NSCLC (Stage IV, non-squamous, in combination with
carboplatin, paclitaxel, and bevacizumab) and prostate cancer (recurrent)

ASP9853 iNOS inhibitor Phase I—solid tumors (advanced, in combination with docetaxel) Luke et al. (2016)
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Yoshioka et al., 2019; Sequist et al., 2023). Third-generation
osimertinib is an irreversible TKI with significantly prolonged
PFS and OS when compared with earlier generations of TKIs
(Ramalingam et al., 2020).

EGFR monoclonal antibodies, including cetuximab,
panitumumab, nimotuzumab, and necitumumab, exert antitumor
activity by competitively binding to different regions of the EGFR
extracellular region and inhibiting downstream signaling pathways.
In addition, the Fc region of monoclonal antibodies such as
cetuximab, panitumumab, and nimotuzumab can bind to the FcR
on the surface of different immune cells like natural killer cells,
macrophages, and dendritic cells to mediate different innate
immune responses (Mazorra et al., 2017). Cetuximab and
panitumumab are the most commonly used monoclonal
antibodies. When they are combined with chemotherapy,
cetuximab and panitumumab improve the response rate and PFS
in K-Ras wild-type metastatic colorectal cancer (Cunningham et al.,
2004; Karapetis et al., 2008; Douillard et al., 2010). Cetuximab, in
combination with radiotherapy, significantly improved overall
survival in patients with locoregionally advanced squamous cell
carcinoma of the head and neck (Bonner et al., 2010).

Both TKIs and EGFRmonoclonal antibodies could interact with
the NO pathway, providing potential targets and therapeutic
strategies to overcome TKI and monoclonal antibody resistance.
Cetuximab, in combination with chemotherapy, has been found to
downregulate iNOS and NO levels in colorectal cancer (Benkhelifa
et al., 2019). The conjugation of cetuximab with S-nitrosothiol
enhances the tumor accumulation of the co-administered
antibody (Yoshikawa et al., 2020). Gefitinib is found to act
synergistically with NO to induce cell death in metastatic
prostate cancer cells (Mimeault et al., 2005). NO-aspirin
significantly reduced the number and size of lung tumors in vivo,
which was linked to reduced levels of EGFR and Akt
phosphorylation (Song et al., 2018). A novel hederagenin-NO
donor has been found to inhibit proliferation and EGFR kinase
activity, even in gefitinib- and osimertinib-resistant NSCLC (Chen
et al., 2019).

5.3 Anti-HER2 therapeutics

Only HER2 gene amplification with resultant overexpression of the
HER2 protein is needed for cellular transformation.
HER2 overexpression or amplification leads to ligand-independent
dimerization and abnormal downstream signaling. In both mouse
fibroblasts and highly transformed tumorigenic cells (Chazin et al.,
1992) and in human breast cancer cells, HER2 overexpression results in
increased tumorigenicity (Benz et al., 1992). It is found in approximately
25% of breast cancers and is historically associated with aggressive
disease and a poor prognosis (Slamon et al., 1989). The discovery that
HER2 overexpression was associated with an extremely poor outcome
in breast cancer led to the development of the monoclonal antibody
trastuzumab and many other agents later, which revolutionized the
outcome of patients with HER2-positive breast cancer.

Similar to EGFR-targeted therapies, anti-HER2 therapeutics also
include TKIs, such as lapatinib, neratinib, pyrotinib, and tucatinib,
and monoclonal antibodies, like trastuzumab and pertuzumab (Cho
et al., 2003; Franklin et al., 2004; Arcila et al., 2012). Trastuzumab

was the first humanized monoclonal antibody developed that
achieved remarkable success. Another successfully developed
monoclonal antibody is pertuzumab. Although trastuzumab binds
to the extracellular domain IV of HER2, pertuzumab binds to the
extracellular domain II, which prevents HER2 heterodimerization
with EGFR, HER3, and HER4. Combinations of trastuzumab and
pertuzumab provide complementary mechanisms of action and
were proven superior to single-agent trastuzumab in neoadjuvant,
adjuvant, and metastatic settings in breast cancer (Nahta et al., 2004;
Gianni et al., 2012; Swain et al., 2020). The success of targeting
HER2 as a therapeutic strategy was seen in other malignancies that
overexpress HER2. Trastuzumab, in combination with
chemotherapy, improved OS in patients with HER2-positive
gastric or gastro-esophageal junction cancer and endometrial
cancer (Bang et al., 2010; Fader et al., 2020).

TKIs are small molecules that target the intracellular catalytic
kinase domain of HER2, competing with ATP, blocking
phosphorylation and the activation of downstream signaling
cascades. Because of their small molecular size, some TKIs have
shown the ability of penetrating the blood–brain barrier and anti-
tumor efficacy in the CNS. Lapatinib monotherapy and combination
therapy demonstrated some efficacy in patients with HER2-positive
breast cancer and CNS diseases (Geyer et al., 2006; Lin et al., 2009).
Most recently, a newer-generation TKI tucatinib, in combination
with capecitabine and trastuzumab, for the first time, demonstrated
clinically meaningful benefits in patients with HER2-positive active
brain metastases (Murthy et al., 2020).

Recently, the anti-HER2 therapeutics have been expanded to
include antibody–drug conjugates (ADCs) such as ado-trastuzumab
emtansine (T-DM1) and fam-trastuzumab deruxtecan-nxki
(T-DXd). ADCs contain a tumor-targeting antibody covalently
bound to a cytotoxic drug (payload) via a synthetic linker. The
ADC is directed to cancer cells expressing the target on the cell
surface, followed by the internalization of the ADC and release of the
cytotoxic payload, resulting in tumor cell death. T-DM1 was the first
anti-HER2 ADC developed that contains DM1, a maytansine
derivative, as a payload with a drug-to-antibody ratio of 3.5.
T-DM1 prolonged PFS and OS in patients with HER2-positive
breast cancer in the metastatic setting (Verma et al., 2012) and in
the adjuvant setting in patients with residual disease after
neoadjuvant treatment (von Minckwitz et al., 2019). T-DXd is a
newer ADC that has deruxtecan as a payload and a drug-to-payload
ratio of 8. T-DXd demonstrated unprecedented improvement in PFS
when compared head-to-head with T-DM1 in patients with
metastatic HER2-positive breast cancer, leading to its FDA
approval (Cortés et al., 2022).

In addition to HER2 gene amplification, HER2 mutation can
also activate the downstream signaling pathway and drive
tumorigenesis. In contrast to HER2 overexpression,
HER2 mutations are identified in a wider variety of solid organ
malignancies. HER2 mutations can be detected in up to 15%–19% of
prostate neuroendocrine tumor and bladder cancer; 3%–6% of
colorectal, gastric, and esophageal cancers; and less than 3% in
breast and lung cancers (Connell and Doherty, 2017). Despite the
success of monoclonal antibodies and TKIs in HER2 overexpressed
cancer, they have only shown minor benefits in HER2-mutated
malignancies. In contrast, ADCs, especially T-DXd, have shown
encouraging results in HER2-mutated advanced lung cancer and
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gastroesophageal cancer that led to FDA approvals (Shitara et al.,
2020; Li et al., 2022).

Despite the success in the development of anti-HER2
therapeutics, resistance inevitably happens in many patients. In
addition to mutations like ΔHER2 (Siegel et al., 1999), which
results in a higher level of homodimer formation and
phosphorylation, altered s-nitrosation in HER2+ breast cancer
through GSNOR inhibition has also been identified to induce
trastuzumab resistance (Cañas et al., 2016). The interactions
between gefitinib and NO discussed above are also relevant in
the context of HER2 as the response to gefitinib in breast cancer
was found to be independent of EGFR expression but influenced by
HER2 overexpression (Campiglio et al., 2004).

5.4 Anti-HER3 therapeutics

The presence of HER3 has been documented in multiple cancers
(Ciardiello et al., 1991; Rajkumar et al., 1993; 1996; Friess et al., 1995;
Simpson et al., 1995; Bobrow et al., 1997; Leung et al., 1997; Yi et al.,
1997; Slesak et al., 1998; Reschke et al., 2008; Ocana et al., 2013;
Zhang et al., 2015) and linked to both treatment failure and drug
resistance in breast, prostate, ovarian, and NSCLC (Holbro et al.,
2003; Engelman et al., 2007; Mills and Yarden, 2010; Jathal et al.,
2011). The upregulation of HER3 expression or signaling is
associated with resistance to HER2 inhibitors in HER2-
overexpressed breast cancer and to EGFR inhibitors in lung
cancer; HER3 mutations have been reported as an oncogenic
driver in colon and gastric cancers. These findings suggest that
HER3 plays a pivotal role in the upregulation of tumor growth and
drug resistance (Jacob et al., 2018). Despite the role of HER3 in
mediating resistance, the inhibition of HER3 with either anti-HER3
monoclonal antibodies or in combination with anti-EGFR, anti-
HER2, or chemotherapy only provided marginal clinical benefit. An
increased incidence of diarrhea was also observed when anti-HER3
therapies were combined with anti-HER2 therapies (Aurisicchio
et al., 2012; McDonagh et al., 2012; Huang et al., 2013).

The interactions between gefitinib and NO discussed above are
also relevant in the context of HER3 as gefitinib induces the
formation of inactive EGFR/HER2 and EGFR/HER3 dimers,
along with inhibiting the formation of active HER2/HER3 dimers
in HER2-amplified breast cancer (Anido et al., 2003).

5.5 Anti-HER4 therapeutics

HER4 has been linked to various cancers, such as breast, colorectal,
lung, hepatocellular, prostate, bladder, ovarian, endometrial, and
glioblastoma (Edwards et al., 2006; Memon et al., 2006; Ejskjaer
et al., 2007; Sundvall et al., 2008; de Wit et al., 2013; Liu et al., 2017;
Saglam et al., 2017; Zhang et al., 2017; Donoghue et al., 2018). However,
the role of HER4 is less straightforward.

HER4 expression in breast cancer has been linked to improved
outcomes in ER + disease due to its anti-proliferative activity (Tovey
et al., 2004). HER4 expression has also been linked to improved
sensitivity to trastuzumab (Portier et al., 2013). In bladder and
hepatocellular carcinoma, decreased HER4 expression is linked to a
poor prognosis (Memon et al., 2006; Liu et al., 2017). On the other hand,

in lung cancer, specific HER4 polymorphisms are linked to a higher risk
of developing the disease (Zhang et al., 2017). In glioblastoma and
endometrial cancer, HER4 expression is not correlated with survival
(Ejskjaer et al., 2007; Donoghue et al., 2018). Afatinib and allitinib are
kinase inhibitors that act on EGFR, HER2, andHER4 (Solca et al., 2012;
Zhang et al., 2014). Recently, novel imidazothiazole derivatives were
found to act as specific HER4 kinase inhibitors (Zaraei et al., 2021),
which might help delineate the role of HER4 in various solid tumor
malignancies.

6 Conclusion

Since its discovery in the 1960s, the role of the EGFR and its sister
receptors in cancer has become increasingly apparent. Aberrant EGFR
and HER2 signaling is widely accepted to drive disease progression and
result in poorer patient outcomes. Nitric oxide has been proposed as an
alternative activator of the HER family and may play a role in this
aberrant activation as high iNOS expression has been associated with
outcomes in the ER-negative and triple-negative breast cancer setting.
NO is a promising druggable target with widespread involvement in
oncogenic signaling through the induction of EGFR phosphorylation
and s-nitrosation. Due to the structural similarity between the EGFR
and the rest of the receptor family, NO is also likely to induce their
phosphorylation and s-nitrosation. Signaling molecules downstream of
the HER family, Ras and PTEN, also undergo s-nitrosation, resulting in
increased Ras and PI3K signal transduction, further demonstrating the
role of NO in signaling associated with these receptors. Additionally,
NO has been shown to reduce EGFR signaling and act synergistically
with gefitinib, an EGFR tyrosine kinase inhibitor, in prostate and lung
cancers, while altered s-nitrosation in HER2+ breast cancer is linked to
trastuzumab resistance. This demonstrates a role for NO in the
treatment of patients with tumors driven by HER family signaling.
However, further research is needed to fully unravel the role of NO in
the activation of HER family signaling and its impact on treatment
outcomes as research to date has predominantly focused on the EGFR.
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