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Deep learning is a very important technique in clinical diagnosis and therapy in
the presentworld. Convolutional Neural Network (CNN) is a recent development
in deep learning that is used in computer vision. Our medical investigation
focuses on the identification of brain tumour. To improve the brain tumour
classification performance a Balanced binary Tree CNN (BT-CNN) which is
framed in a binary tree-like structure is proposed. It has a two distinct modules-
the convolution and the depthwise separable convolution group. The usage of
convolution group achieves lower time and higher memory, while the opposite
is true for the depthwise separable convolution group. This balanced binarty
tree inspired CNN balances both the groups to achieve maximum performance
in terms of time and space. The proposed model along with state-of-the-art
models like CNN-KNN and models proposed by Musallam et al., Saikat et al.,
and Amin et al. are experimented on public datasets. Before we feed the data
into model the images are pre-processed using CLAHE, denoising, cropping,
and scaling. The pre-processed dataset is partitioned into training and testing
datasets as per 5 fold cross validation. The proposed model is trained and
compared its perforarmance with state-of-the-art models like CNN-KNN and
models proposed by Musallam et al., Saikat et al., and Amin et al. The proposed
model reported average training accuracy of 99.61% compared to other models.
The proposed model achieved 96.06% test accuracy where as other models
achieved 68.86%, 85.8%, 86.88%, and 90.41% respectively. Further, the proposed
model obtained lowest standard deviation on training and test accuracies across
all folds, making it invariable to dataset.
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1 Introduction

A Brain Tumor (BT) is an accumulation of cell abnormalities
that form in the brain (Brain Tumor, 2021). The brain is protected
by the skull. It will result in significant problems if there is
any expansion in that restricted space. Brain tumours in general,
are categorised in two types—benign and malignant. In case of
benign, the cancerous cells are localised in a region and are less
fatal, while the malignant tumour is fatal and has a possibility of
spreading in other regions as well. The pressure inside the skull
increases if such a kind of tumours grow. This will damage the
brain permanently and perhaps even cause death. In UK itself,
number of people diagnosed with brain tumour annually is 16,000,
where only 12% of the patients survive beyond 5 years after getting
diagnosed with brain tumour (BRAIN TUMOUR RESEARCH,
2024). Thus, cutting-edge techniques and procedures for screening
brain cancer have been continuously developed by scientists and
researchers. Magnetic Resonance Imaging (MRI) is preferred by
clinical specialists over Computed Tomography (CT), despite the
fact that both are commonly employed to check for anomalies
in the size, shape, or placement of brain areas that help in the
screening of malignancies. Consequently, MRI has been the focus
of scientists and researchers. Clinicians frequently utilise traditional
examination to spot brain tumours on MRI images. Clinicians are
increasingly using techniques for computer—aided diagnosis, in
instance, to help them diagnose brain tumours.

Gliomas are tumours of the brain that develop in glial cells. The
glial cells are the brain and spinal cord’s sustaining cells. Gliomas
are classified into several categories, astrocytoma being the most
prevalent kind. Tumors that begin in the astrocytes are known
as astrocytoma or glioblastoma. Oligodendrogliomas are tumours
that begin in the oligodendrocytes. Ependymomas are tumours that
begin in the ependymal cells (Cancer Research, 2024).

Meningiomas are cancers that grow from the membrane that
is around the spinal cord and brain (the “meninges”). They are the
most prevalent kind of adult primary brain tumour. The majority of
meningioma tumours (85%–90%) are benign, with the remaining
10%–15% being atypical or malignant meningioma (cancerous).
A benign meningioma brain tumour may impinge on important
nerves or compress the brain, causing impairment, depending on
its location and growing pace. They might potentially be life-
threatening. Meningiomas are most frequent in adults aged 40 to
70, particularly in women.They are prevalent in around 3% of adults
over the age of 60. Prior radiation exposure, chronic hormone usage,
and genetically inherited disorders such as neurofibromatosis type 2
are the few recognised risk factors (Brigham and Women, 2024).

A development inside the pituitary gland is known as a pituitary
tumour. A small gland in the brain is called the pituitary. It is
located in the nasal cavity’s back. It generates hormones that have
an impact on many different organs, glands, and bodily functions.
Most pituitary tumours are not carcinogenic (benign). They do not
circulate all around a human body. However, they have the potential
to make the pituitary gland secrete hormones in inappropriate
amounts, which would cause problems for the body. High secretion
of hormones from pituitary tumours cause other glands to create
more hormones. This will cause symptoms linked to each of the
several hormones. Numerous pituitary tumours also will press on

the surrounding optic nerves. Vision problems may result from this
(Conditions and Diseases, 2024).

Medical imaging, sometimes referred to as radiography, is
the practice of reconstructing different pictures of human organs.
Medical imaging therapies employ non-invasive diagnostics to assist
professionals in accurately diagnosing injuries and diseases without
being intrusive. Technologies related to radiography, including CT
scans and X-rays, is used in medical imaging. Nuclear Magnetic
Resonance (NMR) technology is incredibly safe and produces no
ionising radiation when used in MRIs. One of the safest forms of
medical imaging is ultrasound imaging, which produces images
through ultrasonic vibrations. The use of surface-mounted sensors
to monitor electrical activity, as in electrocardiography (ECG) and
electroencephalography (EEG), is a widespread method of medical
imaging. However, both systems provide a change over time graph
in place of a graphical representation. Using AI technology, we
can improve the ability to analyse and assess data in a variety
of medical imaging devices. The use of computer vision enables
the detection of anomalies that the naked eye has yet to detect
(TechTarget Network, 2024). Machine Learning (ML) methods can
forecast the class label of unknown data items based on training
data samples. ML algorithms are frequently employed in health
informatics (Aishwarja et al., 2020; Khan et al., 2020; Islam et al.,
2021), determining shear strength (Rahman et al., 2021), analysing
consumer experience in games (Zaki et al., 2021) and predicting
pandemics (Islam and Islam, 2020).

The focus of Deep Learning (DL), a branch of machine learning,
is on learning data representations and hierarchical features. For
feature extraction, DL techniques use a configuration of a number
of layers of nonlinear processing algorithms. As we go further into
the network, data abstraction is aided by the fact that each layer’s
output becomes its input. A subset of deep learning (DL), called
CNNs are employed to analyse visual data and are designed to need
the least amount of preparation possible (LeCun, 2015). It is used
to handle data in various arrays (LeCun et al., 2015) and is based
on biological processes in the human brain (Matsugu et al., 2003).
Feature learning and maximum accuracy, which may be attained by
maximising training samples, are two advantages that CNNs have
over standard machine learning and plain neural networks, leading
to a more reliable and accurate model (Litjens et al., 2017). In the
CNN architecture, convolutional filters serve as feature extractors,
extracting more unique patterns as we go deeply (structural and
spatial information). Feature extraction takes place when small
filters are paired with input patterns.This is followed by the selection
of the most distinctive features and the beginning of the classifier
network’s training phase (LeCun et al., 2015).

The paper is organised as follows: First section discusses about
brain tumour and machine learning. Section 2 elaborates on the
work done earlier on the same domain and problem. The third
section describes a convolutional neural network.The fourth section
describes the model we propose. The fifth section elaborates on the
experiments carried out with the last section concluding the paper.

2 Related work

Saikat Islam Khan et al. (2022) proposed two deep learning
models to classify different types of brain tumors (meningioma,
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glioma, and pituitary) as well as binary classification of normal
and abnormal cases. They utilized two publicly available datasets
consisting of 152 and 3064 MRI images. In their study, the
first dataset was trained using a CNN with 23 layers. However,
when applied to the smaller second dataset, their “23-layer
CNN” architecture encountered over fitting issues. To address
this, the researchers combined transfer learning with the VGG-
16 architecture and 23 layers CNN approach. Based on their
experimental findings, the models achieved classification accuracies
of up to 97.8% and 100% for these two datasets, respectively.

Musallam et al. (2022) proposed a preprocessing strategy for
enhancing MRI image quality and a CNN architecture for the
successful diagnosis of glioma, meningioma, and pituitary tumours.
The model employed batch normalisation to allow faster training
and simplify the activation of layer weights. The design aimed
to achieve a computationally efficient model with minimal max-
pooling layers, convolutional layers, and training epochs. The
proposed model achieved an impressive overall accuracy of 98.22%
on a dataset which has 3394 MRI images, and obatained accuracy
rates of 99% for glioma, 99.13% for meningioma, and 97.3%
for pituitary tumour detection, and a 97.14% accuracy rate for
recognizing images without tumours.

Amin et al. (2020) proposed a fusion strategy to identify brain
tumors by utilizing texture and structural data obtained from
four MRI sequences: T2, Flair, T1, and T1C. Their approach
involved employing a Daubechies Wavelet Kernel and Discrete
Wavelet Transform (DWT) for the fusion process, which enhanced
the informativeness of the tumor region. To remove noise, a
Partial Differential Diffusion Filter (PDDF) was applied after
the fusion. After separating the tumorous regions using a
global thresholding method, the authors employed a CNN
model to distinguish between the tumor and healthy regions.
The proposed method was tested on five publicly available
BRATS datasets.

Sultan et al. (2019) proposed a DL model built on a CNN for
categorizing various forms of brain cancers using two publicly
available datasets. The first dataset has 233 patients along with
3064 T1-weighted contrast-enhanced pictures, whereas the second
contains 73 patients with 516 images. The model comprises two
classifications: one for tumor categories (pituitary, meningioma,
and glioma) and one for glioma subtypes (Grade IV, Grade
III, and Grade II). For the two datasets, the proposed network
topology had the greatest accuracy scores of 96.13% and 98.7%
respectively.

In order to categorise brain tumour pictures without involving
humans, a variety of hybrid as well as traditional machine
learning models were developed and carefully evaluated. We also
looked at 16 alternative transfer learning models to determine the
best one for neural network-based brain tumor identification. A
stacked classifier that surpasses all previously reported models was
eventually suggested. It employs several cutting-edge technologies.
The proposed VGG-SCNet (Majib et al., 2021) obtained an accuracy
of 99.2%, recall of 99.1% and the F1-score of 99.2%.

Rehman et al. (2021) proposed a novel deep learning-based
method for identifying various tumor types and detecting small
brain tumors. Their approach involved utilizing a 3D CNN model
to retrieve brain tumors. The obtained tumor data was then
fed into a pre-trained model for feature extraction. The most

relevant features were selected using the correlation-based selection
technique applied to the collected attributes. To validate the selected
features for the final categorization, a feed-forward neural network
was employed. The method was tested and evaluated using three
BraTS datasets from2018, 2017, and 2015.The achieved accuracy for
the respective datasets was reported as 98.32%, 96.97%, and 92.67%
respectively.

Mishra and Verma (2022) proposed a novel attention-based
photo classification paradigm for brain tumor categorization.
They used a GATE-CNN model and adjusted the CNN training
hyperparameters using the Adamax optimizer. The model was
compared to other CNN models and evaluated on three datasets
with different types of brain tumor images. The proposed model
achieved higher accuracy scores than state-of-the-art CNN models,
with scores of 98.27%, 99.83%, and 98.78% for the three datasets,
respectively.

3 Convolutional neural network

This section describes a CNN and its components. A typical
CNN consists of the following.

3.1 Convolution layer

The convolution layer is the basic component of every
CNN, thus its name. This layer contains kernels, which are
often a square matrix whose values are learnt by the model.
This layer employs the convolution technique, which is distinct
from matrix multiplication. The function is defined as follows
(Ouchicha et al., 2020):

F (i, j) = (I ∗ K) (i, j) = ΣmΣnI (i+m, j+ n)K (m,n)

I = image, K= 2Dfilter and F= featuremap.Dimension ofK ism∗ n.
There are certain characteristics that are similar across the whole

dataset, or at least a large percentage of it. These characteristics
are found locally in pictures and play an important role in image
classification.This layer detects these features, and the output created
as a result of this computation is the feature map. Nonlinearity is
created by feeding the output of each convolutional layer into an
activation function.

3.2 Batch normalisation

Batch Normalisation (BN) greatly enhances convergence during
training. It entails averaging and normalising the network layer
output variance (Ouchicha et al., 2020). We are given a mini-batch
B = {t1, t2,…, tm} of size m, the normalised values t̂1, t̂2,…, t̂m
and corresponding linear transformations T1,T2,…,Tm. The
transformation BNγ,β: t1, t2,…, tm→ T1,T2,…,Tm is referred to as
batch normalisation and is calculated as

μB =
1
m

m

∑
i=1

ti

σ2
B =

1
m

m

∑
i=1
(ti − μB)
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t̂i =
ti − μB

√σ2
B + ϵ

Ti = β+ γt̂i ≡ BNγ,β (ti)

3.3 Pooling layer

The features of the convolution layers are steadily reduced
in size while the most important data is retained in the
pooling layer. This layer reduces the amount of variables and
calculations in the network. We define the pooling procedure by
a window of size wp ∗wp that moves in step stp on each feature
map. We typically address this utilising two fundamental ways
(Ouchicha et al., 2020):

• Max-pooling: This technique involves returning the highest
local value possible for each grouping window.
• Avg-pooling:This technique involves returning themean of the

local data for each grouping window.

3.4 Flatten layer

Flattening refers to the procedure of converting data
into a single-dimensional array to be used as input for the
subsequent layer. The convolutional layer output is flattened
in order to create a continuous feature vector. This flattened
representation is then connected to the final classification
model, which is commonly known as a fully-connected layer
(Towards Data Science, 2024).

3.5 Fully connected layer

The dense layer, also known as a Fully Connected (FC) layer,
establishes connections between every neuron in the layer and every
neuron in both the same layer and the preceding layer. The number
of neurons in the Dense layer is typically determined by the number
of categories or classes that the network aims to learn. Each neuron
in the layer contributes to the overall classification decision by
taking into account the information from the preceding layer. It
generates a vector with K dimensions that indicates the likelihood
of categorizing each collection of photos. The FC layer links the
categories to the picture, and the vector displays the results of the
preceding layer, with a high value indicating the object’s location
in the image.

4 Proposed methodology

The proposed Balanced binary Tree CNN (BT-CNN) is framed
in a binary tree-like structure as shown in Figure 1. We have
formed two distinct modules—the convolution group and the
depthwise separable convolution group. The convolution group

is formed as follows: We first start with the convolution layer
with the given number of kernels, kernel size of 3∗3, stride of
1∗1, padding as same, activation as ReLU, with kernel inititaliser
as glorot normal. This is then followed by batch normalisation.
The group is ended with an average pooling layer with pool
size 2∗2 and stride 2∗2. In the depthwise separable convolution
group, the kernel size of the convolution layer is reduced to 1∗1
- making it a pointwise convolution. This section is preceded
with a depthwise convolution layer of kernel size 3∗3 and
other configurations are same as that of the convolution layer,
along with a batch normalisation layer. The word “balanced”
in BT-CNN stands for the optimal usage of both the groups
to achieve maximum performance in terms of time and space.
The usage of convolution group achieves lower time and higher
memory, while the opposite is true for the depthwise separable
convolution group.

Firstly broadening part of the network is described. This
starts with a convolution group of 256 kernels. This gives us
an output of size 100∗100∗ 256. The output of this group goes
to two convolution groups of 128 kernels each. This gives us
an output shape of 50∗50∗ 128 from each group. Each such
group of 128 kernels passes its output to two depthwise separable
convolution groups of 64 kernels, so we have a total of four
such groups in this level, giving us outputs of shape 25∗25∗ 64.
Each of these groups pass their outputs to two depthwise
separable convolution groups of 32 kernels, so we have a total
of eight such groups in this level, giving us outputs of shape
12∗12∗ 32. The total number of parameters generated in this
part is 660,756.

Next shrinking part of the network is described. In this,
the outputs of the sibling groups of 32 kernels are pointwise
added together, forming four tensors of shape 12∗12∗ 32. The
tensors are passed to individual convolution groups of 16 kernels
each. This gives us an output shape of 6∗6∗ 16 from each
such group. All the outputs are concatenated giving us a tensor
of output shape of 6∗6∗ 64. The total number of parameters
generated are 18,752.

Finally, classifier part of the network is described. In this we first
flatten the output of 6∗6∗ 64 to a single tensor of 2,304. This then
goes to a dense layer of 250 neurons with a dropout rate of 20%.
This is again passed to two consecutive dense layers of 250 neurons
each. The next three layers are dense layers with 100 neurons, with
decreasing dropout rates of 10%, 5% and no dropout. We have last
three layers with 60, 30 and 15 neurons each. All the layers are
activated by the ReLU activation function. We then conclude the
model with a dense layer of 4 neurons - one for each class, activated
by the softmax activation function. The classifier generates a total of
755,469 parameters.

Overall, themodel generates 1,434,957 parameters, out of which
1,430,733 parameters are trainable while 4,224 parameters are non-
trainable. The same is shown in Table 1.

5 Experiments

In this section, we first describe the dataset we used in the
experiment. The next section describes the pre-processing applied
to the images of the dataset to train the model. The third section
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FIGURE 1
The proposed model. The depthwise separable convolution block and the convolution group block are shown on either sides of the classifier. X
denotes the number of kernels used in the convolution layer.

describes the performance metrics used to evaluate the model. The
fourth section describes the experiments done with the dataset.
The final section is about the results obtained on performing the
experiments.

5.1 Dataset

The Figshare Brain Tumor Dataset (Figshare, 2024), Br35H
dataset (Brain Tumor Detection, 2024); Sartaj (2024) datasets are
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TABLE 1 Brief layered architecture of our proposed model.

Layer Number of kernels Output shape Total number of parameters Connected to

Input 200∗ 200∗ 1

Convolution group 256 100∗ 100∗ 256 3,584 Input

Convolution group 1 128 50∗ 50∗ 128 295,562 Convolution group

Convolution group 2 128 50∗ 50∗ 128 295,562 Convolution group

Depthwise convolution group 64 25∗ 25∗ 64 10,304 Convolution group 1

Depthwise convolution group 1 64 25∗ 25∗ 64 10,304 Convolution group 1

Depthwise convolution group 2 64 25∗ 25∗ 64 10,304 Convolution group 2

Depthwise convolution group 3 64 25∗ 25∗ 64 10,304 Convolution group 2

Depthwise convolution group 4 32 12∗ 12∗ 32 3,104 Depthwise convolution group

Depthwise convolution group 5 32 12∗ 12∗ 32 3,104 Depthwise convolution group

Depthwise convolution group 6 32 12∗ 12∗ 32 3,104 Depthwise convolution group 1

Depthwise convolution group 7 32 12∗ 12∗ 32 3,104 Depthwise convolution group 1

Depthwise convolution group 8 32 12∗ 12∗ 32 3,104 Depthwise convolution group 2

Depthwise convolution group 9 32 12∗ 12∗ 32 3,104 Depthwise convolution group 2

Depthwise convolution group 10 32 12∗ 12∗ 32 3,104 Depthwise convolution group 3

Depthwise convolution group 11 32 12∗ 12∗ 32 3,104 Depthwise convolution group 3

Add 12∗ 12∗ 32
Depthwise convolution group 4

Depthwise convolution group 5

Add 1 12∗ 12∗ 32
Depthwise convolution group 6

Depthwise convolution group 7

Add 2 12∗ 12∗ 32
Depthwise convolution group 8

Depthwise convolution group 9

Add 3 12∗ 12∗ 32
Depthwise convolution group 10

Depthwise convolution group 11

Convolution group 3 16 6∗ 6∗ 16 4,688 Add

Convolution group 4 16 6∗ 6∗ 16 4,688 Add 1

Convolution group 5 16 6∗ 6∗ 16 4,688 Add 2

Convolution group 6 16 6∗ 6∗ 16 4,688 Add 3

Concatenate 6∗ 6∗ 64

Convolution group 3

Convolution group 4

Convolution group 5

Convolution group 6

(Continued on the following page)
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TABLE 1 (Continued) Brief layered architecture of our proposed model.

Layer Number of kernels Output shape Total number of
parameters

Connected to

Flatten 2,304 Concatenate

Dense + Dropout 250 250 576,250 Flatten

Dense 1 250 250 62,750 Dense + Dropout

Dense 2 250 250 62,750 Dense 1

Dense 3 + Dropout 1 100 100 25,100 Dense 2

Dense 4 + Dropout 2 100 100 10,100 Dense 3 + Dropout 1

Dense 5 100 100 10,100 Dense 4 + Dropout 2

Dense 6 60 60 6,060 Dense 5

Dense 7 30 30 1830 Dense 6

Dense 8 15 15 465 Dense 7

Dense 9 4 4 64 Dense 8

combined into single dataset (Msoud Nickparvar, 2021). There are
four categories—no tumor, meningioma, pituitary and glioma—are
used to categorise the dataset. The total number of images in this
dataset is 7,022, and there are 1,621 images in the glioma class, 1,745
in themeningioma class, 1,757 in the pituitary class, and 2,000 in the
no tumour class. The Br35H dataset did not contain any data from
the tumor class.

5.1.1 The figshare brain tumour dataset
This dataset includes 3,064 images which are T1-weighted

contrast-enhanced from 233 individuals who had meningioma (708
slices), pituitary tumours (930 slices) and glioma (1,426 slices),
which are three major forms of brain tumours.

5.1.2 Dataset by Sartaj et al.
This dataset having images from 4 classes—meningioma,

glioma, no tumor and pituitary tumor.The training set contains 826,
822, 827, and 395 images from respective classes. The testing set
containing 100, 115, 74, and 105 images from resepetive classes.

5.1.3 Br35H
This dataset contains only two classes—Yes and No, marking the

presence and absence of brain tumour respectively. The dataset is
balanced, both having 1,500 images.

5.2 Preprocessing

5.2.1 Denoising using Gaussian Blur method
Denoising is the process of removing noise from an image

to improve its visual quality and facilitate more accurate analysis.
To decrease the noise, every image has been processed using the
Gaussian function to offer the Gaussian blur feature. It is analogous
to a non-uniform low-pass filter, which minimizes visual noise and

irrelevant details while retaining low spatial frequency. An image is
frequently convolved using a Gaussian kernel (Misra et al., 2020) to
generate it. The formalisation of the Gaussian kernel is as follows:

G2D (σ,x,y) =
1

2πσ2 e
− y

2+x2

2σ2

where σ represents the distribution’s standard deviation and x and y
are the location indices. The variance of the Gaussian distribution,
which defines how much blurring is present around a pixel, is
determined by the amount of σ.

5.2.2 Contrast limited adaptive histogram
equalization (CLAHE)

CLAHE (Adaptive Histogram Equalization, 2024) is a variation
of Adaptive Histogram Equalization (AHE) that addresses the issue
of over-amplification of contrast. Unlike traditional AHE, CLAHE
processes the image in small sections known as tiles rather than
the entire image. It then removes the artificial boundaries between
tiles by blending neighboring tiles using bi-linear interpolation.This
approach can be used to enhance the contrast of an image. CLAHE
can also be applied to color images. In this case, it is typically
performed on the luminance channel of the image in the HSV
(Hue, Saturation, Value) color space. Adjusting only the luminance
channel tends to yield significantly better results compared to
modifying all channels of a BGR (Blue, Green, Red) image.

5.2.3 Cropping and scaling
Cropping involves removing unwanted parts of an image while

retaining the region of interest. In medical imaging, cropping is
often used to focus on specific anatomical structures or regions of
interest within the image. It also helps standardize the input size of
images, which can be important for training deep learning models
that require fixed input dimensions.
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In medical imaging scaling is commonly used to resize the
different images while preserving its aspect ratio.This helps not only
model complexity reduction but also ensures the dataset consistency.

Overall, the steps involved in the pre-processing of the images
are as follows:

1. Reduction of three-channel images to one-channel, or pure
grayscale images.

2. Smoothening of images using the Gausian Blur method.
We keep the window size to be 3∗3 with the standard
deviation of 0.

3. Treatment of images to CLAHE to improve the noisy pixels.
We set the clip limit to be 2 and the tile grid size to be 8∗8.

4. Thresholding of images and elimination of any noise using
a series of erosion and dilation operations. Here binary
thresholding is used where any pixels whose grayscale value
is less than 45 is set to 0.

5. Determination the image’s contours and consequent cropping
the picture.

6. Resizing of the cropped images to 200∗200 pixels to train and
test the models.

FIGURE 2
Images and its subsequent preprocessed version. Images in the left are the original images, images in center are the images after applying Gaussian
Blur and on the right are the images treated with CLAHE after Gaussian Blur. First row is of glioma class, second row is of meningioma class, third row is
of no tumour class and the last row is of pituitary class.
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FIGURE 3
Experiment setup for Brain Tumor (BT) detection.

7. One-hot encoding of the classes of the images based on the
folder the image belongs to.

The visual output of these operations are shown in Figure 2.

5.3 Performance metrics

Followingmetrics are used to evaluate our proposedmodel with
othermodels (Cheruku, 2017; Tripathi et al., 2018;Naik et al., 2023).

1. Accuracy is the fraction of predictions that our model has
fulfilled, or alternatively, it is the probability that a particular
input is classified correctly. Formally, it has the following
definition:

Accuracy =
number o f times predictions were accurate

Total number o f times predicted

in binary context, accuracy is defined as follows:

Accuracy = TN+TP
TP+ FP+TN+ FN

the accuracy for each class is calculated as follows:

Accuracy =

Number o f correctly predicted instances
o f the class

Total number o f instances o f the class

2. The loss function we aim to minimise is the categorical
crossentropy loss. This is formally defined as follows:

CE = −
C

∑
i=i

tilog(si)

here, ti stands for the groundtruth value and s is the vector coming
out of the CNN before the loss computation, where si belongs to s.
In binary context, the equation is reduced to:

CE = −t1log (s1) − (1− t1) log (1− s1)

3. Precision estimates what proportion of positive identifications
are correct classified. This is helpful when the dataset is
imbalanced. It is calculated as follows:

Precision = True Positive
Total Predicted Positive

4. Recall used to estimate the what proportion of actual positives
are classified correctly. This is helpful when the dataset is
imbalanced. It is calculated as follows:

Recall = True Positive
Total Actual Positive

5. F1-score is also useful when the dataset is imbalanced. Its a
harmonic mean of both precision and recall. It is calculated
as follows:

F1− score = 2 ∗ Precision ∗ Recall
Precision+Recall

5.4 Experimental setup

The steps involved in BT detection procedure is explained in
Figure 3. First the dataset is partitioned as per the 5-fold cross
validation technique. These datasets are employed to train CNN-
KNN model (Shanjida et al., 2022) (Refer Figure 4) and models
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FIGURE 4
The model used for CNN-KNN. The model was first trained and then the last two fully connected layers were removed. All the images were passed
through the model and we retrieved all the features of the images. All these features were trained in a KNN and the metrics were obtained.

proposed by Amin et al. (2020); Saikat Islam Khan et al. (2022);
Musallam et al. (2022). All the programs are implemented using
python and Tensorflow. The Adam optimized is used for training
the proposed model. The model is trained over 20 epochs with

batch size of 24. The learning rate for the optimizer was set to
0.0001, and all other properties were kept at their default settings.
A categorical cross entropy is employed as loss function during
the training.
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The models evaluated using both training data and test data.
Based on the predictions, confusion matrices are generated for each
model and for each fold of the data. By analyzing the confusion
matrices, we are able to assess how accurately the models classified
each class.

Additionally, a classification report is obtained to gather more
detailed performance metrics. The classification report provided
information such as precision, recall, and F1-score. These metrics
are helpful in understanding the precision (accuracy of positive
predictions), recall (true positive rate), and the F1-score (a
combination of precision and recall) for each class, giving us a
comprehensive view of the models’ classification performance.

5.5 Experimental results and analysis

5.5.1 CNN-KNN
The CNN-KNN model used in this experiments is shown in

Figure 4. It has convolution layers, a BN layer, a max-pooling
layer, a non-linear ReLU layer, and a fully linked layer. Following
Batch Normalisation, ReLU, and max-pooling layers, the first
convolution layer employs 44 kernels and generates 32 outputs.
The second convolution layer employs 44 kernels and generates 64
outputs before being followed by a ReLU layer. Following Batch
Normalisation, ReLU, andmax-pooling layers, the third convolution
layer employs 33 kernels and generates 84 outputs. Following BN,
ReLU, andmax-pooling layers, the fourth convolution layer employs
33 kernels and generates 124 outputs. Eventually, two FC layers
collect features from theMRI-based pictures, which are then fed into
the KNN for classification.

• In fold 1, the model obtained a training accuracy of 94.62%
and a test accuracy of 90.96%. The model also classified
1,542, 1,407, 1,711, and 1,934 samples correctly for Glioma,
Meningioma, Pituitary and No Tumor classes respectively. We
received precisions of values 0.93, 0.94, 0.92, and 0.96; recall
values of 0.95, 0.86, 0.97, and 0.97; and F1-scores of 0.94, 0.9,
0.95, and 0.96 for classes Glioma, Meningioma, Pituitary and
No Tumour respectively. This results in precision, recall, and
F1-score equal to 0.94 on average.
• In fold 2, the model obtained a training accuracy of 94.52%

and a test accuracy of 89.75%. The model also classified
1,533, 1,377, 1,722, and 1,939 samples correctly for Glioma,
Meningioma, Pituitary and No Tumor classes respectively.
We received precisions of values 0.91, 0.94, 0.92, and 0.96;
recall values of 0.95, 0.84, 0.97, and 0.98; and F1-scores of
0.93, 0.89, 0.95, and 0.97 for classes Glioma, Meningioma,
Pituitary and No Tumour respectively. This results in precision,
recall and F1-score of 0.94, 0.94, and 0.93 respectively
on average.
• In fold 3, the model obtained a training accuracy of 95.25%

and a test accuracy of 90.81%. The model also classified
1,554, 1,430, 1,718, and 1,925 samples correctly for Glioma,
Meningioma, Pituitary and No Tumor classes respectively. We
received precisions of values 0.93, 0.94, 0.94, and 0.96; recall
values of 0.96, 0.87, 0.98, and 0.96; and F1-scores of 0.94, 0.9,
0.96 and 0.96 for classes Glioma, Meningioma, Pituitary and

No Tumour respectively. This results in precision, recall, and
F1-score equal to 0.94 on average.
• In fold 4, the model obtained a training accuracy of 94.7%

and a test accuracy of 90.24%. The model also classified
1,528, 1,402, 1,720, and 1,938 samples correctly for Glioma,
Meningioma, Pituitary and No Tumor classes respectively.
We received precisions of values 0.92, 0.95, 0.92, and
0.96; recall values of 0.94, 0.85, 0.98, and 0.97; and F1-
scores of 0.93, 0.9, 0.95, and 0.96 for classes Glioma,
Meningioma, Pituitary and No Tumour respectively. This
results in precision, recall, and F1-score equal to 0.94
on average.
• In fold 5, the model obtained a training accuracy of 94.63% and

a test accuracy of 90.31%. The model also classifies 1,536, 1,381,
1,728, and 1,940 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor classes respectively. We received
precisions of values 0.93, 0.94, 0.92, and 0.96; recall values of
0.95, 0.84, 0.98, and 0.97; and F1-scores of 0.94, 0.89, 0.95, and
0.97 for classes Glioma,Meningioma, Pituitary andNo Tumour
respectively. This results in precision, recall, and F1-score equal
to 0.94 on average.

The average training accuracy across all folds is 92.37% with a
standard deviation of 5.93. Similarly, the average test accuracy is
86.88% with a standard deviation of 5.54. In terms of the number
of samples classified correctly, the averages across all folds are as
follows: 1,548 for Glioma, 1,316 forMeningioma, 1,628 for Pituitary,
and 1917 for No Tumour. The overall average precision, recall,
and F1-score obtained across all folds are 0.92, 0.91, and 0.91
respectively.

5.5.2 Saikat et al.
• In fold 1, the model obtained a training accuracy of 90.09% and

a test accuracy of 85.48%. The model also classifies 1,605, 1,231,
1,597, and 1,829 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor classes respectively. We received
precisions of values 0.73, 0.94, 0.95, and 1; recall values of
0.99, 0.75, 0.91, and 0.91; and F1-scores of 0.84, 0.83, 0.93, and
0.95 for classes Glioma,Meningioma, Pituitary andNo Tumour
respectively. This results in precision, recall and F1-score equal
to 0.91, 0.89, and 0.89 respectively on average.
• In fold 2, the model obtained a training accuracy of 96.69% and

a test accuracy of 92.17%. The model also classifies 1,523, 1,598,
1,742, and 1,864 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor classes respectively. We received
precisions of values 0.91, 0.89, 0.96, and 1; recall values of
0.94, 0.97, 0.99, and 0.93; and F1-scores of 0.96, 0.93, 0.93, and
0.96 for classes Glioma,Meningioma, Pituitary andNo Tumour
respectively.This results in precision, recall and F1-score of 0.96
on average.
• In fold 3, the model obtained a training accuracy of 97.65% and

a test accuracy of 90.96%. The model also classifies 1,589, 1,512,
1,686, and 1,977 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor classes respectively. We received
precisions of values 0.91, 0.96, 0.99, and 0.99; recall values of
0.98, 0.92, 0.96, and 0.99; and F1-scores of 0.95, 0.94, 0.97, and
0.99 for classes Glioma,Meningioma, Pituitary andNo Tumour
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respectively.This results in precision, recall and F1-score of 0.96
on average.
• In fold 4, the model obtained a training accuracy of 95.69% and

a test accuracy of 89.03%. The model also classifies 1,572, 1,636,
1,462, and 1,957 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor classes respectively. We received
precisions of values 0.95, 0.84, 1, and 1; recall values of 0.97,
0.99, 0.83 and 0.98; and F1-scores of 0.96, 0.91, 0.91 and 0.99
for classes Glioma, Meningioma, Pituitary and No Tumour
respectively. This results in precision, recall and F1-score equal
to 0.95, 0.95, and 0.94 respectively on average.
• In fold 5, the model obtained a training accuracy of 81.74% and

a test accuracy of 76.78%. The model also classifies 1,452, 605,
1,655, and 1,959 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.87, 0.93, 0.77, and 0.77; recall values of 0.9, 0.37, 0.94,
and 0.98; and F1-scores of 0.88, 0.53, 0.78, and 0.86 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score equal to 0.83, 0.81,
and 0.78 respectively on average.

The average training accuracy across all folds is 92.37% with a
standard deviation of 5.93. Similarly, the average test accuracy is
86.88% with a standard deviation of 5.54. In terms of the number
of samples classified correctly, the averages across all folds are as
follows: 1,548 for Glioma, 1,316 forMeningioma, 1,628 for Pituitary,
and 1917 for No Tumour. The overall average precision, recall,
and F1-score obtained across all folds are 0.92, 0.91, and 0.91
respectively.

5.5.3 Amin et al.
• In fold 1, the model obtained a training accuracy of 96.07% and

a test accuracy of 84.06%. The model also classifies 1,411, 1,459,
1,748, and 1,960 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.95, 0.9, 0.93, and 0.95; recall values of 0.87, 0.89, 0.99
and 0.98; and F1-scores of 0.91, 0.9, 0.96, and 0.97 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score equal to 0.94
on average.
• In fold 2, the model obtained a training accuracy of 52.3% and

a test accuracy of 52.1%. The model also classifies 67, 1,598, 26,
and 1,979 samples correctly for Glioma, Meningioma, Pituitary
and No Tumor respectively. We received precisions of values
0.92, 0.47, 0.2, and 0.58; recall values of 0.04, 0.97, 0.01, and
0.99; and F1-scores of 0.08, 0.64, 0.03, and 0.73 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score equal to 0.54, 0.52,
and 0.38 respectively on average.
• In fold 3, the model obtained a training accuracy of 99.09% and

a test accuracy of 86.33%. The model also classifies 1,542, 113,
1,751, and 1,983 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.98, 0.98, 0.94, and 0.97; recall values of 0.95, 0.92, 0.99,
and 0.99; and F1-scores of 0.96, 0.95, 0.96, and 0.98 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.97 on average.

• In fold 4, the model obtained a training accuracy of 71.88% and
a test accuracy of 66.45%. The model also classifies 1,115, 113,
1,751, and 1,993 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions
of values 0.8, 0.79, 0.53, and 0.91; recall values of 0.69, 0.07,
1 and 1; and F1-scores of 0.74, 0.13, 0.95, and 0.7 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.76, 0.71, and
0.64 respectively on average.
• In fold 5, the model obtained a training accuracy of 53.21%

and a test accuracy of 55.34%. The model also classifies 1,617,
146, 21, and 1,983 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.55, 0.78, 0.66, and 0.51; recall values of 1, 0.09, 0.01
and 0.99; and F1-scores of 0.71, 0.16, 0.02, and 0.67 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.63, 0.54, and
0.4 respectively on average.

The average training accuracy across all folds is 74.51% with a
standard deviation of 20.11. Similarly, the average test accuracy is
68.86% with a standard deviation of 14.18. In terms of the number
of samples classified correctly, the averages across all folds are as
follows: 1,150 for Glioma, 686 for Meningioma, 1,059 for Pituitary,
and 1,982 for No Tumour. The overall average precision, recall,
and F1-score obtained across all folds are 0.77, 0.74, and 0.67
respectively.

5.5.4 Musallam et al.
• In fold 1, the model obtained a training accuracy of 92.95% and

a test accuracy of 88.97%. The model also classifies 1,617, 1,193,
1,673, and 1,989 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.79, 0.99, 0.96, and 0.98; recall values of 1, 0.73, 0.95,
and 0.99; and F1-scores of 0.88, 0.84, 0.96, and 0.99 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.93, 0.92, and
0.92 respectively on average.
• In fold 2, the model obtained a training accuracy of 97.1% and

a test accuracy of 94.59%. The model also classifies 1,602, 1,478,
1,743, and 1,961 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.92, 0.98, 0.97, and 0.99; recall values of 0.99, 0.9, 0.99,
and 0.98; and F1-scores of 0.95, 0.94, 0.98, and 0.99 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.97 on average.
• In fold 3, the model obtained a training accuracy of 80.37% and

a test accuracy of 79.57%. The model also classifies 896, 1,546
1,191, and 2,000 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions
of values 0.99, 0.91, 0.99, and 0.62; recall values of 0.55, 0.94,
0.68 and 1; and F1-scores of 0.71, 0.92, 0.81, and 0.77 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.88, 0.8 and 0.8
respectively on average.
• In fold 4, the model obtained a training accuracy of 74.16% and

a test accuracy of 73.29%. The model also classifies 1,618, 583,
1,118, and 1,877 samples correctly for Glioma, Meningioma,
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TABLE 2 Training and test accuracies of all frameworks across all folds.

Training accuracy Test accuracy

Musallam
et al.

Saikat
et al.

Amin
et al.

CNN-
KNN

Proposed
framework

Musallam
et al.

Saikat
et al.

Amin
et al.

CNN-
KNN

Proposed
framework

Fold 1 92.95 90.09 96.07 94.62 99.66 88.97 85.48 84.06 90.96 95.8

Fold 2 97.1 96.69 52.3 94.52 98.97 94.59 92.17 52.1 89.75 95.09

Fold 3 80.37 97.65 99.09 95.25 99.95 79.57 90.96 86.33 90.81 97.01

Fold 4 74.16 95.69 71.88 94.7 99.73 73.29 89.03 66.45 90.24 96.01

Fold 5 94.27 81.74 53.21 94.23 99.75 92.59 76.78 55.34 90.31 96.37

TABLE 3 Average Number of samples classified correctly by each Model
for each Class.

Musallam
et al.

Amin
et al.

Saikat
et al.

CNN-
KNN

Proposed
framework

Glioma 1,419 1,150 1,548 1,539 1,602

Meningioma 1,263 686 1,316 1,399 1,604

Pituitary 1,492 1,059 1,628 1,720 1,747

No
Tumour

1,962 1,982 1,917 1,935 1,994

Pituitary and No Tumor respectively. We received precisions of
values 0.49, 0.93, 0.97, and 0.98; recall values of 1, 0.35, 0.64
and 0.94; and F1-scores of 0.66, 0.51, 0.77, and 0.96 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.85, 0.74, and
0.74 respectively on average.
• In fold 5, the model obtained a training accuracy of 94.27% and

a test accuracy of 92.59%. The model also classifies 1,360, 1,517,
1,736, and 1,984 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions of
values 0.99, 0.92, 0.87, and 0.99; recall values of 0.84, 0.92, 0.99,
and 0.99; and F1-scores of 0.91, 0.92, 0.93, and 0.99 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.94 on average.

The average training accuracy across all folds is 87.77% with
a standard deviation of 8.9. Similarly, the average test accuracy is
85.8% with a standard deviation of 8.11. In terms of the number
of samples classified correctly, the averages across all folds are as
follows: 1,419 for Glioma, 1,263 forMeningioma, 1,962 for Pituitary,
and 1,492 for No Tumour. The overall average precision, recall,
and F1-score obtained across all folds are 0.91, 0.87, and 0.87
respectively.

5.5.5 Proposed model
• In fold 1, ourmodel obtained a training accuracy of 99.66% and

a test accuracy of 95.8%. It also classifies 1,604, 1,592, 1,752, and

TABLE 4 Comparison of Metrics with the proposed model.

Musallam
et al.

Amin
et al.

Saikat
et al.

CNN-
KNN

Proposed
model

μ(Training
Accuracy)
(%)

87.77 74.51 92.37 94.74 99.61

σ(Training
Accuracy)

8.9 20.11 5.93 0.259 0.375

μ(Test
Accuracy)
(%)

85.8 68.86 86.88 90.41 96.06

σ(Test
Accuracy)

8.11 14.18 5.54 0.432 0.709

Precision 0.91 0.77 0.92 0.94 0.99

Recall 0.87 0.74 0.91 0.94 0.99

F1-Score 0.87 0.67 0.91 0.94 0.99

1,997 samples correctly for Glioma, Meningioma, Pituitary and
No Tumor respectively. We received precisions of values 0.97,
0.99, 0.99, and 1; recall values of 0.99, 0.97, 1, and 1; and F1-
scores of 0.98, 0.98, 0.99, and 1 for classes Glioma,Meningioma,
Pituitary and No Tumour respectively. This results in precision,
recall and F1-score of 0.99 on average.
• In fold 2, our model obtained a training accuracy of 98.97%

and a test accuracy of 95.09%. It also classifies 1,597, 1,570,
1,734, and 1,995 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions
of values 0.95, 0.98, 0.99, and 1; recall values of 0.95,
0.99, 0.99 and 1; and F1-scores of 0.97, 0.97, 0.99, and 1
for classes Glioma, Meningioma, Pituitary and No Tumour
respectively. This results in precision, recall and F1-score of
0.98 on average.
• In fold 3, ourmodel obtained a training accuracy of 99.95% and

a test accuracy of 97.01%. It also classifies 1,609, 1,625, 1,749,
and 1995 samples correctly for Glioma, Meningioma, Pituitary
and No Tumor respectively. We received precisions of values
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FIGURE 5
Confusion matrices derived for the proposed model. 0 represents Glioma, 1 represents Meningioma, 2 represents No Tumour and 3 represents Pituitary.

0.99, 0.99, 1, and 1; recall values of 0.99, 0.99, 1, and 1; and F1-
scores of 0.99, 0.99, 1, and 1 for classes Glioma, Meningioma,
Pituitary and No Tumour respectively. This results in precision,
recall and F1-score of 0.99 on average.
• In fold 4, our model obtained a training accuracy of 99.73%

and a test accuracy of 96.01%. It also classifies 1,590, 1,624,
1,750, and 1,988 samples correctly for Glioma, Meningioma,
Pituitary and No Tumor respectively. We received precisions
of values 0.99, 0.98, 0.99, and 1; recall values of 0.98, 0.99, 1,
and 0.99; and F1-scores of 0.99, 0.98, 0.99, and 1 for classes
Glioma, Meningioma, Pituitary and No Tumour respectively.
This results in precision, recall and F1-score of 0.99 on average.
• In fold 5, ourmodel obtained a training accuracy of 99.75% and

a test accuracy of 96.37%. It also classifies 1,610, 1,604, 1,749,
and 1,995 samples correctly for Glioma, Meningioma, Pituitary
and No Tumor respectively. We received precisions of values
0.99, 0.99, 1, and 0.99; recall values of 0.99, 0.98, 1, and 1; and
F1-scores of 0.99, 0.98, 1, and 1 for classesGlioma,Meningioma,
Pituitary and No Tumour respectively. This results in precision,
recall and F1-score of 0.99 on average.

The average training accuracy across all folds is 99.61% with a
standard deviation of 0.375. Similarly, the average test accuracy is
96.06% with a standard deviation of 0.709. In terms of the number
of samples classified correctly, the averages across all folds are as
follows: 1,602 for Glioma, 1,604 forMeningioma, 1,747 for Pituitary,
and 1994 for No Tumour. The overall average precision, recall, and
F1-score obtained across all folds is 0.99 for each of these metrics.

All these results are summarized in Tables 2–4. Further, the
confusion matrices generated for proposed model is shown in
Figure 5.

6 Conclusion

To classify brain tumours from MRI scans a Balanced binary
Tree CNN (BT-CNN) is proposed. The sample images were pre-
processed by smoothing, CLAHE, denoising, cropping, and scaling
to 200∗200. Such pre-processed dataset is partitioned as per five
fold cross validation. The proposed model along with other state-of-
the-art models are trained for 20 epochs using batch size of 24. To
reduce the cross-categorical entropy loss function, Adam optimizer
is employed. From the experimtal resutls we observed that our

proposed model outperformed the models in our study, achieving
average training accuracy of 99.61% and test accuracy of 96.06%.
Ourmodel also obtained Precision, Recall and F1-score of 0.99. Our
propsoed model has one of the lowest standard deviation in training
and test accuracy over all folds. Future studywill focus ondeveloping
a model that shows an improved performance at categorization.
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