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Biological magnetic field sensing that gives rise to physiological responses is of
considerable importance in quantum biology. The radical pair mechanism (RPM) is
a fundamental quantum process that can explain some of the observed biological
magnetic effects. Inmagnetically sensitive radical pair (RP) reactions, coherent spin
dynamics between singlet and triplet pairs are modulated by weak magnetic fields.
The resulting singlet and triplet reaction products lead to distinct biological
signaling channels and cellular outcomes. A prevalent RP in biology is between
flavin semiquinone and superoxide (O2

•−) in the biological activation of molecular
oxygen. This RP can result in a partitioning of reactive oxygen species (ROS)
products to form either O2

•− or hydrogen peroxide (H2O2). Here, we examine
magnetic sensing of recombinant human electron transfer flavoenzyme (ETF)
reoxidation by selectively measuring O2

•− and H2O2 product distributions. ROS
partitioning was observed between two static magnetic fields at 20 nT and 50 μT,
with a 13% decrease in H2O2 singlet products and a 10% increase in O2

•− triplet
products relative to 50 µT. RPM product yields were calculated for a realistic flavin/
superoxide RP across the range of static magnetic fields, in agreement with
experimental results. For a triplet born RP, the RPM also predicts about three
times more O2

•− than H2O2, with experimental results exhibiting about four time
moreO2

•− produced by ETF. Themethod presented here illustrates the potential of
a novel magnetic flavoprotein biological sensor that is directly linked to
mitochondria bioenergetics and can be used as a target to study cell physiology.
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1 Introduction

The interaction between living systems and magnetic fields has recently witnessed a
renewed interest due to the importance of possible quantum processes harnessed by living
systems (Lambert et al., 2013; Kim et al., 2021). For utility in biological applications, a better
understanding of the quantum mechanisms at the biomolecular level is needed to direct
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desired outcomes in cell physiology (Usselman et al., 2014;
Usselman et al., 2016; Franco-Obregón, 2023). Among the
proposed mechanisms for weak magnetic field sensing in biology
(Qin et al., 2016; Nordmann et al., 2017; Lin et al., 2019; Gao et al.,
2021), the leading quantum process is the radical pair mechanism
(RPM). Living systems are replete with forming and breaking
chemical bonds, with many reactions creating radical pair (RP)
intermediates. However, biological RP reactions must satisfy specific
physical and chemical requirements to accomplish magnetic sensing
(Timmel et al., 1998; Player and Hore, 2019). The flavoprotein
cryptochrome has been proposed to be a biological magnetic
receptor (Ritz et al., 2000), where a RP is initialized by either
photoexcitation or during the redox cycle of the flavin cofactor
(Maeda et al., 2008; Hogben et al., 2009; Hore and Mouritsen, 2016).
Other protein systems have been suggested to sense weak magnetic
fields (Jones, 2016). Here, we demonstrate a general method, based
on product yield detected magnetic resonance (PYDMR)1, to
investigate the RP-based magnetic sensing in reduced
flavoenzymes that produce reactive oxygen species (ROS). This
method is complementary to photoexcitation measurements, such
as (auto)fluorescence in RP reactions (Evans et al., 2015; Ikeya and
Woodward, 2021), and provides additional information via
quantitative measurements on ROS product yields.

ROS are products of oxygen-dependent life in aerobic
metabolism and are generally derived from molecular oxygen
(O2) in redox active processes (Jones and Sies, 2015). The main
initial ROS products in metabolism are superoxide (O2

•−) and
hydrogen peroxide (H2O2) (Schieber and Chandel, 2014), which
have inherent chemical properties that coincide with their reactivity
and regulation within biological pathways. Under normal
physiological levels, ROS serve as oxidative signaling molecules
that affect biological and physiological processes, where excessive
ROS levels lead to oxidative stress (Sies, 2017). Excessive oxidative
stress can result in damage to lipids, proteins, and DNA within cells
and has been linked the onset of several diseases (Cross et al., 1987).
Cells utilize ROS in key signal transduction mechanisms and
mitochondria bioenergetics that are crucial for adaptation to a
changing oxidative environment (Wood et al., 2003; Brandes
et al., 2009).

Mitochondria are the major source of ROS, with topological
assays that show ROS production and contributions from different
metabolic sites (Brand, 2010; Dröse and Brandt, 2012). β-oxidation
is a primary catabolic pathway that involves the degradation of
saturated fatty acids and has been shown as a source of ROS

formation (Bartlett and Eaton, 2004; Rosca et al., 2012). Electron
transfer flavoenzyme (ETF) is the main electron acceptor in
mammalian β-oxidation and serves as an electron funnel from at
least 11 unique flavoprotein dehydrogenases and some amino acid
catabolism (Roberts et al., 1996). The electrons are then transferred
to the ubiquinone pool (Q-pool) via the inter-membrane bound
electron flavoprotein ubiquinone oxidoreductase (ETF-QO)
(Watmough and Frerman, 2010). ETF shuttles electrons by a
single flavin adenine dinucleotide (FAD) cofactor. In addition to
electron transfer, the ETF FAD site can serve as a secondary role for
a ROS oxidative signaling terminal point, which involves the
partitioning of O2

•− and H2O2. ROS are produced through the
interaction of the reduced flavin cofactor with molecular oxygen,
presumably because of a disruption of electron flow to the Q-pool
(Olsen et al., 2007; Burke, 2023).

The local flavin protein environment tunes the relative
thermodynamic midpoint potentials for the three flavin redox
states of oxidized quinone (0e−), radical semiquinone (1e−), and
fully reduced hydroquinone (2e−) (Romero et al., 2018). Therefore,
flavoenzymes produce exclusively O2

•- (1e−) or H2O2 (2e−) or
populations of both ROS, depending on the local flavin
environment. For example, flavodoxins are 1e− transferases
because of the high flavin redox couple, and alternatively,
dehydrogenases form mainly H2O2 due to the low flavin redox
couple. For a magnetic field sensitive flavoenzyme, the redox couple
must be sufficiently low, but not too high, to produce both O2

•− and
H2O2. Human ETF midpoint potentials have been determined for
the Flhydroquinone/Flsemiquinone (−75 mV) and for the Flsemiquinone/
Flquinone (+15 mV), with human ETF shown to produce both O2

•−

and H2O2 (Rodrigues and Gomes, 2012; Henriques et al., 2021).
Some of the local protein environment factors the modulate redox
potentials include solvent accessibility, hydrogen bonding, backbone
amide dipoles, and local charge (Swanson et al., 2008; Usselman
et al., 2008).

Redox active flavoproteins can undergo a proton coupled
electron transfer (1e−) to activate O2 to create a caged RP
between the flavin semiquinone (FADH•) and O2

•− anion,
Scheme 1 (Bruice, 1984; Massey, 1994; Reece et al., 2006;
Chaiyen et al., 2012; Gadda, 2012; Imlay, 2013). Because the
ground state of O2 is a triplet state, FADH•:O2

•− is initially
created in the triplet state. The FADH•:O2

•− presents a spin
selective divergent point to release specific ROS products, where
the reaction can either release O2

•− through the triplet product
channel or with an additional electron transfer can release H2O2

through the singlet channel, Figure 1.
At the RP formation, applied magnetic fields and local hyperfine

interactions affect spin coherences that mix between the triplet and
singlet states (Schulten and Wolynes, 1978). Therefore, internal and

SCHEME 1
A proton coupled electron transfer activates molecular oxygen to form a triplet born spin correlated radical pair, with singlet and triplet coherent
dynamics affected by magnetic fields.

1 Also known as reaction yield detected magnetic resonance (RYDMR).
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external magnetic fields can impact ROS products, redistributing the
relative product ratios. Manipulating ROS levels using magnetic
fields can potentially function as a cellular “redox switch,” which
could have significant biological effects. Further understanding of
quantum processes in this RP redox system could elucidate
fundamental knowledge in ROS quantum biology.

To better understand the role of the RPM in ROS production at
the biomolecular level in flavoenzymes, we selectively measured
O2

•− and H2O2 products with the static magnetic field artificially set
to 50 µT (Earth’s magnetic field) and 20 nT static magnetic fields for
recombinant human ETF. The methodology presented here can be
used to study magnetic field effects in flavoproteins that are potential
candidates for magnetic biosensors.

2 Materials and methods

2.1 Recombinant human ETF ROS assays

The growth and purification of human ETF was completed by
adopting a procedure as previously described (Roberts et al., 1995;
Austvold, 2019). Flavin loading in ETF was determined to be 97% by
protein and flavin absorbance at A280 and A450, respectively. A
24 µM solution of ETF was prepared by diluting a stock solution in
10 mM Tris buffer at pH = 7.5. The ETF solution was then
transferred into an anaerobic cuvette and purged with Argon gas

for 20 cycles. Reduced ETF was formed by enzymatic reduction with
catalytic concentrations of medium chain acyl-coenzyme A
dehydrogenase (MCAD) and octanoyl-CoA. An anerobic solution
of MCAD and octanoyl-CoA was added to initialized reduction with
final concentrations of 20 µM ETF, 0.02 µM MCAD, and 100 µM
octanoyl-CoA. The reaction was monitored at flavin A450 until the
spectrum remained unchanged, approximately 15 minutes at 20°C.
Selective ROS assays were used to quantify H2O2 and O2

•− upon the
re-oxidation of ETF reduced FAD cofactor. 20 μM ETF at 250 µL of
the enzymatically reduced protein was maintained in an anaerobic
environment, then O2 was introduced to the system by the addition
of oxygenated 250 µL Tris buffer pH 7.5 (~250 µM O2) containing
the reagents for separate ETF ROS assays. Amplex Red (100 μM,
0.4 U/mL HRP) and dihydroethidium (DHE, 50 µM) were used to
selectively measure H2O2 and O2

•−, respectively, with reoxidation
occurring within 10 min by monitoring A450. Four separate samples
were analyzed and conducted in triplicates. One ETF sample for
each ROS assay and their corresponding blanks, with quantitation
determined by standard curves for each ROS assay.

2.2 Magnetic field Instrumentation

A tri-axial Helmholtz coil system with a 6-channel DC power
supply was used to control the static magnetic field strength and
direction in each of two temperature controlled environments

FIGURE 1
(left) Activation of molecular oxygen by reduced flavin to produce a spin-correlated radical pair between flavin semiquinone and O2

•−. A magnetic
field sensitive divergent point exists for oxidative signaling that can produce either O2

•− (triplet product) or H2O2 (singlet product). Right (bottom) ETF
X-ray crystal structure (PDB ID: 1EFV) of FAD cofactor in close proximity to the proposed semiquinone stabilizing residue α-249Arg. The distance
indicates a conformational movement is needed for stabilization of the radical pair. Molecular oxygen is modeled into the proposed binding site
nested between conserved hydrogen bonding partners (right top).
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(Usselman et al., 2014). A triaxial magnetic field sensor provided
automatic feedback (PID) that allowed for real-time control of
magnetic fields to cancel out other static magnetic fields present.
The experiments were carried out in a Faraday cage. The static
magnetic fields were set to either 50 µT or 20 nT perpendicular to
the standing cuvette. The samples were held at 20°C during the re-
oxidation of ETF for the selective ROS assays.

2.3 Modeling of realistic flavin-superoxide
radical-pair reactions under static
magnetic fields

Following the RP-based magnetoreception theory (Schulten and
Wolynes, 1978; Timmel et al., 1998; Ritz et al., 2000; Procopio and
Ritz, 2016), we have calculated the singlet (ϕTS ) H2O2 and triplet (ϕ

T
T)

O2
•- product yields of a triplet born flavin-superoxide RP model as a

function of the external magnetic field. The lifetime of the RP was set
to 10 µs, and we have assumed that spin relaxation times are longer
than the radical-pair lifetime. A theoretical static magnetic field
dose-response curve, ranging from 10 nT to 100 μT, was calculated
for ROS production. ROS product yields are shown in Figure 2 for
the H2O2 production (left), and for the O2

•− production (right),
where red triangles depict ROS production at 20 nT and blue
triangles at 50 µT.

Our calculations implemented a realistic flavin-superoxide
RP model, where O2

•− is considered bound to a protein cofactor.
We chose this model because an unbound O2

•− would have a
spin relaxation time too fast for magnetic field effects to occur
(Player and Hore, 2019). In the bound case, O2

•−would
experience some hyperfine interactions from the solvent,
which have been predicted to be up to 120 μT (Hogben,
2011). Thereby, we model a RP with one hyperfine
interaction in the O2

•− radical, and we choose the first seven
largest hyperfine interactions in the flavin radical (Lau et al.,
2012). Furthermore, we have considered the hyperfine
interactions to be isotropic because the two radicals tumble in
solution, thus the anisotropy is averaged out.

3 Results

3.1 ROS partitioning assays

ROS partitioning experiments were conducted with 10 µM ETF and
performed in triplicates for eachmagnetic field strength. TheAmplexRed
assay measured the amount of H2O2 produced within the reoxidation
ETF reaction. The measured H2O2 average concentration for 20 nT was
2.1 ± 0.3 µM and for 50 µT the average concentration was 2.4 ± 0.2 µM.
The results indicate a 13% decrease in H2O2 from 50 μT to 20 nT. The
DHE O2

•- assay showed the amount of O2
•− produced during the re-

oxidation of ETF for 20 nT was 10.6 ± 1.4 µM and for 50 µT was 9.6 ±
0.8 µM. The results show a 10% increase in O2

•− production with the
decrease in magnetic field strength from 50 μT to 20 nT. Relative ROS
yields show an increase from four to five times more O2

•− produced than
H2O2 upon lowering the magnetic field, illustrating an increasing
preference for the O2

•− triplet channel product. Comparative analysis
between the two different magnetic fields has p-values for O2

•− andH2O2

triplicate experiments of 0.29 and 0.36, respectively. Both values indicate a
non-significant difference for experiments in each field condition,
exemplifying the need to reduce error in ROS flavoprotein assays.
Theoretical calculations for H2O2 production decreases from 50 µT
(0.240) to 20 nT (0.220) of about 0.016 (7% decrease). Conversely
O2

•− production increases of the same amount ( ϕT
S+ ϕT

T = 1). Both
results are in agreement with the measured ROS products levels.

4 Discussion

Under normal physiological conditions, ROS are oxidative signaling
molecules that regulate a cellular redox network (Sies et al., 2022).
Overproduction of ROS can lead to oxidative damage and a host of
physiological or pathological outcomes. To better understand the
phenotypic boundary between oxidative signaling or stress,
biomolecular ROS quantification is essential. We demonstrate an
experimental approach that can be utilized for quantitative
measurement of flavoenzyme ROS generation. ETF was chosen due
to its central role in bioenergetics and electron transfer pathway that feeds

FIGURE 2
(Protein bound-Suproxide) Spin dynamic simulation of the singlet yield ϕT

S (top H2O2 production) and triplet yield ϕT
T , (O2

•− production) of a triplet
born radical-pair, as a function of the external magnetic field B (in log scale). The radical-pairmodel includes 7 isotropic hyperfine interactions in the flavin
radical, and one isotropic hyperfine in the superoxide radical. The radical-pair lifetimewas set to 10 μs. The red triangle represents values at 20 nT, and the
yellow triangle values at 50 μT.
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electrons to themitochondria Q-pool. ETFwas enzymatically reduced by
MCAD and then ROS was selectively measured upon the reoxidation of
the flavin cofactor. Our goals were to measure the relative proportions of
ROS and the impact of magnet sensing on ROS product distributions of
ETF. The reoxidation of ETF produced ROS partitioning of
approximately four-fold more O2

•- than H2O2, different than other
findings of ETF ROS production (Rodrigues and Gomes, 2012). Flavin
thermodynamic redox couples contribute to the observed ROS
partitioning, in which the local protein environment tunes the
flavoprotein redox properties (Swanson et al., 2008; Usselman et al.,
2008; McDonald et al., 2011; Gran-Scheuch et al., 2023).

In addition, protein-protein interactions, such as with MCAD,
induce conformational changes that can also impact midpoint
potentials, analogous to points mutations in the vicinity of the flavin
cofactor (Swanson et al., 2008; Usselman et al., 2008; Rodrigues and
Gomes, 2012). Given that the amino acid environment in proximity to
the flavin primarily determines the thermodynamicmidpoint potentials,
the local environment ultimately dictates normal ROS products and
distributions in flavoenzyme structure-function relationships. The
peptide environment around the FAD cofactor is not only crucial for
redox tuning, but also serves as a flexible site for electronic coupling
during electron transfer. A highly conserved arginine residue near the
FAD cofactor was proposed to be responsible for stabilizing the
superoxide radical pair is (Figure 1 right-bottom) (Roberts et al.,
1996). Distance measurements indicate the need for a conformational
movement of this residue during electron transfer to stabilize the
semiquinone state and allow for ROS partitioning.

The protein molecular determinants that give rise to magnetic
sensing are not well-understood and are perhaps rare in biology
(Messiha et al., 2015).We proposed ETF as a potential redoxmagnetic
sensor (Austvold, 2019), where flavin semiquinone radical and O2

•−

form a spin correlated RP initialized in the triplet-state, leading to
characteristicmagnetic field dependence on ROS product yields. Here,
experimental results were conducted to compare the Earth’s static
magnetic field at 50 µT and a lower static magnetic field at 20 nT. ETF
reoxidation assays measured a 13% decrease in H2O2 production and
an increase of 10% O2

•− from 50 µT to 20 nT, Figure 3. The

experimental ROS partitioning demonstrates one of the hallmark
quantum signatures of the RPM in operation for ETF. Of critical
importance is the spatial arrangement of O2 relative to the flavin
group (Chaiyen et al., 2012), as well as the required binding time of
O2

•− in proximity to the semiquinone for sufficient spin correlation.
Recent molecular dynamics simulations discovered several novel ETF
oxygen binding sites in ETF (Nielsen et al., 2019; Salerno et al., 2022),
suggesting that ETF can activate O2 through perhaps an outer sphere
electron transfer. The RP distance can affect spin relaxation and thus
magnetic sensing in the radicals, whereas the problems with spin
relaxation can be essentially removed by a radical scavenger by the
quantum Zeno effect (Kattnig, 2017).

Using the RP theory avian magnetoreception (Ritz et al., 2000),
simulations have been performed to quantify ROS products that are
dictated by coherent dynamics of singlet and triplet RP spin states
(Procopio and Ritz, 2016). We have determined singlet and triplet
product yields, and thus relative distributions of O2

•− and H2O2 as a
function of the static magnetic field strength. A realistic model was
used to calculate the ROS products yields for static magnetic fields
ranging from 10 nT to 100 μT. The theoretical RP results correlate
with the observed ROS yields of a decrease in H2O2 singlet products
and an increase in O2

•− triplet products from 50 μT to 20 nT for the
reoxidation of ETF, Figure 2. Thus, controlling ROS product
channeling can be accomplished by using specific magnetic fields
and configurations (Franco-Obregón, 2023).

Over the past 2 decades, cryptochrome experiments have shown
increasing evidence for magnetic sensing, and more generally, the
involvement of ROS (Ritz et al., 2000; Solov’yov and Schulten, 2009;
Martino and Castello, 2011; Muller and Ahmad, 2011; Arthaut et al.,
2017; Pooam et al., 2020). We previously reported that flavin-
superoxide RP could be a broader magnetic sensing system in redox
cell biology (Usselman et al., 2014; Usselman et al., 2016). Our ROS
cellular research, combined with flavin-superoxide RP theoretical
models, supports biomolecular ROS distributions from the results
obtained through the re-oxidation of ETF. However, recently the
primary magnetic receptor was suggested to be O2

•− itself and
perhaps O2

•− dismutation, with observations supported by cellular

FIGURE 3
(left) ETF reoxidation for measure concentrations of H2O2 singlet product yields at 20 nT and 50 µT. (right) ETF reoxidation for measure
concentrations of O2

•−- triplet product yields at 20 nT and 50 µT.
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(Martino and Castello, 2011), mouse (Carter et al., 2020) and planarian
models (Van Huizen et al., 2019; Kinsey et al., 2023). If flavin-
superoxide RP magnetic sensing is occurring, the discrepancy
among the reports could involve magnetic field conditions that
target different flavoenzymes, i.e., oxidases or monooxygenases
(Massey, 1994; Imlay, 2013; Usselman et al., 2014; Gran-Scheuch
et al., 2023). In addition, less is known about the initial adaptive
ROS cellular responses because of the intrinsic antioxidant
regulatory systems (Sies et al., 2022). Nonetheless, targeting different
ROS producing systems greatly offers an expanded approach for
magnetic field intervention (Vecheck et al., 2024) to remotely hack
the redox code (Jones and Sies, 2015) and impart select cellular
physiological responses.

4.1 Limitations

One of themajor challenges in studying ROS in biological systems is
the difficulty of measurement and quantitation (Dikalov et al., 2007;
Kalyanaraman et al., 2014). Moreover, ROS are not only highly transient
but are produced by many different systems in cell physiology (Murphy
et al., 2022), whereas recombinant flavoproteins offer a reductionist
biomolecular approach to identify magnetic-induced ROS partitioning.
However, uncertainty in protein concentration and flavin loading can
lead to errors as well, in addition to the ROS assays, especially measuring
superoxide. In addition, changes in reaction yields via the RPM are
usually less than 10%, therefore, requiring an increased minimization of
error in experimental procedures.

5 Conclusion

Many oxidative metabolic pathways occur within the
mitochondria and involve redox intermediates that can interact
with O2 to produce ROS, including ETF/ETF-QO (Watmough and
Frerman, 2010; Perevoshchikova et al., 2013). Therefore,
mitochondria are a vital source of ROS production within
eukaryotic cells (Jones and Sies, 2015) and throughout the
microbial biosphere (Imlay, 2013). ROS signaling by
mitochondrial enzymes, including ETF, play a fundamental role
in oxidative signaling (Sies et al., 2022), where the progression to
cellular dysfunction can ultimately lead to inflammation and disease.
While the effects of different magnetic field environments can alter
ROS production (Barnes and Greenebaum, 2018; Gurhan et al.,
2021), the persistent changes of oxidative signaling can have longer
term impacts on cell physiology (Thoni et al., 2022; Franco-
Obregón, 2023). Here, we show that ETF should be considered a

target for further RPM investigations due to the importance of
mitochondria bioenergetics, especially for biomedical engineering
and therapeutic potential. Particularly, the intersection of electric
voltages and magnetic spins offers a novel approach to investigate
the connection between energy and living systems (Lee et al., 2023).
The low magnetic fields strengths studied here also illustrate the
importance of understanding how spin mechanisms could impact
space health and agriculture.
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