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Introduction: Several signaling pathways are activated during hypoxia to
promote angiogenesis, leading to endothelial cell patterning, interaction, and
downstream signaling. Understanding the mechanistic signaling differences
between endothelial cells under normoxia and hypoxia and their response to
different stimuli can guide therapies to modulate angiogenesis. We present a
novel mechanistic model of interacting endothelial cells, including the main
pathways involved in angiogenesis.

Methods: We calibrate and fit the model parameters based on well-established
modeling techniques that include structural and practical parameter
identifiability, uncertainty quantification, and global sensitivity.

Results:Our results indicate that themain pathways involved in patterning tip and
stalk endothelial cells under hypoxia differ, and the time under hypoxia interferes
with how different stimuli affect patterning. Additionally, our simulations indicate
that Notch signaling might regulate vascular permeability and establish different
Nitric Oxide release patterns for tip/stalk cells. Following simulations with various
stimuli, our model suggests that factors such as time under hypoxia and oxygen
availability must be considered for EC pattern control.

Discussion: This project provides insights into the signaling and patterning of
endothelial cells under various oxygen levels and stimulation by VEGFA and is our
first integrative approach toward achieving EC control as a method for improving
angiogenesis. Overall, our model provides a computational framework that can
be built on to test angiogenesis-related therapies by modulation of different
pathways, such as the Notch pathway.
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1 Introduction

The formation of new blood vessels from the existing vasculature, called angiogenesis, is
regulated by different cells and processes (Carmeliet, 2005; Eelen et al., 2020; Zhang et al.,
2022). It is generally classified as sprouting angiogenesis (sprouting of endothelial cells from
a mother vessel based on environmental cues) or intussusceptive angiogenesis (vessel
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splitting internally into two daughter vessels), with the former being
better characterized and studied than the latter, and both essential
for regeneration of microvasculature (Arpino et al., 2021).
Dysregulation in angiogenesis has been associated with the
development and complication of different diseases, such as
cancer, diabetic retinopathy, age-related macular degeneration,
and cardiovascular diseases, including peripheral arterial disease
(PAD) (Zhang et al., 2022). Many studies focus on modulating and
controlling angiogenesis as a therapeutic approach for treating
ischemic diseases and cancer (Teleanu et al., 2019; Annex and
Cooke, 2021; Zhang et al., 2023). PAD, for instance, is an
atherosclerotic disease characterized by lower limb ischemia; the
greater the extent of the endogenous angiogenic response, the lesser
the patients’ symptoms. Often accompanied by severe microvascular
disease, PAD affects more than 200 million people worldwide and is
associated with 53%–90% of all major amputations of the lower limb
(Londero et al., 2019; Aday and Matsushita, 2021). Currently, there
is no cure for this disease, and medical therapies have limited
efficacy in treating it. Therapeutic angiogenesis remains an
approach that aims to alter the course of the disease (Annex and
Cooke, 2021; Han et al., 2022). Among the main signaling pathways
that regulate angiogenesis are the Notch signaling and the oxygen-
sensing hypoxia-inducible factor (HIF) pathways. Under hypoxia,
VEGFA (and possibly other angiogenic factors) is released in the
hypoxic tissue, guiding endothelial cells (ECs) to the ischemic site to
restore blood flow and oxygen availability. Once attracted, ECs
compete for the tip position, a dynamic process guided by the
Notch signaling pathway and affected by hypoxia (Figure 1) (Naito
et al., 2020; Naiche et al., 2022). Additionally, EC survival under
hypoxia is stimulated through autocrine VEGFA signaling, although
it does not significantly affect angiogenesis (Lee et al., 2007).

The Notch signaling pathway is a major regulator of cell fate, cell
differentiation, vascular patterning, and intercellular
communication in processes such as angiogenesis and tumor
growth. The Notch pathway is highly conserved across
vertebrates, and it affects different cells, such as macrophages
(Lin et al., 2018), endothelial cells (ECs), smooth muscle cells
(SMCs) (Fouillade et al., 2012), and pericytes (Tefft et al., 2022).
In EC differentiation, the Notch ligands Delta-like ligand 4 (Dll4)
and Jagged 1 render different effects when interacting with Notch

receptors. While Dll4 is a negative regulator of tip cell formation,
Jagged 1 positively regulates tip cell formation and sprouting
(Benedito et al., 2009; Pedrosa et al., 2015). Dll4 and Jagged also
have a role in the spatial control of sprouting (Tiemeijer et al., 2022).
This competition between Notch ligands to bind to the Notch
receptor is required to promote functional revascularization and
tissue reperfusion.

Different cells in ischemic tissues release pro-angiogenic factors
such as vascular endothelial growth factor (VEGFA) (Couffinhal
et al., 1998; Rissanen et al., 2002). VEGF induces endothelial cell
migration and sprouting in a chemotaxis-dependent fashion (Lee
et al., 2022). This pro-angiogenesis mechanism depends on
environmental cues such as low oxygen levels, driven by the HIF
signaling pathway. Once low oxygen levels are sensed in the tissue,
three types of hypoxia-inducible factors (HIF-1, HIF-2, and HIF-3),
are activated, each composed of two subunits (α and β). The α-
subunits are regulated by changes in oxygen concentration based on
proteolytic degradation and transcriptional regulation. Under
ischemia, HIF1-α upregulation relates to tissue inflammation, and
it has been an important therapeutic target and molecule of interest
in angiogenesis models (Qutub and Popel, 2006; Qutub and Popel,
2007; Qutub and Popel, 2008; Cavadas et al., 2013; Nguyen et al.,
2013; Fábián et al., 2016).

The HIF and the Notch pathways are essential in the response to
ischemia, and understanding the mechanistic interactions between
them and other pathways that drive EC differentiation, proliferation,
and stability can help develop new therapeutic strategies for diseases
such as PAD. Even for converging pathways, differences in temporal
regulation affect their signaling outcomes (Jin et al., 2014).
Computational models have been developed and provided
important insights into understanding signaling pathways and
cell-cell interactions (Subramanian et al., 2022). For instance,
Zhao et al. designed an ordinary differential equation (ODE)-
based computational model to understand hypoxia-responsive
miRNAs control of the HIF-VEGF pathway in EC (Zhao and
Popel, 2015). Also, Venkatraman et al. formulated an ODE-based
mathematical model to better understand how local and
intracellular conditions influence EC patterning (tip or stalk EC)
(Venkatraman et al., 2016). Their model showed a partial and stable
tip/stalk stage with duration determined by intracellular signaling.

FIGURE 1
Hypoxia-induced cell patterning during angiogenesis (illustrated here for the specific example of ischemic skeletal muscle). Endothelial cells
approach the hypoxic region, attracted by higher concentrations of VEGFA. The cells interact through Notch1-Dll4, competing for the tip position.
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Recently, Kuhn and Checa proposed an elegant model of the
contributions of VEGF receptors to lateral inhibition during
sprouting angiogenesis, integrating agent-based and ODE-based
modeling (Kühn and Checa, 2019). Despite advances in
experimental biology methods, observing signaling interactions
between two microvascular endothelial cells under specific
conditions can be challenging. Thus, in silico models can provide
insights to help understand the mechanisms of EC patterning,
signaling, and behavior under pathological conditions.

To date, most computational models of endothelial cell
patterning during angiogenesis are based on Cellular Pots or
agent-based modeling strategies (Kühn and Checa, 2019).
Previous agent-based models on Notch signaling report how
VEGF concentration relates to the elongation, migration, and
proliferation of ECs (Qutub and Popel, 2009). Recently, Koon
and others presented a computational model of EC patterning
focusing on Notch signaling heterogeneity to explain a greater
variety of cell patterning; they report hybrid endothelial cells
with tip and stalk characteristics (Koon et al., 2018). A more
comprehensive Boolean model, including different signaling
pathways in EC during angiogenesis, was presented by Weinstein
et al., incorporating the molecular regulatory network, extracellular
microenvironments, and loss- and gain-of-function mutations
(Weinstein et al., 2017). Mechanistic models of signaling
networks in EC have also been developed. Bazzazi et al. designed
a rule-based computational model implemented in BioNetGen to
assess the effects of thrombospondin-1 (TSP1)-CD47 signaling
through VEGF on ERK1/2 and calcium (Bazzazi et al., 2017).
Using rule-based modeling, the group also investigated
TSP1 inhibition of VEGF signaling to Akt-endothelial nitric
oxide synthase (eNOS) (Bazzazi et al., 2018). A hybrid multi-
scale model of endothelial cells during angiogenesis has also been
presented by Stepanova et al., including features such as branching,
cell mixing, and the brush border effect; their work indicated a
dependence on the time evolution of cell mixing and the newly
formed branching structure (Stepanova et al., 2021). Mechanistic
computational models of intracellular and intercellular events
should include the major and most relevant pathways known to
the field studied (Zhang et al., 2022). Additionally, the methodology
used for model building should be consistent and follow guidelines
to achieve good modeling practices (Mitra and Hlavacek, 2019).

The complex molecular signaling networks that drive
angiogenesis and determine EC fate are largely affected by
hypoxia; note that the effect may be context-dependent and
differ in different tissues such as ischemic skeletal muscle, tumor,
or ischemic retina. Exogenous stimulation through VEGF and
signaling between interacting ECs determine cell fate and guide
downstream signaling, contributing to functional angiogenesis.
Although the basic mechanisms that regulate EC patterning
during angiogenesis are known, mechanistic details of the
interaction between pathways and their effects and how
abnormal conditions affect them need further studies (Zhou
et al., 2022). In this work, we assess changes in the dynamics of
such networks under hypoxia conditions to understand how VEGF,
Notch, and HIF signaling pathways interact with each other and
regulate downstream pathways, as well as how they affect EC
patterns through time. Here we also present a comprehensive
methodological approach for model development, based on

recent reviews on good modeling practices, and we apply this
methodology to the system of interest. Using a mechanistic
model of two interacting ECs, we evaluate their signal exchange
under varying oxygen conditions, investigate the effects of different
interventions on cell pattern determination, and discuss their
potential application in the context of angiogenesis modulation,
considering the numerous effects of hypoxia on angiogenesis-
involved signaling pathways (Rodriguez et al., 2021).

1.1 Note on nomenclature

In this work, we consider a model of two endothelial cells, with
the goal of representing their interaction during angiogenesis.
Initially, we stimulate one of the cells with a higher amount of
VEGFA than the other to evaluate the different signals guiding their
interaction. The cell that receives a higher initial stimulus is referred
to in this study as the stimulated cell, first cell, or tip cell. The cell
initially receiving less VEGFA is referred to as the unstimulated cell,
second cell, or stalk cell. We refer generally to HIF1α and
HIF2α as HIFs.

2 Methods

We formulate the model network based on biological knowledge
and experimental evidence and obtain the corresponding ordinary
differential equations representing each biochemical reaction. Our
integrative model is based on a modular structure, each module
representing a biological process, such as oxygen sensing, VEGF
signaling, calcium, and NO cycling, and the Notch pathway as
illustrated in Figure 2. The reactions are based on mass action, Hill,
and Michaelis-Menten kinetics. The model is implemented in the
Matlab SimBiology software (MathWorks Inc, 2023b). The sbml and
Matlab files are provided as Supplementary Material, with the initial
conditions and parameter values used (Supplementary Tables
ST1–ST7). A description of model components is also provided.
The model was simulated using MATLAB R2023a and includes the
pathways considered more relevant to our understanding of the
interaction between ECs and the effect of hypoxia. The model is
composed of two cells, interacting through the Notch/Dll4 pathway
(to simulate lateral inhibition) and stimulated by VEGF (similar to
bolus dosages). The exogenous VEGFA bolus represents exogenous
gradients of VEGFA leading to EC patterning (paracrine effect of
VEGFA). Under hypoxia, we also model an increase in exogenous
VEGFA and in intracellular VEGFA production by the EC. Given
evidence from the literature, we assume that VEGFA produced by
EC under hypoxia does not affect EC patterning and angiogenesis
but is present to promote cell survival signal through Akt and Nitric
Oxide pathways (Lee et al., 2007). Therefore, we do not consider the
transport of EC-produced VEGFA between the two interacting cells.

2.1 Model parameterization

We use the modeling methodologies most appropriate for our
model design and development (Chis et al., 2011; Villaverde et al.,
2016; Jacob et al., 2023; Rey Barreiro and Villaverde, 2023). Our
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methodology is summarized in Figure 3. The pathways included in
the model were described in the Introduction; a more detailed
description is included as a Supplementary Material.

After defining the model structure based on previous
mechanistic models proposed by our group and others that
follow current knowledge of the biological signaling pathways

involved in angiogenesis, we proceeded with defining the initial
values for species and parameters included in the model. Given our
model’s high level of detail, we followed initial values presented by
previous models when possible (Zhao and Popel, 2015;
Venkatraman et al., 2016; Bazzazi et al., 2017; Bazzazi and Popel,
2017; Bazzazi et al., 2018; Kühn and Checa, 2019), to limit the

FIGURE 2
Pathways included in the model. (A) VEGF interacting with VEGFR1, VEGFR2, and NRP1. Inhibition of VEGFR2 by Hes1 and upregulation of VEGFR1.
(B) Pathway leading to the downstream phosphorylation of Akt on ser473 and thr308 and activation of mTORC1. (C)Notch signaling pathway influenced
by hypoxia. Green and blue colors represent different cells. DAPT, a γsecretase inhibitor, inhibits NICD cleavage by γsecretase. (D)HIF signaling pathway leads
to the production of VEGFA. Solid green lines indicate normoxia-induced events. Red dashed lines indicate hypoxia-induced events. (E) Calcium
cycling module includes current through the CRAC channels and PM pump, endoplasmic reticulum calcium cycling through SERCA and IP3R, and
indirect stimulus of IP3 by VEGF. Na + -Ca2+ exchanger increases intracellular calcium concentration under hypoxia. (F) MAPK-ERK signaling pathway
interacting with the calcium cycling module. In all diagrams, arrows pointing to other arrows represent a binding event, e.g., VEGF + R1 -> VR1.
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number of parameters to be fit and reduce computational cost from
optimization. These are noted in the Supplementary Table ST2,
under the “Notes” column, for clarity. We work with units of
concentration (μM), so values may have been converted between
models. The units of time-dependent parameters are given in either
seconds or hours. More information on unit conversion is presented
in the Supplementary Material section.

From our initial estimates and model structure, we follow a pre-
defined methodological approach for model development based on
the following steps: I) Define model structure → II) Structural and
practical identifiability analysis→ III) Global optimization (fitting of
parameter values to approximate experimental data) → IV)
Uncertainty Quantification (UQ) and Validation. Next, we detail
the methods used for each step.

2.1.1 Define model structure
Our model structure integrates some of the major pathways

included in sprouting angiogenesis under hypoxia in EC, i.e., VEGF/
VEGFR, Dll4/Notch, HIF, Calcium, and the phosphorylation of
eNOS, ERK and Akt (Zhang et al., 2022). A detailed description of
the modeled pathways is provided in the Supplementary Material.

2.1.2 Structural identifiability analysis (SIA)
SIA investigates the possibility of obtaining a unique value for

each parameter in a model considering a known and theoretically
perfect model structure. It allows us to select which parameters can
be considered for fitting. Several methods are available for
performing this analysis, as recently reviewed (Chis et al., 2011;
Rey Barreiro and Villaverde, 2023). Several methods exist to perform
SIA, and at least two are currently compatible with Matlab interface,
GenSSI and STRIKE-GOLDD. STRIKE-GOLDD 4.0 provides the
option of model automatic reparameterization (Massonis et al.,
2023) and an optimized algorithm for computationally expensive
rational models (Díaz-Seoane et al., 2023). GenSSI 2.0 provides
written reports of structural identifiability analysis as well as a
graphic representation. It integrates identifiability tableaux with
generating series approach to identify the uniqueness of solutions

to an estimation problem (Chis et al., 2011; Ligon et al., 2018). As the
two methods have their advantages, we initially performed SIA with
both. However, we found that GenSSI 2.0 performed better in terms
of time. Therefore, our SIA results are presented graphically,
simulated with GenSSI. The SIA results indicate which
parameters can be used as input in the model fitting
(identifiable) and which have to be obtained from literature
sources or assumed (non-identifiable). Our SIA results are
presented in Supplementary Figure S1. We include global
sensitivity analysis using PRCC to evaluate how the assumed
parameters affect the model outputs (Supplementary Figure S4 in
the Supplementary Material).

2.1.3 Practical identifiability analysis (PIA)
To test if the fitted parameters can be uniquely determined from

the data available, we perform PIA, to obtain confidence intervals for
the parameter values. Practical non-identifiability can be caused by
the absence of influence of the parameter investigated on the model
observables (outcomes) or by the parameters being interdependent.
We implement a method previously described to investigate PIA,
through sensitivity analysis and collinearity of the sensitivities of
parameters (Gábor et al., 2017). Our approach for PIA is to first
perform global sensitivity analysis using Partial Rank Correlation
Coefficient (PRCC), as described previously (Renardy et al., 2021),
investigating which of the structurally identifiable unknown
parameters are most relevant to changes in the observables of
our model. Parameters with no or too little effect are considered
non-identifiable. We set the cut-off values as having a PRCC greater
than 0.2 or/and a p-value less than 0.05. Following this, we perform
collinearity analysis. Our method for collinearity analysis is a
straightforward elimination of parameters with opposite effects
on reactions (e.g., forward and reverse reaction rates; the
phosphorylation and dephosphorylation rates). For the set of
unknown and non-identifiable parameters after PIA, we assume
values based on the literature or previous models. The unknown and
identifiable parameters are fitted based on the strategy explored
in step III.

2.1.4 Global optimization (GO)
To find the unknown parameter values based on experimental

data available, we collected data from the literature showing species
responses to certain stimuli. Specifically, we searched for time course
data showing the effect of 1% O2 (hypoxia, equivalent to
approximately 8 mmHg of O2 partial pressure) on species
included in our model, as well as responses of different pathways
to VEGFA165a stimulation. In our model, we do not consider other
isoforms of VEGFA, or other growth factors, for simplification.
Most data available and used in our GO analysis is from Western
Blot (WB) studies, a semi-quantitative approach. As absolute values
are not measured in WB, we normalize all data to its maximal
concentration prior to fitting. Similarly, we use our simulations’
normalized responses (to the maximal concentration during a
certain time) to fit our model parameters to the time-course
dynamics of gene and protein expression. This is a standard
procedure that has been used in previous models (Bazzazi et al.,
2017; Bazzazi and Popel, 2017; Bazzazi et al., 2018). With the data
collected and normalized, we then implement global fitting on the
unknown identifiable parameters selected from SIA.

FIGURE 3
Methodology diagram. The diagram shows important steps in
model development, such as structural and practical parameter
identifiability, global sensitivity analysis, and uncertainty quantification.
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We use particle swarm optimization, available in SimBiology
Model Analyzer, as used by others to evaluate mechanistic systems
biology models (Song and Finley, 2020; Song et al., 2023). PSO
works by using multiple candidate solutions (particles forming a
parameter set) for the optimization problem. At each iteration, the
algorithm investigates the parameter space, and each candidate
solution registers and keeps track of its personal optimum
solution and of the best solution of the entire population of
solutions, using an objective function such as the weighted sum
of squared residuals. The algorithm aims to minimize this function
to identify the best set of optimal parameter values. We implement
PSO setting the bounds of the estimated parameters as one order of
magnitude above and below the baseline values assumed initially
based on the literature.

On our first trials of working with PSO, the computational cost
and time spent on fitting presented themselves as impractical,
leading us to a different fitting strategy. In this strategy, as the
data collected for model calibration can be separated into two groups
(stimulation by VEGF or stimulation by hypoxia), we use this to
divide the parameters to be fit into two groups as well (according to
the sensitivity analysis of the observables performed previously). We
classify each parameter as involved in one of 2 groups. We then start
by fitting the parameters classified as more relevant to the VEGF-
stimulated group and obtain their optimized values. We assign the
new estimated values to the model and fit the next set of parameters
(for hypoxia-related classification). Then, we test the final fitted
model by comparing the responses to experimental data and
through UQ. This strategy significantly reduced the time required
for fitting and showed good calibration. We apply the Runs test on
calculated residuals to assess the goodness of fit, as described in
previous studies (Motulsky and Ransnas, 1987; Bujang and Sapri,
2018). The Runs test results are included in Table 1. To perform the
Runstest, we use the Matlab function h = runstest (x), where h

represents a test decision for the null hypothesis that the values in x
are in random order. For h = 1, the test rejects the null hypothesis,
and zero otherwise. The test also returns a p-value, which represents
the probability of observing a test statistic as extreme as (or more
than) the value observed under the null hypothesis. In other words, a
low p-value disputes the validity of the null-hypothesis (MathWorks
Inc, 2023a).

2.1.5 Uncertainty quantification (UQ) and validation
UQ allows us to estimate a degree of uncertainty in our model

predictions (Mitra and Hlavacek, 2019). Different methods can be
applied to perform UQ, as recently reviewed and compared (Rey
Barreiro and Villaverde, 2023). In this work, we assess UQ through
the confidence intervals of predictions based on the fitted
parameters. We implement UQ based on a Bootstrapping
approach (with 100 samples, to limit computational cost, 95%
confidence intervals), available in the SimBiology Model Analyzer
toolbox. We present our results in Supplementary Figures S2, S3 of
the Supplementary Material. We define the prediction as valid if the
majority of its points fall within the 95% confidence interval. We
performed several rounds of fitting altering the initial guess (using
values within 2 orders of magnitude above or below the initial
guess). Our model predictions use the best fit we found among those
(Figures 4, 5). For model validation, we use a different dataset than
the one used for model training (fitting) (Bruns et al., 2010; Park
et al., 2010; Chen et al., 2013; Ubezio et al., 2016). We compare the
simulated response to the experimental data points reported, as well
as the confidence intervals reported experimentally (Figure 6).

After performing this methodology for model design,
calibration, and validation, we proceed to our simulations to
investigate cell-cell interaction and the effects of hypoxia and
Notch signaling.

2.2 Endothelial cell pattern index and global
sensitivity analysis

As one of our goals with this model is to investigate the
patterning behavior of two endothelial cells interacting under
hypoxia, we define the Endothelial Cell Pattern Index (ECPI)
as follows:

ECPI � Hes1[ ]p VEGFR1[ ]
Dll4[ ]p VEGFR2[ ]

The index represents the ratio between markers of stalk cells and
tip cells. In general, Tip cells are known to express higher levels of
Dll4 and VEGFR2, while a higher level of Hes1 and
VEGFR1 characterizes stalk cells (del Toro et al., 2010; Xu and
Li, 2022). Therefore, the ECPI is a dimensionless index representing
the ratio of molecular expression seen in Stalk cells relative to what is
seen in Tip cells during sprouting angiogenesis. To evaluate the
effect of different model parameters and species on the index, we
perform a global sensitivity analysis of ECPI, described next.

Global Sensitivity Analysis (GSA): with the finalized model
structure and parametrization, we proceed with the GSA of the
ECPI. We implement PRCC based on the algorithm from Renardy
et al. (2019), evaluating the sensitivity of PRCC in the two simulated
interacting cells at two pre-specified time points (1h and 12 h) under

TABLE 1 Runs test on residuals post-fitting.

Condition Observable h p

Normoxia peNOS 0 1

NO 0 0.4

Ca 0 0.085

VEGFR2 0 1

pVEGFR2 0 0.8

pAkt 0 0.809

pERK 0 1

mDll4 0 0.6

NICD/Notch1 0 0.666

NICD 0 0.8

Hes1 0 0.666

pPLCy 0 1

Hypoxia mVEGFA 0 0.666

HIF1a 0 0.05

HIF2a 0 0.09
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hypoxia (1% O2) and normoxia (21% O2) (Renardy et al., 2019). The
choice of time points is based on the expected higher concentration
of molecules included in the ECPI given VEGF stimulation. In all
cases, the parameter values are varied by 1.5 (lower bound = initial
value/1.5; upper bound = initial value * 1.5).

Additionally, to investigate the influence of VEGFR2 and
VEGFR1 initial concentrations on cell patterning, we performed
local sensitivity analysis of VEGFR2 and VEGFR1 on Hes1 in both
cells. The results are reported in Supplementary Figure S5.

2.3 VEGF gradient between neighboring
endothelial cells

EC patterning depends on VEGFA gradient between cells, with a
higher VEGFA directing the cell to assume a tip position in the sprout,
while the neighbor cell assumes a stalk position due to lateral inhibition
by the Notch pathway (Gerhardt et al., 2003). To perform our
simulations with cell patterning, we calculate the gradient of VEGF
between cells based on their length when fully extended and the length
of filopodia. We consider that there is a decrease in VEGF of 3.5% for
every 10 μm (Ji et al., 2007), and the cells are about 100 μm of length
(Adamson, 1993) and filopodia has about 10 μm of length (Ucla et al.,

2022).We also assume thatmost VEGF is being sensed at the end of the
filopodia and VEGF concentration has an initial value of 0.0012 μM.
Additionally, we assume that VEGF receptors are distributed along the
length of the stalk cell, so we estimate VEGF captured by the stalk cell as
an average based on its length. Figure 7 shows the diagram of our
assumptions. Based on that, we calculate the VEGF sensed by each cell
as 0.0012 μM for the first cell, and 0.0006 μM for the second cell
(average between 0.00075 μM and 0.000487 μM).

3 Results

In this section, we present the results of our model construction,
methodological approaches, and simulations.

3.1 A structured methodology for large
mechanistic model development

Mechanistic computational models describing intracellular and
intercellular cell signaling under different conditions require an
increasing number of reactions, parameters, and state variables to
represent biological conditions more realistically. As the number of

FIGURE 4
Model responses to VEGF stimulation fitted to experimental data. Global optimization with particle swarm optimization is used to fit unknown
identifiable parameters to various data sets as indicated by the scenario box. Fitting was matched to VEGFA initial stimulations employed in the
experimental data. Concentration is normalized to maximum value before fitting responses for (A) Phosphorylated eNOS, (B) Nitric Oxide (NO), (C)
Calcium++ (Ca), (D) Surface VEGFR2, (E) Phosphorylated VEGFR2, (F) Phosphorylated Akt, (G) Phosphorylated ERK1/2, (H) Dll4 mRNA, (I) NICD
relative to Notch1, (J) NICD, (K) Hes1, and (L) phosphorylated PLCy.
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FIGURE 5
Model responses to hypoxia stimulation fitted to experimental data of hypoxia post-optimization using Particle Swarm Optimization of (A) VEGFA
mRNA, (B) eNOS, (C) HIF1a protein, and (D) HIF2a protein. Concentration is normalized to its maximum before fitting.

FIGURE 6
Model validation against independent experimental data for (A) Dll4 mRNA, (B) phosphorylated Akt, (C) phosphorylated eNOS and (D)
phosphorylated ERK1/2, (E) Akt response to hypoxia, (F) HIF1a response to hypoxia. Concentration is normalized to the maximum value to match
experimental data.
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components increases, so does the complexity and computational
cost for fitting and performing simulations. Good modeling
practices are also required to obtain trustable models with
reasonable accuracy. With that in mind, in this work, we present
a structured methodology for the development of a large
mechanistic model of EC signaling during angiogenesis, following
the steps described in the Methods section (Figure 3).

As computational cost and simulation time are two factors that
modelers wish to optimize, we propose that the first step following
the definition of the model structure is identifiability analysis. By
using structural and practical identifiability analysis we can define
the parameters that can theoretically have unique values given the
data used and model structure, while also reducing the number of
parameters to fit. For this step, we tested different methods
suggested in the literature and found the ones that worked best
in terms of compatibility with Matlab and model size. The next step
to limit computational cost that we use is to perform model fitting
with Pattern Search, dividing the observable data set and parameters
by groups (in our case, two groups: normoxia and hypoxia). To find
one final set of parameters to perform the simulations, we perform
fitting to find parameters for one of the groups, and then we set the
values found as base values, prior to fitting to the data of the second
group. By doing so, we significantly reduce the computation time for
fitting (15-fold). Finally, we perform global sensitivity analysis on all
parameters in the model, to find those that are more influential to a
specific observation (i.e., the ECPI of each cell).

3.2 Model structure and parameterization

The integrative model was designed based on established knowledge
regarding the included models and on previous mechanistic
computational models (Zhao and Popel, 2015; Venkatraman et al.,
2016; Bazzazi et al., 2017; Bazzazi and Popel, 2017; Zhao et al., 2017;
Bazzazi et al., 2018; Bazzazi et al., 2018; Wu and Finley, 2020; Jaśkiewicz
et al., 2022; Ferrante et al., 2023) of EC signaling, patterning and hypoxia.
Figure 2 shows the pathways included in the model.

Overall, the model describes the regulation and coordination by
Notch and HIFs of the cell interactions and downstream signaling. The

model comprises two representative cells, initially configured similarly
and later stimulated by different concentrations of VEGF and is divided
into 6 modules: the Notch pathway, the oxygen sensing module, the
VEGF-VEGFR pathway, the Akt-eNOS pathway, the Raf-MEK-ERK,
and the calcium and NO cycling module. The final model comprises
183 species (including Vext), 222 reactions, 184 parameters, and
183 ODEs (including Vext and considering HIF1 β constant in both
cells and Jcrac as a state variable in both cells). Initially, we had
66 unknown parameters. On these, we performed identifiability
analysis (SIA and PIA) to determine which were identifiable and
which required assumptions or estimations from the literature. Our
results from SIA and PIA are included as Supplementary Material
[Supplementary Figure S1 (SIA, equivalent parameter names listed in
Supplementary Table ST2), Supplementary Figure S6–13 (PIA,
sensitivity of observables)]. As previously discussed, on PIA, we also
exclude parameters that are collinear (i.e., parameters with opposite
effects in the same reaction, keeping only one of them). Finally, we
found 20 parameters that could be fitted. The values of the remaining
non-identifiable parameters were either estimated from ranges in the
literature or assumed. These are indicated as such in the Supplementary
Material (Supplementary Table ST2). Since many unknown parameters
were part of the Notch signaling pathway, considered crucial in this
work, we performed PRCC to investigate their effects on the ECPI. The
results are shown in Supplementary Figure S4. As expected, some
parameters in the Notch pathway have a high influence on the ECPI,
and, therefore, influence cell patterning; specifically, the degradation
rates of NICD, Hes1, and Dll4 mRNA, the multiplication factor for the
expression of HES1 (dependent on NICD cleavage) and Dll4 mRNA
(dependent on ERK1/2 phosphorylation), and the translation rate of
Dll4. These are kept fixed for the simulations, and the results presented
here regarding patterning depend strongly on their values.

To determine model identifiable parameters, we fit and validate the
model to experimental data from human endothelial cells (HUVECs)
and, if not available, other EC types, available in the literature (Figures
4–6). All data simulated were normalized to their maximum
concentration for comparison with literature data. We obtained the
initial absolute concentrations in units of µM from previous
mechanistic models of endothelial cells and data from the literature.
Initial VEGF receptor values were estimated as 6000 VEGFR2/cell and

FIGURE 7
VEGF gradient on neighboring ECs. Dimensions not to scale.
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2000 VEGFR1/cell (Imoukhuede and Popel, 2011), considering a cell
area of 1000 µm2, with 1 * 10–12 L volume (Bazzazi et al., 2017).
Neuropilin-1 density per cell has been estimated in the range of
103–106 number per cell (Mac Gabhann and Popel, 2006). Starting
at an initial estimate of 25,000 receptors per cell (Soker et al., 1996), we
hand-tune the initial concentration of [Neuropilin1], for both cells,
obtaining 0.0664 µM as the initial molar concentration, equivalent to
about 40,000 receptors per cell in both cells, a value smaller than
estimated in other works (Imoukhuede and Popel, 2011). Quantifying
an absolute number of surface receptors in specific cell types can be
challenging, despite recent efforts (Chen and Imoukhuede, 2019;
Sarabipour et al., 2024), and should be adapted in models as
needed. We evaluate this aspect by inspecting the sensitivity of
Hes1 in both cells to changes in VEGFR1/2 initial concentration, as
an additional analysis (Supplementary Figure S5). To evaluate the effect
under patterning, we stimulate the cells with different amounts of
VEGFA by activating Vext (for normoxia and hypoxia). Our results
indicate that time and O2 level influence how much the initial amount
of receptors influences Hes1. As expected, VEGFR2 has a higher
influence than VEGFR1 in all simulated scenarios, although we can
still see some influence of VEGFR1 during initial time points (2 h).
Under normoxia and hypoxia, the model indicates a similar effect for
the 2-h simulation, but for the 48-h simulation VEGFR2 of the second
cell exerts a higher influence on Hes1 of the first cell under normoxia
than hypoxia, and VEGFR2 of the first cell poses a stronger effect on
Hes1 of the second cell under hypoxia.

To show cell differentiation based on higher VEGF sensing
under normoxia, all species concentrations are considered initially
the same for the two interacting cells. To simulate cell patterning, we
consider an initial stimulus of 0.0012 µM of [VEGF] for the first cell,
while the second cell is set to a 0.0006 µM stimulus. This different
stimulation allows us to analyze the Notch signaling pathway effects
on EC patterning. As absolute concentrations for Notch1 receptors
on the surface of EC during angiogenesis are not available, we
estimated the initial concentration to be about the same as that of
[VEGFR2] receptors (0.0099 µM). [mRNA Dll4], [mRNA Notch1],
and protein [Dll4] initial values were zero for both cells.

The model is fitted under normoxia (21% O2), with VEGF
stimulation (50 ng/mL/10 ng/mL), and hypoxia (1% O2,
equivalent to approximately 8 mmHg of O2 partial pressure). The
data used for calibration and validation amount for more than
150 data points from 18 different studies presenting time-course
data. Given the amount of stimulation by VEGF given to each cell,
we perform and present the fitting to the species in the first cell,
stimulated with VEGFA 50 ng/mL (time course data for all species
except NO and Ca++) or 10 ng/mL (time course data for NO and
Ca++). We also present the calculated 95% confidence intervals for
the predictions (as described in the Methods section) in
Supplementary Figures S2, S3. We present the Runs test of the
residuals calculated as a representative of the goodness of fit in
Table 1. In all cases the Runs test indicates that the null hypothesis of
randomness is not excluded (h = 0), and the p values closer to
1 indicate that there is less doubt in the validity of the null
hypothesis. Our model closely follows the expected time courses
seen experimentally and reproduces the expected time points at
about 74% and 40% of the time (points within confidence interval
over the total number of points) for the normoxia and hypoxia
predictions, respectively. Although not all points fall within the

prediction confidence interval, the trajectories reproduce well the
expected behaviors. Additionally, using the Gaussian method to
calculate the 95% confidence intervals, we find wider intervals, with
more points being within them (~90% of the time, data not shown).
This difference can be due to sample size and variability of data used.
As our predictions are within reasonable distance from the
experimental points, we employ the fits obtained on our simulations.

3.2.1 VEGF-driven pathway under normoxia
Using global Particle Swarm Optimization, we initially fit the

model under normoxia conditions ([O2] = 209 µM) for stimulation
with 50 ng/mL of VEGFA. Figures 4A–G, 5A–D present the time
dynamics of the fitted species compared to the experimental data.
For model validation, we show our simulations compared to data
reported in two different datasets than those used for model training
(Bruns et al., 2010; Ubezio et al., 2016). The results are presented in
Figures 6A–D. Given few time-course data available for fitting and
validation of the model (especially time-course data for state
variables in the Notch pathway), we consider such initial results
sufficient to evaluate the results considered in this study. As more
data becomes available, the model fitting can be re-assessed
following the methodology proposed in this work.

The time dynamics of Notch-related pathways (compared to
data used for fitting) are shown in Figures 4H–K. Endothelial cells
stimulated by VEGFA present an increase in the activation of the
Notch signaling pathway, increasing NICD and Hes1 expression,
which peak during the first hour of stimulation, and then decay
(Takeshita et al., 2007; Izumi et al., 2012). Additionally, VEGFA
stimulation is known to increase the expression of Dll4 mRNA
through the ERK pathway (Fish et al., 2017).

Other events stimulated by VEGFA include the phosphorylation
of VEGFR2 (panel E), Akt (panel F), and ERK1/2 (panels G)
(Olszewska-Pazdrak et al., 2009; van Lessen et al., 2015; Fearnley
et al., 2016). Given VEGFR2 phosphorylation, the calcium signaling
pathway is activated and influences eNOS phosphorylation (panel
A), Nitric Oxide production (panel B), and Calcium intracellular
upregulation (panel C) (Brouet et al., 2001; van Lessen et al., 2015;
Boeldt et al., 2017). For Ca++, we see a peak followed by a low
persistent signaling, similar to the reported previously for cells
stimulated with higher [VEGF] (>5 ng/mL) (Noren et al., 2016).
The rapid phosphorylation of VEGFR2 causes the decrease of the
free surface receptors, as shown in panel D (Fearnley et al., 2016).

3.2.2 Hypoxia-driven pathway
Under hypoxia ([O2] = 9.9 µM), several events occur in

endothelial cells, as previously discussed. Given our interest in
better understanding EC patterning under hypoxia, we calibrate
the model parameters to data from endothelial cells under hypoxia.
The results are presented in Figure 5. Once again, we compare the
fitted model response to additional datasets (Figures 6E, F). The
species behavior over time under hypoxia fits well the experimental
data reported by others (Park et al., 2010; Chen et al., 2013).

Endothelial cells under hypoxia sense the low oxygen levels
through the HIF1/2α signaling pathway, which will lead to an
increase in the concentration of HIF1α (panel C) and HIF2α
(Panel D) (Dong et al., 2011; Bartoszewska et al., 2015;
Bartoszewski et al., 2019; Jaśkiewicz et al., 2022) followed by
downstream release of VEGFA mRNA (panel A) (Moszyńska
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et al., 2020). Hypoxia also leads to a decrease in free eNOS levels
(panel B). Limited data are available for the time course of proteins
from the Notch signaling pathway under hypoxia. However,
experiments by Patel and others showed an increase in
Dll4 under hypoxia (Patel et al., 2005).

3.2.3 Cell ECPI depends on VEGF stimulation,
oxygen levels, and time under hypoxia

To observe the major pathways and parameters affecting cell
patterning, we perform a global sensitivity analysis of all model
parameters on the ECPI of the first and second cells. Due to a large
number of parameters, we present the PRCC results for each
pathway and condition in Supplementary Material
(Supplementary Tables ST9), and for discussion purposes, we
present the bar chart for results found for parameters in the
Notch pathway in Figures 8, 9. Figure 8 presents these effects for
the normoxia condition with similar cell stimulation (Figure 8A) or
different cell stimulation (Figure 8B). Figure 9 shows the PRCC
results for the hypoxia condition comparing normoxia vs. hypoxia
(left panel) and 1 h vs. 12 h under hypoxia (right panel).

Observing the influence of parameters from the different
pathways, we initially note that regardless of the VEGF
stimulation of the two cell (whether under the same or
different stimulation), the parameters that mostly influence
the ECPI of the second cell remain the same (degradation of
VEGFR2 bound to NRP1—kdegR2NRPnp, phosphorylation
of Raf—kmPKCRaf, formation of PIP2—kgenPIP2,
dephosphorylation of sphingosine—kdpS1P, upregulation of

sphingosine—kcatSK1Sph, phosphorylation of Raf—kcatPKC,
and activation of IP3—KmPIP2PLCy). For the first cell, on
the other hand, the parameter’s influence is more distributed
among parameters. Among parameters in the Notch pathway,
the degradation rate of Hes1 (kdeg_He) is the most influential
for the second cell, and the Michaelis-Menten constant for the
production of Dll4 (kp_Dll) is the most influential for the first
cell. The Hill coefficient for VEGFR2 repression by Hes1 (n_
HesR2) imposes a higher influence on the second cell ECPI but
also affects the first cell. Interestingly, under differential
stimulation of the cells, n_HesR2 has a positive PRCC value,
as opposed to the negative PRCC seen with cells under the same
stimulation (Figure 8A), and a similar effect is seen for
kNotchR1 (the multiplication factor for the upregulation of
VEGFR1 due to Notch pathway stimulation). This
corroborates the notion that patterning of the cells is
dependent on VEGF stimulation, and differential stimulation
affects how the cells respond.

Comparing the sensitivity analysis of the ECPI of the more
stimulated cell (cell 1) under hypoxia (12 h), the most influential
parameters (PRCC >0.05) on the VEGF pathway are
kNRP1VEGFR2off, khesr2, kp_iVR2, kvr1on,krec_iR2, and
kvr1off. In the Notch pathway, we have teta_ERKDll4, kform_
Notch, and kform_Gs. In the NO pathway, kr_paktHsp, and
khif1eNOS. In the HIF pathway, ktranslmHIF1a, kdeg_HIF1a,
and k12_degHIF1a. In the Calcium pathway, we have kon_
DAGPKC, koff_capkc, kf_CaCaM, kcatERK, and Caext. Finally,
in the ERK/Akt pathways, the most influential parameters are kr_

FIGURE 8
Sensitivity analysis of Endothelial Cell Pattern Index (ECPI) of each cell to changes in the parameters (in the Notch pathway) under normoxia
considering (A) the same initial VEGF stimulation for the two cells or (B) different initial stimulation for each cell.
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AktPIP3, koffSK1, kformAkt, kdp_Akt, kcatSK1Sph, and kRasGAP.
Comparing the number of influential parameters in each pathway,
we note the parameters in reactions in the VEGF and ERK/Akt
pathways. Regarding the power of influence (higher PRCC), the
most influential parameters are in the VEGF and ERK/
Akt pathways.

To evaluate the effects of hypoxia on parameter influence, we
compare the PRCC of the most influential parameters under
normoxia (12 h) and hypoxia (12 h) on the more stimulated cell.
For parameters in the VEGF and HIF pathways, we note that
hypoxia increases the influence of these parameters on defining
the PRCC. This effect is also seen for some parameters in other
pathways. However, in several cases, for instance, teta_
ERKDLL4, kdeg_mVEGFA, kNotchR1, delta_ox22, kdpAkt,
koffSK1, and Caext, hypoxia reverses the effect of the
parameters (+ PRCC to—PRCC or vice-versa). Our results
indicate that hypoxia is an effector of EC patterning guidance,
by modulating how parameters influence cell patterning under
differential VEGF stimulation. Following up on this finding, we
also investigated the effect of time under hypoxia, comparing the
influence of parameters on defining the ECPI of cell 1 under 1 h
or 12 h of hypoxia conditions, with differential cell stimulation
(VEGF_c1 = 2*VEGF_c2). The results indicate that, for the most
influential parameters, a longer time under hypoxia conditions
increases the effect of the parameters seen at 1 h of simulation.
However, for some of the most influential parameters (e.g., O2,

k12_degHIF1, Km_IP3R, kp_pAxl, and kf_eNOSHSP), time
under hypoxia reverses the effect of the parameters on
determining the ECPI. In summary, our sensitivity analysis
under hypoxia indicates that oxygen levels and time under
hypoxia influence cell patterning and should be taken into
consideration for pattern control strategies.

3.3 Differential exogenous VEGFA
stimulation is required for cell patterning

To observe cell patterning under different VEGFA stimulation
for normoxia, we simulate the time-courses of VEGFR2 (Figures
10A), pVEGFR2 (Figures 10B), Hes1 (Figures 10C), Dll4 (Figures
10D), and NICD (Figures 10E) under normoxia, with one cell being
more stimulated (VEGFA = 50 ng/mL) than the other (VEGFA =
25 ng/mL).

The two cells present different concentration dynamics over
time of the analyzed species. The more stimulated cell presents
increased levels of surface VEGFR2, phosphorylated VEGFR2, and
Dll4, while the unstimulated cell presents higher NICD and
Hes1 levels, consistent with the expected behavior of tip and
stalk endothelial cells (Venkatraman et al., 2016; Akil et al.,
2021). The effect of Hes1 in inhibiting VEGFR2 is shown by the
fast decay seen as Hes1 increases in the less-stimulated cell.
Additionally, the combined effects of VEGFA and Notch

FIGURE 9
The influence of parameters on the ECPI is altered by oxygen availability (A) and time under hypoxia (B). Results shown for the first cell with
differential cell stimulation (VEGF at cell 1 = 2* VEGF at cell 2), for parameters in the Notch signaling pathway.
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signaling are noted downstream, with a higher amount of NO,
Ca++, pAkt and pERK1/2 in the more stimulated cell than in the less
stimulated cell (Figures 10F–I, respectively).

To compare the effects of hypoxia with the noticed behavior,
we simulate the time-courses for hypoxia without exogenous
VEGFA and with exogenous differential VEGFA (Vext =
0.00012 μM) to that of normoxia with both cells receiving a
similar basal stimulation (VEGFA = 0.000001 μM) (Figure 11).
In this condition, we can see that hypoxia upregulates the
simulated species compared to normoxia, but no patterning
occurs unless exogenous VEGFA is added to promote a
differential stimulation of the cells. This complies with the
assumption used in our model that the autocrine VEGFA does
not lead to patterning, and an exogenous differential stimulation
must be present for patterning to occur. This assumption is based
on previous studies comparing autocrine and paracrine VEGF
signaling in endothelial cells, as discussed in the methodology
(Lee et al., 2007). As an additional analysis, we investigate the
effect of inhibiting the Notch pathway using the γsecretase
inhibitor DAPT (N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-
phenylglycinet-butyl ester)) (Supplementary Figure S14). Our
simulations show that DAPT [20 μM] is able to inhibit VEGF-
induced NICD and Hes1 expression, leading both cells to present
a similar pattern and expression profile, reproducing results seen
in vitro (Takeshita et al., 2007).

3.4 Notch signaling modulates vascular
permeability through VEGF-induced NO
expression

Given the known effect of the increase in vascular permeability
due to VEGFA, we then investigated the mechanistic effect of Notch
signaling on vascular permeability. Although initially controversial,
studies performed in eNOS knockout mice showed that NO derived
from eNOS under VEGF stimulation causes hyperpermeability
(Duran et al., 2010). The leaky vasculature is also one of the
issues noticed in therapeutic angiogenesis treating PAD with
VEGFA (Han et al., 2022). To investigate the effect of Notch
signaling on NO expression under hypoxia, representing the
PAD condition, we simulate the time course of phosphorylated
eNOS and NO in the two cells, at three different concentrations of
Dll4 (0 µM, 2 µM, and 20 µM). Our results are presented in
Figure 12. The simulations indicate that activation of the Notch
pathway through Dll4 in one of the cells (in the simulation, cell 2)
affects NO release by the 2 cells (panel A). In this simulation, both
cells are stimulated with similar amounts of VEGF (50 ng/mL).
When both cells start with similar amounts of Dll4 (blue lines), NO
release is similar. However, as we alter Dll4 in the second cell
(increasing the activation of the Notch pathway), the response
differs. Observing the response to 0.001 µM of Dll4 in the second
cell (green lines), we note that both cells are affected.

FIGURE 10
Cell patterning under normoxia with VEGF stimulation. Each cell (solid or dashed lines) was stimulated with a different amount of VEGFA, leading to a
clear patterning response guided by the Notch pathway. Predicted responses of (A) Surface VEGFR2, (B) Phosphorylated VEGFR2, (C) Hes1, (D) Dll4
protein, (E) NICD, (F) Nitric Oxide (NO), (G) Calcium++ (Ca), (H) Phosphorylated Akt, and (I) Phosphorylated ERK1/2.
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FIGURE 11
Patterning under hypoxia with and without external VEGFA stimulation for (A) Surface VEGFR2, (B) Phosphorylated VEGFR2, (C) Hes1, (D) Dll4
protein, (E) NICD, (F) Nitric Oxide (NO), (G) Calcium++ (Ca), (H) Phosphorylated Akt, and (I) Phosphorylated ERK1/2.

FIGURE 12
Activation of the Notch pathway regulates NO release differentially in neighbor EC. Predicted responses of (A)Nitric Oxide (NO), (B)Calcium++ (Ca),
(C) Phosphorylated Akt, and (D) Phosphorylated ERK1/2. The dashed line represents the response of cell 2, and the solid line represents the response of
cell 1. Different colors represent different initial concentrations of Dll4 in the second cell.
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Our results indicate that NO release by the first cell is smaller
than its release by the second cell. Increasing Dll4 in the second cell
activates Notch signaling in the first cell, leading the first cell to
assume the stalk position. The first cell then has the amount of free
VEGFR2 limited, which leads to less activation by VEGF and
reduced NO release (as a downstream effect of
VEGFR2 activation). It is interesting, however, that we also see
an increase in the release of NO by the second cell (which, in this
case, assumes the tip position, compared to the 0 initial
Dll4 condition (blue lines). We note a similar effect of
intracellular Ca++ dynamics (panel B). Evaluating the effect on
Akt and ERK phosphorylation (panels C and D), we also note an
initial difference (comparing the blue line with purple and green
lines), but with a faster co-incidence of the time-course behavior for
these species (the solid green and purple lines representing the
second cell, which acts as the tip cell, merge with the blue line before
1 h of simulation) compared to Ca++ and NO (where the merging
occurs only after 1 h for NO, and does not merge with the blue line
during the 2 h simulation for the Ca++ simulation). These results
indicate that Notch activation by Dll4 upregulation in one of the
cells affects downstream signals in both cells, including NO release,
which indicates that vascular permeability might be affected by
Notch activation, with tip and stalk cells presenting differential NO
release due to Notch activation.

4 Discussion

Sprouting angiogenesis as a response to hypoxia is a necessary
process tightly regulated by an amalgamate of agents and signaling
pathways (Hashimoto and Shibasaki, 2015; Naito et al., 2020;
Rodriguez et al., 2021; Zhang et al., 2022). Endothelial cell
patterning into the tip or stalk phenotypes guide sprout
formation, promoting blood flow restoration to hypoxic tissues,
such as seen in the context of diseases like PAD (Gustafsson et al.,
2005; Annex and Cooke, 2021; Han et al., 2022). Efforts to
characterize, understand, predict, and control cell behavior under
abnormal conditions are relevant in this field, as they can help
develop new therapeutic strategies and interventions in
angiogenesis.

In this study, we propose a structured, state-of-the-art
methodology to comply with good modeling practices and reduce
the computational cost required for fitting and simulating large
models. We present the step-by-step procedure to perform each of
the main parts of model design, training, and validation, and we
apply this methodology to a new integrative model of the main
pathways in EC during angiogenesis. Through this kinetics-based
model, we represent and simulate the interaction and patterning of
2 ECs stimulated with VEGFA under normoxia and hypoxia
conditions. This model was developed as a first step towards
investigating the differential signaling and response of each of the
two cells, as they are differently stimulated by VEGFA and interact
through Notch signaling under varying oxygen conditions. We
calibrated the model using data from experiments performed in
endothelial cells for both oxygen conditions and defined a ratio for
stalk/tip pattern identification based on known ligands and
receptors overexpressed in each of these phenotypes (del Toro
et al., 2010; Xu and Li, 2022). Considering recent efforts in

designing and characterizing “virtual cells” (Zhao et al., 2021;
Lim et al., 2022; Zhang et al., 2022), this work contributes to the
field by bringing insights into cell-cell interaction, patterning, and
signaling with the potential translation of results to pathological
conditions (specifically, hypoxia-characterized diseases
such as PAD).

As new experimental results become available, revisiting
previous assumptions and models is essential, making
adjustments that bring us closer to in vivo conditions.
Endothelial cell patterning and interaction is a significant field of
study in therapeutic angiogenesis since these cells are important
determinants of angiogenesis and blood flow restoration (Qiu and
Hirschi, 2019; Lim et al., 2022). Considering the many aspects that
influence their heterogeneity (Gifre-Renom et al., 2022), a
computational approach provides the flexibility required to
implement further changes and test hypotheses. Our model
reproduces the characteristic EC patterning behavior under
normoxia given differential VEGF stimulation (Figure 10) and
predicts a distinct behavior under hypoxia (Figure 11). It also
supports the requirement of a paracrine differential VEGF
stimulation for cell patterning. Additionally, it indicates
differential signaling and patterning under hypoxia between the
two cells, which is supported by previous studies showing that
hypoxia regulates and promotes tip/stalk differentiation through
overexpression of Dll4, indirect regulation of VEGFR2 and
NRP1 established by Notch signaling, and upregulation of Hes1
(Carmeliet et al., 2009; Rodriguez et al., 2021).

Tip and stalk endothelial cells interact and respond differently to
signals and targeting them has a therapeutic potential in terms of
tip-stalk cell control and selection (Chen et al., 2019). Through
global sensitivity analysis (Figures 8, 9; Supplementary Table ST9),
our model allowed us to investigate this distinct behavior in a system
of two interacting cells, focusing on which parameters and reactions
are more influential in defining each cell’s pattern. Although we
expected parameters from the Notch pathway to be the most
influential in determining cell patterning, our simulations
indicate that, although they play a part in modulating the ECPI,
parameters in reactions involved in the VEGF, ERK, and Akt
pathways have a higher influence on the ECPI. As these
pathways’ activation leads to Notch signaling activation, their
influence on the ECPI becomes clear in an integrative model
such as the one we present. ECs require differential VEGF
stimulation to assume a pattern (tip or stalk), and similar
stimulation turns cells toward an undifferentiated state.
Previously, others have reported that EC can assume tip, stalk,
and quiescent phalanx states, where the latter refers to more mature
EC, formed once the vessel is perfused (Pasut et al., 2021). Partial
active/inactive states during differentiation have also been reported
through computational models (Venkatraman et al., 2016). These
two states are seen previous to the point where the cell assumes the
tip or stalk position, under stimulation by VEGF. In this work by
Venkatraman et al., EC quiescence is noted for similar VEGF
stimulation (VEGF at cell 1 = VEGF at cell 2 = 0) and led us to
question if the parameters that define cell patterning differ and, if so,
how they differ when cells are differentially or similarly stimulated
or under different oxygen conditions. Through global sensitivity
analysis of the ECPI of both cells subject to similar (Figure 8A) or
different (Figure 8B) VEGF stimulation, we found that for several
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parameters, the differential stimulation that guides patterning leads
to a change in parameter effect (moving from negative PRCC to
positive PRCC or vice-versa), but this effect was parameter-
dependent. This simulation advocates for cell patterning as being
a highly regulated event that depends on the intensity of VEGF
signaling being sensed by each cell. Our model is also able to
reproduce the effects of DAPT inhibition of the Notch-induced
cell patterning post VEGF stimulation (Supplementary Figure S14)
seen experimentally (Takeshita et al., 2007).

In this work, we assume that hypoxia’s effects on driving
angiogenesis are mostly due to the paracrine effect of VEGF
released by other cells on endothelial cells. This is based on
previous evidence, where the autocrine effect of VEGF (generated
by EC under hypoxia) is shown to be mostly for cell survival, with
few contributions to angiogenesis (Lee et al., 2007). However, recent
work indicates otherwise (Jin et al., 2019), with VEGF production by
EC under hypoxia leading to angiogenesis. We hypothesize that this
difference is due to the cell environment tested in each experiment,
as exogenous VEGF stimulation by other cell types might shadow
the angiogenic effects of autocrine VEGF. Additionally, we assume
that the effects of hypoxia on regulating VEGF receptors on cell
surface depend on Notch signaling, which we pose as a question to
be answered in future experiments. Future experiments should also
assess the extent to which Notch signaling participates in defining
vascular permeability through NO regulation and whether this
interaction interferes with vascular permeability and leakiness
profile in pathological conditions such as PAD. Many methods
are available to estimate NO in vivo and in vitro (Goshi et al., 2019),
and previous works have estimated NO release by HUVECs to be
within the ranges of nM to μM (Østergaard et al., 2007; Ugusman
et al., 2014; Janaszak-Jasiecka et al., 2018). Additionally, in vivo
measurements of NO report values of about 1 μM, with the values of
EC50 for soluble guanylate cyclase (sGC) in the vascular smooth
muscle as low as several nM (Chen et al., 2008). Our simulations
predict concentrations in the order of 10−1μM. This difference can
be due to the initial concentration of NO assumed (0 μM), and more
precision of absolute values estimates might require fitting themodel
to absolute values of NO, instead of normalized to their maximum
concentration only. This assessment should also be included in
future works. Despite this difference in the order of magnitude
predicted by our simulations, compared to experimental in vitro
data, our model qualitatively indicates the difference in NO
production by the two cells, which was among our stated goals.

The methodological approach we used in this work allowed us to
develop the model and perform simulations within reasonable
computation time, despite the large size of the model. The
modular implementation during global optimization aided in
speeding up the process of model fitting. Performing SIA and
PIA as a way of achieving good modeling practices and limiting
the number of parameters for fitting is an additional aspect that
helped in this regard. Our method is, therefore, efficient for working
with larger mechanistic computational models. Recently, a new
framework and steps to build large mechanistic models was
proposed, integrating annotated input text files for specific data,
python-based platforms for processing the input files and generating
Antimony files to be converted to SBML standards and Python for
model simulations (Erdem et al., 2022). Another computational
framework for parameterization of large-scale mechanistic models

has been proposed, with significant advancement on computation
time for very large models (>1000 parameters) (Fröhlich et al.,
2018). In this framework, the authors include practical identifiability
analysis not as a step prior to optimization/fitting, but as an
investigation of prediction uncertainty caused by parameter
uncertainties performed post-fitting. Their results pointed to
most of the calibrated parameters being poorly identifiable, but
still allowing them to obtain low-uncertainty predictions. Practical
identifiability requires both a sensitivity analysis (to verify that the
parameters are influential to the observables in question) and a
collinearity analysis (to exclude collinear parameters), and
performing these evaluations before the final optimization of the
values helps limit the number of parameters being fitted (therefore,
the computational cost and time of model optimization) and
improve prediction uncertainty caused by parameter uncertainty.
Although the method we proposed in this work relies on a simple
collinearity analysis (removing parameters with opposing effects
before fitting), this method could be automatized by using platforms
such as VisID (Gábor et al., 2017). An improved approach that could
be tested in future works is to perform the structural identifiability,
followed by our simplified version of the practical identifiability
(based on initial guesses for parameters within reasonable ranges),
then the global optimization, and as an additional analysis to UQ, a
new round of practical identifiability (performed with an automatic
platform such as VisID). This method might reduce the number of
unidentifiable parameters prior to fitting and provide a more
accurate and trustable model.

Despite our efforts to calibrate the model with experimental data
from the same line of endothelial cells, we were not always able to
find the required data, considering the level of detail and
ramifications of our model. Data from different cell lines might
produce inaccurate simulations and results (Chi et al., 2003).
Another limitation of our model is not including Jagged in the
Notch signaling pathway, which should be accounted for in future
studies, along with a more detailed model of the effects of hypoxia on
the calcium signaling pathway (Berna et al., 2002) and of
angiopoietin on the Notch signaling pathway (Machado et al.,
2019). Our model is based on in vitro data for calibration and
assumptions defined. Translating our results to in vivo conditions
requires further experiments and mathematical and physiological
assumptions not included in this work. Additionally, obtaining
experimental data suggested by the present model would further
validate the model. Our model is also limited by the pathways
considered, as other signaling pathways might be affected by
hypoxia and influence cell behavior, such as Ang-Tie, JAK/STAT,
and TLR signaling. Those could be considered for future studies. We
also note that in the model presented we consider that the effects of
HIF1 and HIF2 are summative on inducing VEGFA signaling.
Previous works have shown that these HIF1 and HIF2 undergo a
switch regarding their time dynamics, to ensure a continuous
activation of pathways response to hypoxia and prolong cell
survival (Bartoszewski et al., 2019). However, others have shown
that HIF1 and HIF2 differentially regulate the hypoxia response, in a
context dependent fashion (Branco-Price et al., 2012). In fact,
HIF2 in macrophages has been shown to induce an anti-
angiogenesis response by inducing soluble VEGFR1, which
sequesters free VEGFA from the environment (Eubank et al.,
2011). In ECs, HIFs have also shown opposite effects on
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regulating interleukin 8 (IL-8), a promoter of angiogenesis (Florczyk
et al., 2011). Although in out model such opposite effects are not
included, the base model here provided can be further developed to
represent and simulate additional differential effects of
different HIFs.

Another limitation of themodel is the estimation of parameters that
have not been quantified in the literature or in previous models. Our
simulations are constrained to the estimated values. As additional
experimental data become available, this constraint could be
revisited, and the estimates updated. Additionally, ECs under
hypoxia act differently from ECs under hypoxia serum starvation
(representing PAD conditions), which is a future aspect to be
investigated with our modeling strategy. Previous works discuss the
role of calcium oscillations on endothelial cell patterning (Debir et al.,
2021). In this work, we consider the signaling through calcium in the
endoplasmic reticulum and cytoplasm, with the extracellular calcium
effect accounted for through CRAC channels calcium influx and the
Ca++–Na + exchanger (under hypoxia). In future work, the focus could
be more on the calcium effect on EC patterning, using a more
comprehensive model of the signaling through calcium in EC
under hypoxia.

Our modeling strategy in this work is non-spatial, differing from
several other models in the field (Bentley et al., 2008; Reynolds et al.,
2019), and focusing mostly on time-dynamics of species involved.
Although observing spatial distribution of tip/stalk cells provides
important insights on a tissue-level, for example, regarding cell
distribution, diffusion of molecules and cell migration, obtaining a
more focused view on intra and intercellular dynamics of a pathway as
complex as the Notch pathway is also required to design and optimize
pro-angiogenesis therapies focused on modulating Notch signaling.
Non-spatial, ODE-based models are also more easily calibrated against
experimental data, with clear modeling protocols. Given that non-
spatial and spatial analysis are both integral parts for understanding the
Notch pathway, its downstream effects and upstream regulators, a next
step for this model is to integrate spatial analysis. This integration of
ODE-based and spatial models has been recently shown on a viral
infection and immune response model (Sego et al., 2021).

The Notch signaling has been a therapeutic focus for treatment
of conditions related to angiogenesis. Notch inhibition has been
applied to treating tumors (Akil et al., 2021; Jiang et al., 2022) and
immune and inflammatory disorders (Rizzo and Ferrari, 2015; Allen
and Maillard, 2021). Notch signaling is known to affect different
cells, as previously discussed, and its therapeutic application requires
a detailed understanding of its effects and its effectors. Our model
provides a detailed integrative approach of evaluating Notch
signaling and its effects in the context of angiogenesis, and can
be extended to integrate Notch inhibitors (e.g., DAPT to simulate
therapeutic applications of Notch in different pathological scenarios,
including pro- and anti-angiogenic contexts (Niu et al., 2022; You
et al., 2023), as represented in Supplementary Figure S14. We
present this work as a first step in understanding the
interconnection of pathways between endothelial cells during
hypoxia-induced angiogenesis, as well as differences between tip
and stalk ECs under different stimulatory conditions. We believe it
expands the knowledge brought by previous studies in the field, and
it is our first approach to working with larger, integrative models in
ECs with the goal of building a network that can be used for
therapeutic angiogenesis purposes. Additionally, it can be used to

test hypotheses related to the pathways included (e.g., vascular
permeability control through Notch signaling modulation). In
summary, our model provides a highly integrative, data-driven
platform that can be built on by simply adding pathway
inhibitors or stimulators for testing angiogenesis-related therapies
and to study differences in signaling between tip/stalk EC at varying
oxygen conditions.
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SUPPLEMENTARY FIGURE S1
Identifiability tableau where empty (all white) columns show unidentifiable
parameters generated with GenSSI 2.0. Equivalent parameters’ names are
listed in the Supplementary Table ST2.

SUPPLEMENTARY FIGURE S2
95% Bootstrapping Confidence intervals of predictions under normoxia;
comparison with experimental data. Values are normalized to their
maximum concentration and Time is show in units of hours.

SUPPLEMENTARY FIGURE S3
95% Confidence intervals of predictions under hypoxia obtained by
bootstrapping; comparison with experimental data. Values are normalized
to their maximum concentration and Time is show in units of hours.

SUPPLEMENTARY FIGURE S4
Global sensitivity analysis performed with PRCC of unknown Notch
parameters in ECPI of the more stimulated cell under (A) normoxia and
(B) hypoxia.

SUPPLEMENTARY FIGURE S5
Local sensitivity analysis of Hes1 in each cell to changes in VEGF receptors
initial concentrations under normoxia (A,C) and hypoxia (B,D) at 2 h time
point (A,B) or 48 h time point (C,D).

SUPPLEMENTARY FIGURE S6
Sensitivity of Calcium under normoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S7
Sensitivity of Hes1 under normoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S8
Sensitivity of HIF1a under hypoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S9
Sensitivity of VEGFA mRNA under hypoxia to unknown structurally
identifiable parameters.

SUPPLEMENTARY FIGURE S10
Sensitivity of pAkt under normoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S11
Sensitivity of peNOS under normoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S12
Sensitivity of pERK1/2 under normoxia to unknown structurally identifiable
parameters.

SUPPLEMENTARY FIGURE S13
Sensitivity of ECPI c1 under normoxia with VEGF = 0.0012 μM to unknown
structurally identifiable parameters.

SUPPLEMENTARY FIGURE S14
Patterning inhibition by DAPT. Top panel: dose effect of DAPT on inhibition of
NICD cleavage after 30 min of stimulation with Vext (50 ng/mL). Data is
normalized to maximal NICD cleavage under Vext stimulation. Bottom
panels: Effects of DAPT (20 μM) inhibition of Notch signaling on different
proteins expression over time for cell 1 (solid lines) and cell 2 (dashed lines).
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