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Introduction: Neurovascular coupling (NVC) is an important mechanism for the
regulation of cerebral perfusion during intensive cognitive activity. Thus, it should
be examined in terms of its effects on the regulation dynamics of cerebral
perfusion and its possible alterations during cognitive impairment. The
dynamic dependence of continuous changes in cerebral blood velocity (CBv),
which can be measured noninvasively using transcranial Doppler upon
fluctuations in arterial blood pressure (ABP) and CO2 tension, using end-tidal
CO2 (EtCO2) as a proxy, can be quantified via data-based dynamic modeling to
yield insights into two key regulatory mechanisms: the dynamic cerebral
autoregulation (dCA) and dynamic vasomotor reactivity (DVR), respectively.

Methods: Using the Laguerre Expansion Technique (LET), this study extracted
such models from data in supine resting vs cognitively active conditions (during
attention, fluency, and memory tasks from the Addenbrooke’s Cognitive
Examination III, ACE-III) to elucidate possible changes in dCA and DVR due to
cognitive stimulation of NVC. Healthy volunteers (n = 39) were recruited at the
University of Leicester and continuous measurements of CBv, ABP, and EtCO2

were recorded.

Results: Modeling analysis of the dynamic ABP-to-CBv and CO2-to-CBv
relationships showed significant changes in dCA, but not DVR, under
cognitively active conditions compared to resting state.

Discussion: Interpretation of these changes through Principal Dynamic Mode
(PDM) analysis is discussed in terms of possible associations between stronger
NVC stimulation during cognitive tasks and enhanced sympathetic activation.
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1 Introduction

Under normal conditions, cerebral blood flow and neuronal
activity are closely linked through a process known as neurovascular
coupling (NVC) (Phillips et al., 2016; Iadecola, 2017; Hosford and
Gourine, 2019; Hosford et al., 2022). NVC is mediated through the
neurovascular unit which comprises neurons, endothelial cells,
astrocytes, perivascular smooth muscle, and pericytes. A rise in
blood CO2 tension is also known to cause vasodilation and increased
cerebral blood flow through the physiological regulatory mechanism
of dynamic vasomotor reactivity (DVR) (Ringelstein et al., 1992;
Maeda et al., 1993; Carlson et al., 2008; Ainslie and Duffin, 2009;
Battisti-Charbonney et al., 2011). Together, NVC and DVR adjust
cerebral blood flow to match localized neuronal metabolic demands.
This serves to ensure the delivery of key substrates for neuronal
metabolism (e.g., oxygen, glucose), but also to remove the metabolic
waste products that are neurotoxic if left to accumulate (Phillips
et al., 2016; Hosford and Gourine, 2019). NVC has been shown to be
impaired in a range of conditions, for example, stroke and dementia
(Beishon et al., 2017; Beishon et al., 2018a; Beishon L. et al., 2018;
Salinet et al., 2019; Beishon et al., 2021b; Beishon L. C. et al., 2021).
Thus, NVC dysfunction is a potential therapeutic target and has
become the focus of increasing research interest (Phillips et al.,
2016). Likewise, DVR has been shown to be impaired in diabetes
(Novak et al., 2011), Alzheimer’s disease (Marmarelis et al., 2013),
mild cognitive impairment (Van Dijk et al., 2007; Marmarelis et al.,
2017; Marmarelis et al., 2020), hypertension (Marmarelis et al.,
2019), ischemia (Govindan et al., 2019), and Parkinson’s disease
(Barnes et al., 2022).

In addition to NVC and DVR, there exists another regulatory
mechanism that seeks to buffer the cerebral flow response to abrupt
changes of ABP, known as dynamic cerebral autoregulation (dCA)
(Aaslid, 2006; Carlson et al., 2008; Panerai, 2008; Panerai, 2009; Liu
et al., 2015; Claassen et al., 2016; Claassen et al., 2021; Placek et al.,
2017; Silverman and Petersen, 2023; Panerai et al., 2023). The dCA
mechanism protects the cerebral vasculature from rapid surges of
ABP and prevents hypoperfusion during sudden ABP drops (Aaslid
et al., 1989). We have previously investigated the interaction
between the regulatory processes of NVC and dCA and found
that dCA efficiency is reduced during active NVC in healthy
older adults (Beishon L. C. et al., 2021). The elucidation of the
interrelationships among dCA, DVR, and NVC represents one of
the aims of the present study.

Several central mechanisms also impact the regulation of
cerebral perfusion with effects that are intertwined with those of
NVC, dCA, and DVR. Such central mechanisms include the
chemoreflex and baroreflex (Battisti-Charbonney et al., 2011;
Marmarelis et al., 2020), as well as hypoxia-driven (Govindan
et al., 2019) and metabolic/endocrine mechanisms (Hosford
et al., 2022) that operate at a systemic level. The integrated
effects of all these regulatory mechanisms, which are coordinated
by the autonomic nervous system (Willie et al., 2014), remain a
subject of utmost importance to which the present study aspires to
contribute.

NVC can be measured indirectly using a range of techniques
including magnetic resonance imaging, positron emission
tomography, and single photon emission computed
tomography (Beishon et al., 2021a). Bedside techniques such as

near-infrared spectroscopy (NIRS) and transcranial Doppler
ultrasonography (TCD) are increasingly used to measure NVC
indirectly, given they are non-invasive and portable (Phillips et al.,
2016). TCD uses ultrasound to measure real-time changes in
cerebral blood velocity (CBv) in the anterior, middle, or
posterior cerebral arteries (ACA, MCA, or PCA, respectively)
(Panerai, 2008; Panerai, 2009). In terms of NVC, a range of
paradigms have been used to study beat-to-beat changes in
CBv upon neuronal activation including sensory (visual,
auditory), motor, and cognitive (Stroobant and Vingerhoets,
2000; Beishon et al., 2017; Beishon et al., 2018c; Beishon et al.,
2021a). Different paradigms evoke changes in CBv to varying
extents depending on the stimulation protocol, study design, and
vessel activation (Stroobant and Vingerhoets, 2000).

Previously, we characterized CBv responses induced by
cognitive tasks from the Addenbrooke Cognitive Examination III
(ACE-III) (Beishon et al., 2018c). The ACE-III is a cognitive
assessment tool used to support clinical diagnosis of dementia in
a range of settings. The test comprises 20 cognitive tasks covering
five cognitive domains: attention, memory, verbal fluency, language,
and visuospatial (Hsieh et al., 2013). The present study analyzes data
only from attention, fluency and memory tasks. In our previous
work, we also characterized the CBv response dynamics using
coherent averaging and multivariate time-domain analysis
(Barnes et al., 2022) under the assumptions of linearity and
stationarity, although these assumptions may be questioned in
some cases (Placek et al., 2017; Marmarelis et al., 2014).
Frequency-domain approaches have also been used extensively to
study dCA through Transfer Function analysis (Claassen et al., 2016;
Panerai et al., 2023). Alternative time-domain approaches, such as
kernel-based and Principal Dynamic Mode (PDM) analysis (Mitsis

TABLE 1 Demographics for the subset of the ACE-III cohort (n = 39)
analyzed in this study.

N Percentage (%)

Sex (F/M) 26/13 66.7/33.3

Handedness (R/L) 36/3 92.3/7.7

Smoker 0 0

Ex-Smoker 4 10.3

Non-Smoker 35 89.7

Mean Standard deviation

Age (years) 36.0 14.9

Weight (kg) 70.7 14.9

Height (cm) 169.1 9.4

BMI (kg/m2) 24.6 4.8

Units of alcohol per week 7.2 5.5

ACE-III scorea 97.9 2.1

aTypically, ACE-III scores are compared against a threshold to determine whether a

diagnosis of dementia should be considered. Normal cognition is cut off at 88 and above

while anything below 82 indicates cognitive impairment. Scores ranging between 83 and

87 are considered inconclusive (Beishon et al., 2019; Bruno and Vignaga, 2019). However, it

should be noted that researchers are generally free to shift these ranges depending on the

purpose of the research.
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et al., 2004; Marmarelis et al., 2013; Marmarelis et al., 2014;
Marmarelis et al., 2017; Marmarelis et al., 2019; Marmarelis
et al., 2020; Marmarelis et al., 2022) and other time-domain
methods (Liu et al., 2015; Phillips et al., 2016; Beishon et al.,
2018a; Govindan et al., 2019; Beishon et al., 2021b) may offer
some advantages in the study of dCA and/or DVR. However,
their use in NVC studies has yet to be explored.

In our previous work (Beishon et al., 2018c), all of these
cognitive stimuli resulted in an increase in CBv to varying
extents in healthy individuals in the middle cerebral artery.
However, not all individuals produce a response to stimulation
(Beishon et al., 2020), and the reasons for this are not clear but they
may pertain to the “vasodilatory reserve” (see Discussion). In
patients with mild cognitive impairment and Alzheimer’s disease,
we identified a reduced response to cognitive stimulation, relative to
healthy older adults (Beishon et al., 2021b).

In this study, we aimed to analyze changes in the regulation
mechanisms of CBv that are stimulated via cognitive paradigms of
the attention, fluency, and memory domains from the ACE-III
database, relative to the resting state, using kernel-based and
PDM approaches, and to compare the results derived using these
methods with previously obtained results.

2 Materials and methods

2.1 Data collection

Forty healthy volunteers were recruited at the University of
Leicester, aged over 18 years, free from major disease, and excluding
pregnant or breastfeeding women. Demographics on age, sex,
handedness, smoker status, height, weight, BMI, alcohol
consumption, and ACE-III scores for the subset of the ACE-III
cohort analyzed in this study (n = 39) are shown in Table 1. Subjects
with stable, well controlled medical conditions (e.g., diabetes,
hypertension) were included. Well-controlled comorbidities were
stable on and off medication (<140/90 mmHg for controlled
hypertension or established on treatment; stable glycaemic
control on or off anti-diabetic medication for diabetics). Subjects
also confirmed that their medical conditions were controlled and

stable. Brief descriptions of the cognitive tasks from the ACE-III
protocol that were analyzed in this study are given in Table 2, along
with the mean (SD) of the time to complete each task.

Measurements were made at the Cerebral Haemodynamics in
Ageing and Stroke Medicine (CHiASM) research space at the
Leicester Royal Infirmary. The CHiASM lab is a quiet, temperature-
controlled environment, free from distraction. Continuous
measurements of beat-to-beat CBv (TCD, Viyasis Companion III),
arterial blood pressure (ABP, Finometer, Finapres Medical Systems,
Amsterdam), end-tidal CO2 (EtCO2, nasal capnography via
Capnocheck Plus), and heart rate (HR, 3-lead ECG) were recorded.
Subjects underwent a 5-minute resting, baseline measurement while
seated, followed by 20 tasks from the ACE-III protocol, with one-
minute rest between tasks to allow CBv to return to baseline. In our
previous work, we used a 30 s period of rest between tasks. However, not
all subjects returned to baseline during this timeframe, particularly older
subjects. Therefore, to ensure resting baselinewas reached between tasks
this was extended to 1 min (Beishon et al., 2018c).

For this study, we analyzed the CBv response to 9 tasks in the
attention, fluency, and memory categories (see Table 2). The other
task categories (language and visuospatial/visuomotor) activate
other areas of the brain besides the prefrontal cortex, the area
that we have turned our attention to when measuring cerebral
perfusion, and were therefore excluded for our purposes. It has
been previously noted that different tasks produce different levels of
activation (Beishon et al., 2017; Beishon et al., 2018c), however it has
also been reported that the CBv response is not impacted by
variations in task duration and task complexity (Intharakham
et al., 2022). The selected 9 tasks were recorded contiguously and
the analyzed input-output time-series data compose a single
continuous data-record, which is a requirement of the employed
LET methodology. The beginning of each task was marked using an
event recorder. Signals were recorded at 500 Hz and data were stored
in the PHYSIDAS data acquisition software for offline analysis.

The vast majority of the participants scored correctly on all or
most tasks with a mean score of 98 out of 100 (Table 1). Individual
performance data for each task is not included as this study is re-
analysis of a previously obtained dataset using a different method of
analysis, however no one in the cohort scored below the threshold
(88), which qualifies them all as cognitively normal (Beishon et al.,

TABLE 2 Summary of attention, fluency, andmemory tasks chosen from the ACE-III protocol alongside mean (SD) of time to complete tasks as ameasure of
subjects’ performance.

Task # Domain Details Task duration (s)

1 Attention Orientation to time (day/date/month/year/season) 15.05 (3.27)

2 Attention Orientation to space (floor/hospital/city/county/country) 14.38 (2.02)

3 Attention Repeat and remember 3 words (lemon/key/ball) 14.41 (1.69)

4 Attention Subtract serial sevens from 100 27.24 (11.08)

5 Memory Recall the 3 words learnt earlier (Task #3: lemon/key/ball) 7.62 (4.42)

6 Fluency Naming as many words beginning with “P” in 1 min (verbal) 94.51 (4.17)

7 Fluency Naming as many animals in 1 min (verbal) 74.08 (5.25)

8 Memory Learn and remember a name and address 61.84 (10.16)

9 Memory Names of current and previous United Kingdom prime ministers and US presidents 26.08 (6.02)

Note that the latter calculations include only 38 of the 39 subjects for whom task durations were available.
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2018c). For the purposes of this study, the successful performance of
the task is less important than the presence of cognitive activity.

Data collection methods are described in full in previously
published reports (Beishon et al., 2017; Beishon L. et al., 2018;
Beishon et al., 2018c). This study was conducted with full approval
by the University of Leicester Ethics Committee (Reference: 5355-
vjh12-cardiovascularsciences) in accordance with STROBE
guidelines and the current version (2008) of the Declaration of
Helsinki of 1975. All subjects provided written informed consent.

2.2 Data preprocessing

The preprocessing procedure has been described in previous
publications (Marmarelis et al., 2017; Marmarelis et al., 2020) and
summarized below. The ABP signal was downsampled to 25 Hz after
low-pass filtering with a Hanning window (+/−8 samples) to reduce
high-frequency random fluctuations. Local minima were detected in
order to demarcate the R-R interval of the cardiac cycle that defines
each ABP pulse. The average value of each ABP pulse is the “mean
ABP” that was placed at the midpoint of the respective R-R interval.
To obtain evenly sampled data at 2 Hz, we used cubic spline
interpolation. The resulting evenly sampled ABP time-series data
were clipped at +/−2.5 standard deviations before processing. The
recorded CBv signal was filtered with a Hanning window
(+/−15 samples) to smooth the intrapulse waveform. CBv pulses
were demarcated with R-R intervals and averaged, resulting in
“mean CBv” values for each heart-beat, which were subsequently
resampled at 2 Hz using cubic spline interpolation to yield evenly
sampled CBv time-series data that are contemporaneous with the
ABP data. The CO2 signal was downsampled to 10 Hz after
smoothing with a Hanning window (+/−5 samples), and the
maxima of its first difference were used to mark the beginning of
each successive breath. The maximum CO2 value for each breath
was considered the end-tidal CO2 (EtCO2) and was placed at the
midpoint of the respective breath interval. The final preprocessed
EtCO2 time-series data resulted from even sampling at 2 Hz, using
cubic spline interpolation, and subsequent clipping at
+/−2.5 standard deviations. One subject was dropped due to poor
data quality, resulting in inability to extract the above described
time-series data.

2.3 Kernel-based analysis with the Laguerre
expansion technique (LET)

The preprocessed ABP and EtCO2 signals are used as inputs to
the general linear time-invariant dynamic model composed of the
sum of two convolutional terms (see Appendix), while the
preprocessed CBv signal is used as the output (Figure 1). The
modeling task pertains to the estimation of the two kernels (one
for each input-output pathway) using input-output time-series data.
The Laguerre Expansion Technique (LET) was introduced by the
Marmarelis lab 30 years ago in order to improve the estimation
robustness of such kernels of input-output dynamic models using
noisy and relatively short data records (Marmarelis, 1993). The
application of LET to physiological system modeling has been
presented in many previous publications (e.g., Marmarelis, 2004
and references cited therein), and the basic procedure is summarized
in the Appendix. The key idea is that the kernel functions (also
known as “Impulse Responses”) that define the input-output
convolutional models are expanded on the orthonormal basis of
Discrete Laguerre Functions (DLFs), thus reducing the number of
free parameters in the model that must be estimated. This
compaction of the model representation (in terms of number of
free parameters) yields considerable advantages in terms of
estimation robustness when noisy input-output data are used, as
demonstrated in the aforementioned publications. This method is
also extendable to multivariate and nonlinear systems/models. In
the linear time-invariant case of the present study, there is one kernel
for each input-output pair. Discrete Fourier Transform of each
kernel yields an estimate of the Transfer Function of the respective
input-output pair. Each output is the sum of the convolutions of its
inputs with their respective kernels. LET yields robust estimates of
the subject-specific kernels that quantify the dynamic relationship of
each input with the output and provide a predictive model for any
given set of inputs.

2.4 Principal dynamic mode analysis

The concept of Principal Dynamic Modes (PDMs) was
introduced in order to facilitate the interpretation of the
estimated dynamic models. The PDMs are computed via Singular

FIGURE 1
Block diagram of the employed linear time-invariant model with ABP and EtCO2 inputs (extracted from the raw signals) convolving the respective
kernels to generate themodel-predictedCBv output as the sumof the two convolutions (denoted by theⓍ symbol). The ABP and EtCO2 kernels describe
the linear dynamics of each input-output pathway and are estimated via LET.
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Value Decomposition (SVD) of a rectangular matrix formed by all
baseline kernel estimates of the respective input-output pair of all
control subjects in a cohort. Each PDM is defined (in ranked order)
by the linear combination of the DLFs using the elements of the
respective singular vector as coefficients. This approach allows the
comparison of kernels obtained under different conditions in terms
of their respective PDM expansion coefficients (termed “PDM
gains”), which facilitate kernel comparison using the respective
vector of PDM gains and may lend themselves to physiological
mechanistic interpretation. This way, we can compare the relative
effects of each condition (or disease) upon the physiological
mechanism(s) represented by the respective PDMs in each subject.

When the various kernel estimates from a given cohort are
viewed as linear combinations of a fundamental set (basis) of
orthogonal functions (the PDMs), then the latter represent the
fundamental dynamic components of each kernel for the given
cohort and offer the fastest convergence in explaining
(i.e., predicting) the output in terms of the respective input. That
is to say, the 1st PDM predicts most of the output signal in terms of
the respective input (via convolution) for the given cohort. The next
orthogonal component of the cohort kernels that predicts most of
the remaining output signal is the 2nd PDM, and so on and so forth.
Thus, the kernel expansions in terms of the PDMs are not an
arbitrary mathematical/computational construct but the expansion
of fastest convergence as dictated by the input-output data of a given
cohort (i.e., the dynamic characteristics of each physiological
system). In addition to this “natural decomposition” of the
kernels in terms of the PDMs, we posit that the PDMs may
correspond to specific physiological mechanisms (solely or in
combination) that subserve the respective input-output
relationship–thus potentially offering a unique and powerful way
to interpret the obtained models in terms of causal mechanisms that
are involved in defining each input-output relationship. The
eventual acceptance of this novel, but more complicated,
approach by the peer community will depend on the actual
benefits that may accrue from its application (see Discussion).

2.5 dCA and DVR model-based indices

In order to examine the statistical significance of the average
changes in dCA and DVR between two conditions, we must reduce
the estimated model (i.e., kernels) for each subject to scalar indices
(Marmarelis et al., 2017; Marmarelis et al., 2019; Marmarelis et al.,
2020). This study seeks to achieve this by use of the kernel expansion
coefficients of the PDM basis. However, previous studies have used
the following definitions based on the respective step responses:

• for dCA, the difference between the maximum value of the
ABP-induced step response minus the value at the steady-state
(30 s lag), normalized by the maximum value;

• for DVR, the average value of the CBv model-predicted
response to a step change in CO2 (1 mmHg) over the first 30 s.

The rationale for this definition of the dCA index is that it
represents the extent of CBv dynamic reduction due to the dCA
mechanism following an ABP step increase. However, this does not
account for the observed differences in the time-constants of the

dCA-mediated reduction of the CBv response. To address the latter
concern, previous studies have used the Gain and Phase Functions of
Transfer Function representation of each input-output pair
(Claassen et al., 2016; Panerai et al., 2012) and defined
frequency-domain dCA indices as:

• the ratio of the average Gain Function values over the range
[0.02 Hz, 0.07 Hz] to the average Gain Function over the range
[0.07 Hz, 0.15 Hz];

• the average Phase Function over the range [0.02 Hz, 0.07 Hz].

The rationale for the aforementioned time-domain definition
of the DVR index is that it represents the average CBv change
over the first 30 s due to a step increase of EtCO2 (1 mmHg),
which is deemed driven by the DVR mechanism. The present
study explores the use of PDM gains as dCA and DVR vector
indices that can compare the subject kernels under different
conditions and may offer insight into the physiological
mechanisms affected by different conditions.

3 Results

The mean (SD) of the time-average and variability (root-mean-
square, RMS) values of the demeaned time-series data) for ABP,
EtCO2, CBv, HR, and respiration rate (RR) are reported in Table 3,
along with the p-values for paired t-tests between resting and active
states. All mean differences of the time-averages are significant (p <
0.05), with the mean increase for ABP and HR suggesting greater
sympathetic outflow during intense cognitive activity. All mean
differences of the variability of these physiological signals are
strongly significant (p < 10–6).

Using LET, the obtained average kernel estimates for both
inputs under baseline resting conditions (BL) and during
cognitive tasks (COG) are shown in Figure 2 (left panels),
along with their SD (±σ) bounds. The observed changes in the
average kernel estimates for the two input-output dynamic
relations between BL and COG conditions indicate subtle
changes for the ABP-to-CBv kernel and some amplitude
reduction for the CO2-to-CBv kernel during COG, while the
waveforms remain similar. In order to illustrate the model-
predicted effects on CBv of step changes in the two inputs, we
show in Figure 2 (right panels) the simulated step responses
(i.e., the integrated kernels) for each of the inputs, while the other
input is kept at baseline zero. We observe the anticipated effects
of dCA in the form of rapid reduction of CBv response after an
early peak, relaxing to a low steady-state value (top-right panel)
and of DVR in the form of a monotonic rise of CBv response,
approaching a high steady-state value (bottom-right panel). The
average CBv response to an ABP step change is reduced faster
under BL conditions and reaches a lower steady-state value, while
the response to a CO2 step change reaches a slightly larger steady-
state value under BL conditions (see Discussion).

The changes in the ABP-to-CBv dynamic relation between BL
and COG are more clearly discerned in the average Gain and Phase
Functions (see Figure 3 top panels). The average Gain Function
exhibits a small bulge around 0.07 Hz for BL conditions (not present
in COG), while higher values are seen for frequencies below 0.04 Hz
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for COG. There is a resonant peak in the range 0.20–0.2 Hz (and of
similar magnitude) for both conditions. The average CO2-to-CBv
Gain Function exhibits similar low-pass characteristics for both
conditions, but the magnitude is reduced slightly under COG
conditions (as in the kernels). There is a notable reduction of the
average Phase Function over the range 0.02–0.07 Hz in the COG
condition (see top-right panel of Figure 3) that indicates altered
vascular compliance over these frequencies where much of the ABP
power resides.

Use of the previously defined time-domain indices for dCA and
DVR indices, and the frequency-domain indices for dCA yield the
results reported in Table 4. Only the time-domain dCA and Phase-
Average indices yield significant mean differences (p < 0.05), with
the Phase Average being a stronger differentiator (i.e., having much

smaller p-value). The average DVR index is reduced in the COG
condition, but this reduction does not reach statistical significance.

The obtained PDMs are shown for the ABP-to-CBv and CO2-to-
CBv relations in Figure 4, in the time and frequency domains. We
see that most PDMs exhibit characteristic resonant peaks (see
Discussion). The mean (SD) values of the PDM expansion
coefficients (termed “PDM gains”) are shown in Table 5 for both
conditions, along with their respective singular values and p-values.
Only the gains of the 4th and 5th PDM gains for the ABP input were
found to be significantly different (p < 0.05) for the two conditions
(BL vs. COG), suggesting their possible association with NVC
activation (see Discussion). The difference for the 3rd PDM gain
of the ABP input was borderline significant (p = 0.050), inviting
some thoughts about its mechanism of origin (see Discussion).

TABLE 3 Mean (SD) of time-averages of the ABP, EtCO2, CBv, HR, and RR time-series data, as well as mean (SD) of signal variability quantified by the root-
mean-square (RMS) values of the de-meaned ABP, EtCO2, CBv, and HR time-series data of the cohort under baseline (BL) and cognitively active (COG)
conditions.

ABP (mmHg) EtCO2 (mmHg) CBv (cm/s) HR (bpm) RR (s-1)

BL COG BL COG BL COG BL COG BL COG

Mean (SD) of time-average
value

91.49
(12.70)

96.11
(12.92)

37.28
(2.76)

36.03
(2.26)

52.13
(10.58)

53.49
(10.02)

71.41
(7.80)

77.19
(8.43)

0.26
(0.06)

0.29
(0.05)

p-value 0.0002 <0.0001 0.023 <0.0001 0.0002

Mean (SD) of RMS value 5.07 (1.50) 7.59 (1.97) 1.03 (0.44) 2.35 (0.73) 3.38 (0.94) 4.77 (1.17) 4.32 (1.99) 7.36 (2.61) 0.27
(0.06)

0.32
(0.04)

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Significant p-values from paired t-tests are bolded. ABP, arterial blood pressure; CBv, cerebral blood velocity; EtCO2, end-tidal CO2; HR, heart rate; bpm, beats per minute; RR, respiration rate.

FIGURE 2
The obtained average kernel estimates (A, C) andmodel-predicted step responses (B, D) [in cm/(mmHg*s2)] for the ABP-to-CBv (A, B) and CO2-to-
CBv (C, D) relations under baseline and active conditions with standard deviation bounds (dashed lines). (C) Notable changes are seen only in the size of
the CO2 kernel that is reduced significantly during cognitively active conditions (COG), while retaining the basic waveform.
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4 Discussion

The regulation of cerebral blood flow is achieved through
intricate coordination of multiple homeostatic mechanisms
driven by mechanical signaling (e.g., blood pressure variations)
and/or chemical signaling (e.g., blood gas variations) occurring
systemically throughout the cerebrovascular and autonomic
nexus (Willie et al., 2014). These two types of regulatory
processes correspond to the widely recognized mechanisms of
dCA and DVR. In addition, neurovascular coupling (NVC) is
driven by chemical signals released from perivascular nerves and
astrocytes in order to modulate cerebrovascular tone and adjust
cerebral perfusion to the localized needs of brain activity (Hamel,
2006; Atwell et al., 2010; Phillips et al., 2016). The actions of NVC,
dCA, and DVR are intertwined in seeking homeostatic regulation of
cerebral perfusion and will have to be studied in a dynamic context
in order to achieve a comprehensive understanding of this dynamic
physiological function. The study of the dynamics of this nexus of

regulatory mechanisms is very complex, but also extremely
important in advancing our understanding of the regulation of
cerebral perfusion that impacts multiple critical aspects of brain
function in health and disease. The present study seeks to introduce
an advanced data-based method for the robust quantitative
modeling of some key aspects of the dynamics of cerebral
perfusion (i.e., dCA, DVR, and NVC) in order to address the
complexity of these dynamic mechanisms. Previous studies have
largely examined these mechanisms in isolation, rather than in
interaction with each other, with some notable exceptions that
examined interactions between two of them (Beishon L. C. et al.,
2021; Marmarelis et al., 2017), but not all three.

Some previous quantitative studies of the effects of cognitive
activity on cerebrovascular function and key hemodynamic
variables have utilized time-averages of the physiological
measurements that capture static (not dynamic) relationships
among these variables (e.g., Lefferts et al., 2018; Beishon et al.,
2018a; Beishon L. et al., 2018). The latter studies analyzed changes in

FIGURE 3
Average Gain Functions (A, C) [in cm/(mmHg*s)] and average Phase Functions (B, D) [in radians] for the ABP-to-CBv kernels (A, B) and CO2-to-CBv
kernels (C, D) under resting (BL) and active (COG) conditions with standard deviation bounds (dashed lines). (A) The average ABP Gain Function exhibits
lower values below 0.04 Hz and a small bulge around 0.07 Hz for BL conditions. Both average Gain Functions exhibit a primary resonant peak around
0.2 Hz and have similar magnitude. (C) The average CO2 Gain Functions exhibit similar low-pass characteristics, but slightly reduced under COG
condition. The maximum value of the ABP Phase Function (B) is reduced considerably for the COG condition.

TABLE 4 Mean (SD) of time-domain and frequency-domain indices for dCA and DVR under resting and active conditions.

Variable Resting mean (SD) Active mean (SD) p

dCA (unitless) 0.85 (0.35) 0.67 (0.24) 0.014

DVR (in cm/s) 0.71 (0.62) 0.47 (0.37) 0.08

dCA Gain Ratio (unitless) 1.80 (0.54) 2.08 (0.64) 0.11

dCA Phase Average (in radians) −0.47 (0.59) −0.88 (0.25) <0.0001

Significant p-values are bolded.
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the time-averages of continuously recorded physiological signals
that are generally consistent with our findings reported in
Table 3 – i.e., the reported time-average values are affected
significantly by cognitive activity for all recorded physiological
signals, based on paired t-tests comparing the changes for each
subject under the two conditions (BL vs. COG). Note that, at the
group level (unpaired t-tests), the p-values are larger. The significant
increases of DC values for systemic ABP, HR, and RR are expected
due to increased sympathetic outflow associated with the
performance of cognitive tasks, independently of NVC activation.
The significant EtCO2 decrease is probably associated with the
hyperventilation resulting from the increased RR during cognitive
exertion. Table 3 also shows significant increases of variability (RMS
value of demeaned signals) for all variables in the COG state, which
may be attributed to autonomic and/or NVC activation associated
with the cognitive tasks. It must be emphasized that static analysis
pursued through regression modeling seeks to discover possible

correlations between the endogenous (dependent) and the
exogenous (independent) variables (e.g., Lefferts et al., 2018). The
study of the dynamics of this system was initially performed through
direct observation of the time-course of changes in CBv in response
to cognitive, ABP, and CO2 stimulation, usually in pulsatile form
and occasionally including motor stimulation (Panerai et al., 2000;
Panerai et al., 2005; Panerai et al., 2012; Salinet et al., 2013; Phillips
et al., 2016; Beishon et al., 2017; Beishon et al., 2018a). Dynamic
modeling seeks to reveal and quantify the precise effects of input
changes upon output changes in a continuum of time to allow
prediction; thus, it is more ambitious in terms of the amount of new
knowledge that it seeks to extract (i.e., temporal patterns of dynamic
effects) and, inevitably, requires more sophisticated/complicated
methods of analysis, such as the kernel estimation method via
LET that is used in the present study. A similar approach, using
kernel expansions, was reported in the study of regional NVC
response to changes in arterial CO2 through functional MRI

FIGURE 4
PDMs for the ABP-to-CBv relation (A, B) and CO2-to-CBv relation (C, D) in the time-domain (A, C) and their frequency-domain counterparts,
magnitude only (B, D) [in cm*sec-1/mmHg].

TABLE 5 Mean (SD) of PDM gains for ABP and EtCO2 inputs, as well as corresponding singular values and p-values of comparison of BL vs COG conditions.
Significant p-values are bolded.

ABP EtCO2

Gain # Singular
values

Resting
mean (SD)

Active
mean (SD)

p Singular
values

Resting
mean (SD)

Active
mean (SD)

p

1 3.95 0.59 (0.22) 0.57 (0.22) 0.454 1.87 −0.19 (0.23) −0.12 (0.11) 0.075

2 0.53 0.01 (0.08) 0.04 (0.07) 0.110 1.49 0.06 (0.23) 0.03 (0.09) 0.406

3 0.31 −0.006 (0.05) 0.01 (0.03) 0.050 1.33 0.08 (0.20) 0.06 (0.08) 0.699

4 0.26 0.005 (0.04) 0.04 (0.03) 0.0001 0.88 0.03 (0.14) 0.003 (0.07) 0.362

5 0.17 0.001 (0.03) −0.02 (0.04) 0.016 N/A N/A N/A N/A
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(fMRI) BOLD data (Prokopiou et al., 2019) and showed that
different brain regions exhibit distinct patterns of such dynamics.
A second layer of generated knowledge results from the PDM
analysis presented herein that pertains to dominant dynamic
components within the kernels of a given cohort–naturally
requiring additional sophisticated methods of analysis. The
rationale for these more demanding methods of dynamic analysis
is that they yield new and valuable insights into the physiological
systems of interest, which cannot be reached with static methods.

Previous studies of NVC dynamics include a specialized
software package to investigate the time-course of changes in
BOLD measurements of fMRI during specific visual stimulation
protocols (Phillips et al., 2016). These can elucidate our
understanding of NVC dynamics but more often than not they
fail to provide a generalizable dynamic modeling approach. Other
studies opted to use Auto-Regressive Moving-Average (ARMA)
modeling to examine the dynamics of cerebral perfusion during a
motor task in a multivariate context including the effects of
hypercapnia (Panerai et al., 2012; Maggio et al., 2014; Barnes
et al., 2022). Notable is also the use of Transfer Function analysis
in the study of regional DVR through fMRI BOLD data (Duffin
et al., 2015). The dynamic modeling used in the present study seeks
to reveal the precise convolutional pattern (kernels) by which
changes in either of the two input variables cause changes in the
output variable (see Equation (A1) of Appendix). This objective is
shared by ARMA modeling and Transfer Function analysis, but
these three approaches differ in terms of estimation robustness in
the presence of high noise in the input-output data.

The results of the kernel-based analysis of this study (see
Figure 2), indicate a slight reduction in the size of the average
CO2-to-CBv kernel during COG condition (without noticeable
change in waveform) that can be attributed to competition of the
activated NVC towards the mechanism of CO2 vasoreactivity, as
they both seek vasodilation within the constraints imposed by the
maximum natural extendibility of the vessels (Panerai et al., 2000;
Panerai et al. 2005; Panerai et al. 2012; Maggio et al., 2014; Hosford
et al., 2022). This has been regarded as a reduction in “vasodilatory
reserve” (Willie et al., 2014; Prokopiou et al., 2019). Nonetheless, no
statistical significance was found in this study regarding the
difference of the DVR indices (marginal p = 0.08) or regarding
the PDM gains of the CO2-to-CBv relation (see Table 5, marginal p =
0.07 for 1st PDM) between the BL and COG conditions. This is
consistent with the results reported previously on the dynamic
effects of cognitive/motor tasks and hypercapnia on DVR
(Panerai et al., 2012; Maggio et al., 2014).

The observed changes in the average ABP-to-CBv kernel during
COG conditions are subtle and become visually more apparent in
the respective Gain Functions (Figure 3, left panel), where the main
differences are in frequencies below 0.04 Hz and around 0.07 Hz.
The average step response (top-right panel of Figure 2)
demonstrates the reduction of dCA during COG, as has been
reported previously (Panerai et al., 2012; Maggio et al., 2014;
Barnes et al., 2022). It is worth noting that the 3rd PDM gain of
the ABP-to-CBv relation shows borderline significant change for
COG vs. BL (p = 0.050) and increase in magnitude under COG.
Importantly, this PDM exhibits a resonant peak close to the resonant
frequency of the Mayer wave of vascular tone (around 0.1 Hz) that is
associated with sympathetic outflow (Julien, 2006). Therefore, it is

plausible that this PDM gain represents the quantitative effects of
changed sympathetic activity upon dCA during COG–since
sympathetic activation is expected to increase during the exertion
of intense cognitive tasks.

Significant differences are revealed in the ABP-to-CBv dynamic
relation through PDM analysis, specifically in the 4th and 5th ABP PDM
gains (p < 0.05, see Table 5) – suggesting possible association of NVC
with these twoABPPDMs. These PDMs exhibit a resonant peak around
0.04 Hz, which would be consistent with reported biphasic
Hemodynamic Response Functions (HRFs) in functional MRI
studies of BOLD signals (Boynton et al., 1996; West et al., 2019) that
depend critically on the NVC mechanism. We note, however, that
various other HRFs have also been reported for different brain regions
and under different stimulation conditions. We also note that the
increase in the absolute value of these PDM gains under COG
condition suggest enhanced activation of the respective NVC
mechanisms. The top-left panel of Figure 2 indicates that the 4th and
5th ABP PDMs are similar in waveform but shifted relative to each other
by about 5 s. This can give rise to the hypothesis that they may
correspond to the distinct glutamate-driven NVC pathways from
neurons or astrocytes, respectively, where the neuron-pathway is
preceding in NVC action (Attwell et al., 2010).

In terms of interactions between the dCA, DVR, and NVC
mechanisms, our results indicate that COG-driven NVC activity
reduces the dCA and DVR (see right panels of Figure 2), although
the DVR reduction does not rise to statistical significance. These results
are consistent with what was reported previously for cognitive-motor
tasks (Panerai et al., 2012). The interactions among these three
mechanisms may be viewed in the context of “vasodilatory reserve”
and mechanical vascular constraints (Willie et al., 2014; Prokopiou et al.,
2019). In general, different tasksmay result in different levels of activation,
and this has been reported in detail in previous publications (Beishon
et al., 2017; Beishon et al., 2018a), although another study did not find any
significant effect onCBv due to cognitive task duration or task complexity
(Intharakham et al., 2022). The goal of this study was to apply a different
method to analyze and interpret the neurovascular coupling response
under stimulation from various cognitive tasks that may impact cerebral
circulation at the prefrontal cortex.

The presented dynamic modeling methodology may be used for
assessing the possible effects of neurovascular and/or neurocognitive
pathologies upon changes of cerebral perfusion between cognitively
active and resting state in order to assist with clinical diagnosis and
discovery of treatment targets for the affected physiological mechanisms.
In this regard, the presented PDM analysis holds the promise of
quantifying the effects on relevant physiological mechanisms.

In conclusion, this dynamic modeling study indicates significant
changes in dCA, but not DVR, during cognitively active state
(relative to the resting state) in healthy adults, consistent with
previously reported observations on the effects of cognitive-
motor task on dCA and DVR. The specific dynamics of these
changes, which are mainly due to the increased activation of
NVC, are captured by the novel PDM analysis that decomposes
the transfer relations underlying dCA and DVR into their main
dynamic components in order to identify the physiological
mechanisms relevant to dCA and DVR. The observed significant
changes in specific PDMs suggest their association with NVC
dynamics, consistent with some published HRFs of BOLD data
analysis in functional MRI.
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5 Study limitations

The ε4 allele of the apolipoprotein E gene (APOE4) is recognized as a
significant risk factor for developing Alzheimer’s Disease due to its
association with astrocytic/microglia activation and alterations of
vascular mural cells leading to endothelial disruption and decreased
amyloid clearance (van Dijk et al., 2007; Viticchi et al., 2014; Yamazaki
et al., 2021). Thus, the presence of APOE4 in some subjects is likely to
affect the presented results of our analysis of cerebral perfusion regulation.
Unfortunately, APOE genotyping is not available for this cohort and,
therefore, our analysis could not take this genetic factor into account.

Additionally, the number of subjects with diabetes and/or
hypertension is not known. Knowing that any such conditions
are controlled may indeed be useful for our analyses, since the
effect of these potential confounders may influence our results.

Finally, the use of TCD imposes certain limitations as 10%–20%
of the population (especially older) do not have a proper temporal
window to allow this measurement. TCD is also a localized
measurement (at the middle cerebral arteries) and constrained in
extending the results to cerebral blood flow by the assumption of
unchanged cross sectional area of the artery. Finally, the size of the
cohort was limited and some of the demographics were skewed (e.g.,
younger and more educated subjects than the general population).
No statistical power calculation was carried out. A larger cohort with
more representative demographics in future studies will benefit the
statistical robustness of the obtained results.
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APPENDIX:The Laguerre expansion
technique (LET)

The general formulation of the linear time-invariant dynamic
model for a two-input/one-output system is given by Equation (A1)
that expresses the output y(n) as the sum of two convolutional terms
(corresponding to the two inputs p(n) and z(n) and their respective
kernels) plus a constant k0:

y n( ) � k0 +∑
MP

m�0kp n −m( )p m( ) +∑
Mz

m�0kz n −m( ) z m( ) (A1)

where p(n) denotes the ABP input, z(n) denotes the CO2 input, kp
denotes the ABP-to-CFV kernel and kz denotes the CO2-to-CFV
kernel. The modeling task seeks the estimation of the two kernels
(over all values of their memory extent Mp and Mz) from input-
output data (n = 1, . . . ,N). To this purpose, we use the Laguerre
expansion technique (LET) which has been shown to yield reliable
kernel estimates for linear dynamic models with multiple inputs
even for noisy and relatively short input-output datasets
(Marmarelis, 1993; Marmarelis 1004). According to this
approach, each kernel is expanded on a properly selected
discrete-time Laguerre function (DLF) basis as:

kp m( ) � ∑
Qp

j�1C
p
j L

p
j m( ), kz m( ) � ∑

Qz

j�1C
z
jL

z
j m( ) (A2)

where {Lij(m)} (j = 1, . . . ,Qi) denotes the orthonormal Qi-
dimensional DLF basis for the i-th kernel (i is either p or z in
this study). These kernel expansions transform the input-output
relation of Equation (A1) into Equation (A3) that involves linearly
the unknown Laguerre expansion coefficients {Cp

j } and {Cz
j }, which

must be estimated for each input-output pair:

y n( ) � k0 +∑Qp

j�1C
p
j vj n( ) +∑Qz

j�1C
z
juj n( ) (A3)

where:

vj n( ) � ∑
n

m�0L
p
j n −m( )p m( ), uj n( ) � ∑

n

m�0L
z
j n −m( ) z m( )

(A4)
are the convolutions of each input with the respective DLF basis.
Since the Laguerre expansion coefficients enter linearly in the input-
output model of Equation (A3), their estimation can be achieved via
least-squares regression (a simple and robust numerical procedure).
In this study, LET utilized 5 DLFs for the kernel of the ABP input
with Laguerre parameter alpha = 0.5 and 4 DLFs for the kernel of the
CO2 input with Laguerre parameter alpha = 0.85. The selection of
the number of DLFs and alpha values was based on a search
procedure that minimized the Bayesian Information Criterion of
the average model prediction over the grid of values: L = 1 to 8 and
alpha = 0.1 to 0.9 (every 0.05).
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