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In Guangxi, Hainan, and Fujian Province in southern China, β-thalassemia is a
frequent monogenic hereditary disorder that is primarily defined by hemolytic
anemia brought on by inefficient erythropoiesis. It has been found that ineffective
erythropoiesis in β-thalassemia is closely associated with a high accumulation of
Reactive oxygen species, a product of oxidative stress, in erythroid cells. During
recent years, ferroptosis is an iron-dependent lipid peroxidation that involves
abnormalities in lipid and iron metabolism as well as reactive oxygen species
homeostasis. It is a recently identified kind of programmed cell death.
β-thalassemia patients experience increased iron release from
reticuloendothelial cells and intestinal absorption of iron, ultimately resulting
in iron overload. Additionally, the secretion of Hepcidin is inhibited in these
patients. What counts is both ineffective erythropoiesis and ferroptosis in
β-thalassemia are intricately linked to the iron metabolism and Reactive
oxygen species homeostasis. Consequently, to shed further light on the
pathophysiology of β-thalassemia and propose fresh ideas for its therapy, this
paper reviews ferroptosis, ineffective erythropoiesis, and the way they interact.
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1 Introduction

Thalassemia, a frequent monogenic hereditary disorder, consists mainly of α-
thalassemia and β-thalassemia (β-thal). Point mutations or deletions of the β-globin
gene cluster, which is located on the human chromosome 11 p15.3 locus, induce β-thal
pathogenicity by reducing or eliminating β-globin synthesis (Taher et al., 2018). Hemolytic
anemia is the main pathological manifestation of β-thal, and hemolysis occurs for two
reasons: premature destruction of erythroid precursor cells, and shortening of the lifespan
of mature erythrocytes in the circulation (Fibach and Dana, 2019). At present, β-thal is
mainly treated with blood transfusion, iron chelation, stimulation of fetal hemoglobin
synthesis, bone marrow transplantation, and gene therapy (Ali et al., 2021).

Anemia in individuals who have β-thal is primarily triggered by ineffective
erythropoiesis (IE). Research on the erythrocyte and iron kinetics in β-thal sufferers
indicates that around 65% of nucleated erythrocytes perish before maturation
(Pootrakul et al., 2000). Reactive oxygen species (ROS) deposition is a significant driver
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of, IE as well as one of its effects, which can cause oxidative stress in
the erythroid cells. Excessive ROS in β-thal is mainly produced by
mitochondrial impairment due to chronic anemia caused by, IE
(Tyan et al., 2014).

The concept of ferroptosis, a recently identified kind of
programmed cell death, was introduced in 2012 by Brent R.
Stockwell’s team. Ferroptosis is an iron-dependent lipid
peroxidation that involves imbalances in lipid homeostasis, iron
homeostasis, and ROS homeostasis (Fuhrmann and Brüne, 2022).
Since ferroptosis is caused by an excess of iron, iron’s involvement in
the disease is undeniable (Mancardi et al., 2021). Furthermore, iron
overload is one of the important complications of β-thal, which can
be caused by exogenous blood transfusion and, IE. Given the
increased research on, IE and ferroptosis in β-thal, this review
aims to comprehensively summarize the intricate interplay
between, IE and ferroptosis in β-thal, to shed further light on the
pathophysiology and propose fresh ideas for its therapy.

2 IE in β-thal
Aberrant erythroid cell maturation and differentiation are

hallmarks of, IE, which is not the main cause of β-thal, but it
keeps patients with β-thal in a harmful state. IE roughly undergoes
four stages, starting with the expansion of erythroid progenitors,
followed by accelerated erythroid differentiation to the
polychromatic erythrocyte stage, followed by blockage of
polychromatic erythrocyte maturation and, finally, an increase in
polychromatic erythrocyte death (Arlet et al., 2016). Interestingly, a

number of scholars have studied the mechanism of four stages of
ineffective erythropoiesis, and studies have shown that iron
metabolism and ROS homeostasis are crucial in all four of
them (Figure 1).

2.1 The main causes of IE

2.1.1 Abnormal proliferation and differentiation of
erythroid hematopoietic progenitor cells

The differentiation and maturation of erythroid cells involves
several stages. Firstly, pluripotent hematopoietic stem cells
proliferate and differentiate into erythroid hematopoietic
progenitor cells. Subsequently, the erythroid hematopoietic
progenitor cells differentiate into the stages of proerythrocytes,
early erythroblasts, intermediate erythroblasts, late erythroblasts,
and reticulocytes. Finally, reticulocytes enucleate to form mature
erythrocytes (Caulier and Sankaran, 2022). Increasing studies
showed that erythroid hematopoietic progenitor cells exhibit a
noteworthy increase in cell proliferation in β-thal patients (Ribeil
et al., 2013). According to Ramos, an intermediate β-thal mouse
model reveals the development of erythroid hematopoietic
progenitor cells, with the expansion being significantly more
prominent in the spleen than in the bone marrow (Ramos et al.,
2013). This was attributed to hypoxia in the tissues of patients with
β-thal, which stimulates hypoxia-inducible factor α2 to enhance
erythropoietin (EPO) production (Huang et al., 2019). EPO serves as
a crucial driver for erythropoiesis, and its excessive production is
anticipated to augment the amount of mature erythrocytes by

FIGURE 1
Regulation mechanisms of differentiation and maturation of erythroid cells in, IE. The maturation of erythrocytes needs to go through
hematopoietic stem cells, erythroid progenitor cells, erythroid precursor cells, and erythrocytes stages. As shown in the figure, when, IE occurs, various
stages of differentiation and maturation of erythroid cells are respectively affected by several molecular mechanisms. Moreover, ROS homeostasis is in a
key position in the occurrence of, IE, which connects themolecularmechanisms at each stage. (Abbreviations: BFU-E, burst-forming unit-erythroid;
CFU-E, colony forming unit-erythrocyte; HIF α2, hypoxia-inducible factorα2; EPO, Erythropoietin; AHSP, α-hemoglobin stabilizing protein; HbA1,
hemoglobin A1; HSP70, heat shock protein 70; ROS, reactive oxygen species; GDF11, 15, growth differentiation factor 11,15; ActRIIA, ActRIIB, activation of
activin receptors IIA, IIB).
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raising the percentage of erythroid hematopoietic progenitor cells
(Gupta et al., 2018). This compensatory mechanism leads to
extramedullary hematopoiesis, and damaged erythroblasts are
cleared by macrophages and reticuloendothelial system within the
splenic sinusoids, ultimately causing some patients with β-thal to
present with splenomegaly.

2.1.2 Abnormal differentiation of erythroid
precursor cells

Erythroid precursor cells encompass cells at various stages
ranging from proerythroblasts to orthochromatic erythrocytes.
Although the production of erythroid progenitor cells is
increased in β-thal in response to EPO, the demise of erythroid
precursor cells remains inevitable. The reduction or absence of β-
globin within the erythroblasts of those with β-thal causes a
discrepancy in the proportion of α-globin and β-globin over the
development of erythroid cells. Additionally, excess α-protein is
deposited on the cell membranes, damaging the erythroid precursor
cells and ultimately resulting in anemia (Higgs et al., 2012; Cazzola,
2022). There is a scavenger protein in normal erythroblasts, called α-
hemoglobin stabilizing protein (AHSP), which can effectively
prevent cell membrane damage caused by small amounts of α-
globin protein precipitation (Han et al., 2022). Notably, the latest
study has found that AHSP is not sufficient to control excess
excessive levels of α-globin in β-thal (Che Yaacob et al., 2020).
As a result, erythroid precursor cells in β-thal have increased death
and are cleared by macrophages and the reticuloendothelial system.

2.1.3 Abnormal maturation of erythroblasts
During the maturation of erythroid cells, alterations in proteins

and cytokines are intricately linked to, IE. Glutathione peroxidase 4
(GPX4), an antioxidant enzyme, has been reported to be required for
the maturation of erythroid cell. Decreased expression of
GPX4 leading to hemolytic anemia and increased splenic
erythroid progenitor cells death was observed in mouse
hematopoietic cells, and Altamura also noted that low expression
of GPX4 corresponds to reticulocyte maturation problem (Altamura
et al., 2020). It is unclear how GPX4 influences erythropoiesis,
although the research indicated that it can influence nucleus
extrusion by performing a part in the lipid raft organization
(Ouled-Haddou et al., 2020).

The transient activation of cysteine aspartate specific protease-
3 (Caspase-3) is necessary for erythroblasts maturation, and
GATA-1 is also essential for the maturation of erythroblasts
(Dong et al., 2020). In the terminal stage of normal erythroid
cells differentiation and maturation, Heat shock protein 70
(HSP70) is translocated from the cytoplasm into the nucleus,
and it can serve as a chaperone protein within the nucleus to
shield the GATA-1 from being cleaved by Caspase-3 (Ribeil et al.,
2007; Arlet et al., 2014). The localization of HSP70 is regulated by
the export protein-1, which regulates the export of HSP70 from the
nucleus to the cytoplasm. However, α-globin amassment in β-thal
leads to HSP70 sequestration within the cytoplasm, compromising
its protective effect on GATA-1 and ultimately impeding
erythroblasts maturation (Guillem et al., 2020).

Another contributing factor for erythroblasts maturation is the
presence of growth differentiation factor 11 (GDF11) and 15
(GDF15), which belong to the transforming growth factor-β

(TGF-β) superfamily and influence erythroid maturity by
modulating the Smad2/3 signaling pathway. In addition, it has
been suggested that GDF11 and GDF15 inhibit erythroid
maturation through activation of activin receptors IIA (ActRIIA)
and IIB (ActRIIB) (Suragani et al., 2014b). According to research by
Ranjbaran, GDF15 expression progressively rises through late-stage
erythroid division and negatively regulates erythroblasts growth,
development, and proliferation of proliferation of erythrocytes
(Ranjbaran et al., 2020). Furthermore, Dussiot revealed that the
RAP-536 and RAP-011, ligands for activin receptor IIa, exhibit
potential in ameliorating, IE in a mouse model of β-thal (Dussiot
et al., 2014). What is more, the GDF11-mediated Smad2/3 signaling
pathway is substantially repressed by RAP-536, which binds to
GDF11 and promotes the maturation of late erythroid precursor
cells (Suragani et al., 2014a). RAP-011 may alleviate anemia
symptoms associated with β-thal by mitigating the detrimental
effects caused by GDF11 through mechanisms involving the
mitigation of cellular oxidative damage and the prevention of α-
globin precipitation.

2.1.4 Reduced lifespan of mature erythrocytes
HbA1, a tetramer made up of two α- and two β-globin chains, is

the most prevalent kind of hemoglobin in healthy adults. According
to the production of the β-protein chain, patients with β-thal can be
classified into β+-thalassemia (reduced β-globin chain synthesis) and
β0-thalassemia (complete inability to synthesize β-globin chain)
(Jaing et al., 2021). The reduction or absence of β-globin leads to
an imbalance between α-globin and β-globin, and excess α-globin
accumulates in erythrocytes, resulting in a tendency for excess
unstable α-globin chains to bind heme, forming highly insoluble
α-globin inclusions (haemichromes), which are deposited on cell
membranes, altering the permeability of the erythrocyte membranes
(Higgs et al., 2012; Longo et al., 2021). Alterations in erythrocyte
membrane permeability lead to a decrease in the efficiency of ATP
production and a reduction in the total lifespan of erythrocytes,
inducing erythrocyte death, which contributes to, IE and heightened
hemolysis (Zahedpanah et al., 2014).

2.2 The effect of severe ROS buildup in IE

A by-product of living organisms’ ordinary oxygen metabolism
is ROS. It is extremely important in maintaining homeostasis and
signaling within cells. On the other hand, ROSmay seriously fry cells
when their levels climb abruptly, which is known as oxidative stress
(Yang and Lian, 2020). Erythroid cells primarily generate ROS
through enzymatic reactions and non-enzymatic reactions.
Activation of NADPH oxidase and hemoglobin auto-oxidation
contribute significantly to the substantial intracellular ROS
production in erythroblasts (Bettiol et al., 2022). The dynamic
fluctuations in ROS amounts in erythroid cells throughout
various growing phases have been demonstrated in previous
research. The erythroblasts of β-thal exhibit a greater amount of
ROS contrasted with standard erythroid precursor cells, especially in
the subsequent steps of erythroid maturity. Therefore, the
overproduction of ROS adversely impacts the differentiation and
maturation processes of erythroid cells (Fibach and Dana, 2019;
Yang et al., 2023). The deleterious impact of ROS accumulation on
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hematopoietic progenitor cells was conducted in another work by
Ludin, thereby highlighting the significant role of ROS accumulation
on, IE (Ludin et al., 2014).

The main causes of excess production of ROS in β-thal are the
accumulation of α-globin and iron overload. On one hand, excess
unstable α-globin chains bind with heme to form haemichromes
that are deposited in the erythroblasts’ membrane. These
haemichromes are extremely hazardous and may initiate the
production of ROS, including hydroxyl radicals, thereby causing
oxidative damage in erythroid cells (Matte and De Franceschi,
2019). The ROS generated by haemichromes on the
erythroblasts’ membrane poses a challenge to removal by the
cytoplasmic antioxidant system, and readily oxidizes lipid and
protein constituents of the cell membrane, leading to severe
oxidative damage. On the other hand, β-thal is characterized by
iron excess, provoking the Fenton reaction to produce ROS,
certainly impacting, IE (Gupta et al., 2018). Moreover, iron
serves as a vital cofactor for oxidoreductases in the mitochondrial
electron transport chain and generates excess ROS through this
electron transport chain (Read et al., 2021).

As the most representative protein in the erythroblasts’
membrane, twenty-five percent of the membrane proteins are
composed of the human band 3 protein. It is known as the
“anion channel” and has two structural domains, a
transmembrane domain and a cytoplasmic domain, which are
involved in transmembrane information transfer and the
management of the development and differentiation of cells
(Remigante et al., 2021). One possible mechanism is that ROS
accumulation due to aberrant oxidative stress in erythroid cells
affects erythropoiesis by inducing oxidative denaturation of the
band 3 protein. Oxidative denaturation of the protein reduces the
erythroblasts membrane’s deformability and makes it more
susceptible to clearance by immune organs such as the spleen,
ultimately leading to anemia (Pantaleo et al., 2008).

According to current studies, several molecular mechanisms may
be involved in the promotion of ROS overproduction in erythrocytes
by the oxidative system. Firstly, in the Hbbth3/+ mouse model of
β-thal, 20-hydroxyeicosatetraenoic acid, a metabolite of Cytochrome
P450 4A/F (CYP4A/F), mediates ROS overproduction through a
NADPH-dependent pathway (Bou-Fakhredin et al., 2021).
Secondly, the generation of ROS and, IE is stimulated by the
downregulation of isocitrate dehydrogenase 1 along with an
increase in α-ketoglutarate (Gonzalez-Menendez et al., 2021).
Finally, miRNA has been confirmed to regulate ROS levels and
consequently impact, IE. For instance, aberrant expression of miR-
9 can inhibit the expression of Forkhead box O3, an erythroid
transcription regulator, leading to increased ROS levels and
impaired erythropoiesis (Zhang et al., 2018). Besides, miR-214
affects the oxidative damage of erythroid cells by regulating the
level of activating transcription factor 4, and a positive correlation
exists between the expression degree and ROS levels., thereby affecting
the production of erythrocytes (Saensuwanna et al., 2021).

3 Ferroptosis

Ferroptosis can be suppressed by lipid peroxidation inhibitors,
which is thought to be triggered by lipid peroxidation that depends

on iron (Capelletti et al., 2020; Jiang et al., 2021). The morphological
manifestation of ferroptosis is distinguished by diminished
mitochondrial cristae, atrophy of entire mitochondria, normal
size of the nucleus, and intact cell membrane. Functionally,
ferroptosis serves as an essential physiological mechanism for the
maintenance of homeostasis in the body’s internal environment, as
well as a pathological mechanism underlying the onset and
development of human diseases. Growing evidence suggests that
ferroptosis is present in various disorders, and it plays a very
different role in different diseases (Liu et al., 2022). For
examples, promoting ferroptosis in cancer cells is beneficial for
cancer treatment, however, ferroptosis is one of the
pathophysiological mechanisms in neurodegenerative disorders
(Lei et al., 2022; Ryan et al., 2023). Initially, the value of
ferroptosis in aging and embryonic erythropoiesis was
established, and Somanathapura determined that heme-mediated
ferroptosis could be crucial in hemolytic disorders (NaveenKumar
et al., 2018; Zheng et al., 2021). β-thal, a kind of hemolytic anemia, is
closely related to abnormal embryonic erythropoiesis, thus, its
pathogenesis may be probably highly linked to ferroptosis. The
mechanisms of ferroptosis related to β-thal and the occurrence and
regulation of ferroptosis are summarized in Figure 2.

3.1 Mechanisms of ferroptosis

3.1.1 Iron overload is an important cause of
ferroptosis

Iron overload is a pivotal component in the occurrence of
ferroptosis. The addition of exogenous iron heightened HT-1080
cells’ susceptibility to ferroptosis inducers (Dixon et al., 2012).
Notably, several iron-containing enzymes such as 12-lipoxygenase
and Cytochrome P450 oxidoreductase are known to have a
promotional role in facilitating lipid peroxidation, thereby driving
ferroptosis (Stockwell, 2022). While maintaining appropriate levels
of iron is vital for regular physiological activities, excessive
accumulation can cause cellular ferroptosis (Li et al., 2020). The
above evidence underscores the critical involvement of iron in
mediating ferroptosis.

Iron metabolism is mainly regulated by substances secreted by
the liver such as Transferrin (TF), Transferrin receptor (TFR),
Ferritin and Hepcidin. They are vital in maintaining systemic
iron equilibrium (Rochette et al., 2022). With a molecular weight
of roughly 80 kDa, TF is a glycoprotein generated in the liver and
transported into the bloodstream. It contains two specific high-
affinity binding sites that bind Fe3+ and transport them to various
tissues and organs (Kawabata, 2019). TFR acts as a receptor ligand
for TF. In normal iron metabolism, Fe2+ released from intestinal
absorption as well as erythrocyte destruction is oxidized to Fe3+ by
metal oxidases, and the TF-Fe3+ complex formed by the binding of
Fe3+ to TF, which binds to TFR1 and enters the cells (Berdoukas
et al., 2015). Gao’s study revealed that TF serves as an inducer of
ferroptosis, and TFR exhibits a close association with this process
(Gao et al., 2015). Furthermore, ferritin also exerts a regulatory effect
on ferroptosis. A prominent kind of iron-storing protein, ferritin is
composed of 24 subunits, the light chain (FTL) and heavy chain
(FTH) of which may store up to 4,500 iron atoms apiece (Plays et al.,
2021). By increasing free iron through ferritin autophagy, a selective
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autophagy mechanism that targets ferritin, ferritin might encourage
ferroptosis (Li et al., 2022). Hou demonstrated that autophagy
induces ferroptosis through the degradation of ferritin in
fibroblasts and cancer cells (Hou et al., 2016). However, when
excess iron continues to accumulate in the body beyond the
transport capacity of TF saturation (>70%), Non-Transferrin
Bound Iron (NTBI) and Labile Plasma Iron (LPI) levels are
elevated, leading to the formation of unstable intracellular labile
iron pools (LIP) and causing iron overload.

3.1.2 ROS imbalance plays an important role in
ferroptosis

Lipid peroxidation is the fundamental root cause of ferroptosis,
and since lipids make up the majority of cell membranes, they are
also the dominating targets of ROS. It causes an imbalance in the
cellular oxidative homeostasis, which in turn triggers oxidative
damage and ferroptosis. The Malondialdehyde and 4-
hydroxynonenal acid are the end products of lipid peroxidation,
which can be driven by enzymatic reactions. The specific
mechanism by which enzymatic reactions cause lipid

peroxidation is that Acyl-CoA synthetase long-chain family
member 4 (ACSL4) and Lysophosphatidylcholine acyltransferase-
3 (LPCAT3) first activate polyunsaturated fatty acids (PUFAs) to
bind to lipids in the cell membrane (e.g., phosphatidylethanolamine
PE), forming the PUFA-PE complex (Su et al., 2019). Subsequently,
the PUFA-PE complex undergoes catalysis by lipoxygenases (LOXs)
and cyclooxygenases (COXs), resulting in lipid peroxidation (Shah
et al., 2018). Non-heme iron-containing dioxygenases, or LOXs,
have been demonstrated to specifically target and oxidize PUFAs,
hence promoting lipid peroxidation ultimately triggering ferroptosis
(Wang et al., 2021).

Morphological alterations to the mitochondria occur during
ferroptosis when atrophy of the whole mitochondria and a decrease
in mitochondrial cristae are seen. Concurrently, the mitochondrial
membrane potential also changes, which is mediated by the presence
of a voltage-dependent anion channel (VDAC) on the membranes.
Erastin works on mitochondrial VDAC and releases a significant
quantity of ROS, which ultimately causes ferroptosis (Yagoda et al.,
2007). Many metabolic pathways associated with mitochondria,
such as the mitochondrial tricarboxylic acid cycle and electron

FIGURE 2
Mechanisms of ferroptosis in β-thal and occurrence and regulation of ferroptosis. Ferroptosis in β-thal is thought to be caused by excessive iron-
dependent ROS production, and it is driven by iron-dependent lipid peroxidation. Therefore, ferroptosis is characterized by an imbalance in iron
homeostasis and ROS homeostasis. It is interesting to note that mitochondria are crucial for controlling ROS homeostasis. Moreover, system Xc−, Nrf2,
and GPX4 are the primary regulators of ferroptosis. (Abbreviations: VDAC, voltage-dependent anion channel; ROS, reactive oxygen species; GSSH,
oxidized glutathione; GSH, glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; GPX4, glutathione peroxidase 4; LPCAT3,
lysophosphatidylcholine acyltransferase-3; ACSL4, Acyl-CoA synthetase long-chain family member 4; β-thal, β-thalassemia; TCA, tricarboxylic
acid cycle).
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transport chain, have the capability to generate ROS. Excessive ROS
production leads to detrimental effects on mitochondrial proteins
and lipids, causing oxidative damage and facilitating ferroptosis
(Battaglia et al., 2020). Furthermore, it is also critical to keep in mind
that aberrant iron metabolism, lipid peroxidation, and aberrant
mitochondrial function all work together to release ROS, rather
than each occurring alone.

The underlying cause of ferroptosis is a disequilibrium between
the body’s oxidants and antioxidants. As an antioxidant enzyme,
GPX4 may efficiently reduce lipid peroxidation (Ursini and
Maiorino, 2020). Ferroptosis can be inhibited by boosting the
expression of GPX4. Conversely, inhibition of GPX4 expression
promotes ferroptosis. GPX4 converts glutathione (GSH) to oxidized
glutathione (GSSG) and converts lipid peroxides to the
corresponding alcohols, thus preventing the occurrence of Fenton
reactions and subsequently inhibiting ROS generation (Forcina and
Dixon, 2019). Hence, GPX4 acts a pivotal part in preserving the
body’s oxidative equilibrium, restraining lipid peroxidation, and
suppressing ferroptosis (Liu Y. et al., 2023).

A key component of the cellular antioxidant system, System Xc−

is a type of amino acid anti-transporter that is substantially
dispersed in a lipid bilayer and is a very selective cystine uptake
system (Liu et al., 2021). System Xc− consists of two subunits, one is
solute carrier family 7 member 11 (SLC7A11) and the other is solute
carrier family 3 member 2 (SLC3A2), which enables the import of
cystine from the extracellular space. Intracellular cystine is reduced
to cysteine by cystine reductase, and the cysteine is utilized by
Geosynthetic clay liner (GCL) and Glutathione synthetase (GSS)
enzymes for GSH production (Seibt et al., 2019). Thus, any
impairment to either of the system Xc−-glutathione-GPX4 axis
compromises the conversion of lipid peroxides to the
corresponding alcohols, ultimately hampering the
GPX4 antioxidant effect and giving rise to ferroptosis (Chen
et al., 2021).

Nuclear factor erythroid 2-related factor 2 (Nrf2) has been
found to be a key regulator in inhibiting ferroptosis. Nrf2 is
considered to be a key part of organismal antioxidants since
several of Nrf2’s downstream genes—including the previously
described system Xc− and GPX4 are involved in reversing
ferroptosis (Somparn et al., 2019). The downstream targets of
Nrf2 can be classified into three categories, which are the
regulation of iron metabolism, intermediary metabolism, and
glutathione synthesis/metabolism (Dodson et al., 2019).
Notably, Nrf2 governs various aspects of iron metabolism by
regulating key players including FTL and FTH, which stores
iron, and FPN, which transports iron. In addition,
SLC7A11 and GCL have also been shown to be regulated by
Nrf2(Kang et al., 2021). According to what is stated above,
Nrf2 inhibits ferroptosis through multiple pathways.

3.2 Ferroptosis in HSCs

Hematopoietic stem cells (HSCs) are the source of human
blood cells because they have the capacity to self-renew, self-
repair, and rebuild hematopoietic function. The capacity to
rebuild hematopoietic function refers to the ability to
preserve and permanently restore normal hematopoietic

function in the future. Furthermore, because HSCs are able to
self-renew and self-repair, their replication is asymmetrical, with
one daughter cell retaining all of the features of hematopoietic
stem cells and the other daughter cell continuing to proliferate
and differentiate (Sakurai et al., 2023). Due to the remarkable
potential of HSCs, numerous investigations have been
conducted to cure blood systemic illnesses by specifically
targeting HSCs. Among these, HSCs transplantation is a
treatment option for individuals with β-thal major who
depend on blood transfusions (Wu et al., 2019).

It is crucial to comprehend the mechanism causing HSCs
destruction because it has a bearing on the production and
functionality of blood cells. According to recent research,
ferroptosis has an effect in HSCs damage. Zhao discovered that
when MYSM1 is faulty, HSCs exhibit elevated levels of oxidative
stress and iron metabolism abnormalities by examining proteins
linked to iron metabolism and measuring total ROS levels. The
damage to HSCs that results in MYSM1 deficiencies is caused by
ferroptosis. Ferroptosis inhibitors have also been shown to
ameliorate HSC deficiencies in MYSM1 function loss (Zhao
et al., 2023). There has also been revealing on a study on
ferroptosis in HSCs. The researchers demonstrated that
erythrocytes production is aberrant in alas2-oralad defective
embryos using a zebrafish model. By upsetting iron homeostasis,
heme-deficient proerythroblasts cause ferroptosis in hematopoietic
stem and progenitor cells (HSPCs). Furthermore, ferroptosis
inhibitor therapy can reverse the abnormalities in HSPCs(Lv and
Liu, 2023). The above studies have shown that damage to HSCs is
associated with ferroptosis, which involves iron metabolism and
oxidative stress.

3.3 Ferroptosis in IE related diseases

In addition to β-thal, IE also happens to be present in various
hematological disorders, including congenital dyserythropoietic
anemia, hereditary sideroblastic anemia, and anemia in acquired
conditions such myelodysplastic syndrome (MDS) (Cazzola, 2022).
Although there are no studies showing that ferroptosis is involved in
the, IE of β-thal, researches have shown that ferroptosis is
participating in other hematological diseases present with, IE.

X-linked sideroblastic anemia is a disease in which mutations in
the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene
cause excess iron accumulation and, IE. The researchers
constructed a model that introduced the ALAS2 missense
mutation erythroblasts derived from human cord blood, in which
enhanced BACH1 expression was emerged, leading to increased
susceptibility to ferroptosis (Ono et al., 2022). Liu established a
mouse model of aplastic anemia with iron overload and discovered
that via stimulating the Nrf2/HO-1 and PI3K/AKT/mTOR
pathways, panaxadiol saponin suppressed ferroptosis in these
mice (Liu W. et al., 2023). Furthermore, the IE-related sickle cell
anemia pathogenesis involves a point mutation in the β-globin gene,
like the pathophysiology of β-thal (El Hoss et al., 2021). By
controlling the levels of l-2-hydroxyglutarate (L2HG),
Nrf2 causes ferroptosis in sickle cell anemia (Xi et al., 2023).
Therefore, ferroptosis is present in these blood system diseases
associated with, IE.
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4 Ferroptosis and IE in β-thal
4.1 Hypothesis of ferroptosis in β-thal

We hold the view that ferroptosis interacts with, IE in β-thal.
As previously mentioned, ferroptosis performs a role in several
hematological disorders where, IE is present, and, IE is a
pathogenesis associated with β-thal. Iron overload is a major
complication of β-thal and a critical link in ferroptosis.
Furthermore, IE and ferroptosis both exhibit an imbalance in
ROS in β-thal. Consequently, there is cause for concern that
ferroptosis and β-thal are associated through, IE, with iron
metabolism and oxidative stress serving as the specific
mechanisms.

4.2 Potential mechanism

On the one hand, ROS imbalance may be an intermediate link in
the interaction between ferroptosis and, IE in β-thal. The specific
mechanism by which ROS imbalance leads to ferroptosis has been
described in section 3.1.2. Vitamin E, an antioxidant, has been
shown to inhibit cells from undergoing ferroptosis (Su et al., 2020;
Wu et al., 2021). The influence of ROS imbalance in, IE of β-thal is
also described in section 2.2 above. As well as when patients with β-
thal were exogenously supplemented with vitamin E, researchers
found that antioxidants could mitigate oxidative stress in
erythrocytes through multiple targets, thereby impacting iron
overload (De Franceschi et al., 2013). Consequently, both
ferroptosis and, IE are closely related to oxidative damage
in the body.

On the other hand, iron overload may also be an intermediate
link in the interaction between ferroptosis and, IE in β-thal.
Wang’s study showed that ferroptosis was observed in murine
models of hemochromatosis, which is a disease related to iron
overload (Wang et al., 2017). Iron overload is an important
complication in individuals with β-thal, so the observation of
ferroptosis in iron overload diseases provides indirect support
for the hypothesis that ferroptosis is involved in β-thal. The
specific mechanism of ferroptosis caused by iron overload is
described in section 3.1.1 and iron overload is widespread in
patients with β-thal. Based on the need for transfusion therapy,
β-thal can be classified as transfusion-dependent β-thal (TDT) and
non-transfusion-dependent β-thal (NTDT) (Crisponi et al., 2019).
There are three categories of β-thal based on how severe the
disorder is the β-thal major, β-thal intermedia, and the β-thal
carrier condition (Origa, 2017). Several factors have been identified
as the pathogenesis of iron overload in β-thal. Firstly, excessive
iron intake is caused by multiple blood transfusions in TDT
patients, which require blood transfusion therapy. Secondly,
excessive iron is absorbed into the circulation through the
intestine in β-thal intermedia (Musallam et al., 2021). Thirdly,
iron overload is caused by, IE that leads to hemolysis in patients
with β-thal. Hemolysis of erythrocytes contributes to the iron
release from hemoglobin, which causes iron overload. Porter
demonstrated that patients with β-thal treated with
Luspatercept, a drug used for managing, IE, can ameliorate iron

overload (Porter et al., 2019). This finding further substantiates the
role of, IE in causing excessive accumulation of iron. Fourthly,
Hepcidin starvation explains phenomenon that iron overload in
patients with β-thal who have not been treated with blood
transfusion. Hepcidin is an essential peptide hormone
comprising 25 amino acids that is synthesized and secreted by
hepatocytes. Hepcidin prevents iron overload by reducing serum
iron concentration through binding to the Ferroportin (FPN) on
the basolateral aspect of the intestinal epithelium and the plasma
membrane of macrophages (Camaschella et al., 2020). Several
studies have substantiated that enhancement of Hepcidin
activity in a murine model of β-thal can effectively mitigate, IE
(Cazzola, 2022). It has been suggested that Bone Morphogenetic
Proteins 6,2(BMP6,2) and IL-6 can upregulate Hepcidin, while
FKBP12 and transmembrane serine protease matriptase 2,
encoded by TMPRSS6 can inhibit Hepcidin (Camaschella et al.,
2020). They are regulated by anemia, hypoxia, and inflammation
(Nicolas et al., 2002). IL-6 upregulates Hepcidin via the IL-6R-
JAK2-STAT3 signaling pathway. In patients with β-thal, Hepcidin
is mainly regulated by GDF15, erythroferrone, and TfR1. In β-thal,
elevated EPO stimulates erythroblasts to secrete erythroferrone,
which hinders Hepcidin through the BMP-SMAD pathway,
leading to iron overload. Hepatocyte TfR1 interacts with HFE
to inhibit the secretion of Hepcidin (Xiao et al., 2023). GDF15 is
thought to contribute to the inhibition of Hepcidin secretion
(Tanno et al., 2010). However, the mechanism of GDF15 in
regulating Hepcidin needs to be further investigated (Srole and
Ganz, 2021).

In conclusion, iron metabolism and oxidative damage-
mediated ferroptosis are not independent processes but are
interrelated processes. Iron as a redox-active metal has the
ability to produce ROS, not only via the Fenton reaction but
also through REDOX reactions occurring during the conversion
between Fe3+ and Fe2+(Thévenod, 2018). The mechanism by
which iron exerts its influence on the body is inextricably
linked with the antioxidant system. Regarding how iron
overload and imbalance in ROS homeostasis affect, IE in
patients with β-thal, the current research suggests that iron
overload leads to an imbalance in ROS homeostasis, which in
turn causes oxidative damage to erythroid cells. Furthermore,
the dysregulation of Hepcidin and Ferritin expression in
ferroptosis has implications for, IE. In a mouse model of
β-thal, reducing, IE can be achieved by enhancing Hepcidin
activity or inhibiting Ferritin function to restrict iron production
(Jiao et al., 2022). In addition, decreased expression of GPX4 in
ferroptosis can affect, IE through modulation of oxidative and
antioxidant systems. Vuren revealed that the relative deficiency
of GPX4 disrupts mitophagy, which subsequently leads to the
failure of reticulocyte maturation and affects, IE (van Vuren
et al., 2020).

5 Conclusion and future perspectives

In brief, β-thal is a prevalent monogenic genetic disorder with a
global impact. Despite extensive research on the pathogenesis and
treatment of β-thal over several decades, the underlying mechanism
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of, IE in this condition remains elusive. IE can trigger iron overload,
and ferroptosis, a regulated cell death process triggered by iron
overload, has the ability to potentially modulate, IE. Consequently, a
close interplay exists between, IE, iron overload, and ferroptosis in
the circumstances of β-thal. This review summarizes certain
interactions between, IE and ferroptosis in β-thal and proposes
an innovative path for research that could enhance the anemic
symptoms of β-thal.

Nowadays, the two primary techniques for identifying
ferroptosis are direct examination of mitochondrial morphology
using transmission electron microscopy, and indirect detection of
lipid peroxidation-related markers such as Fe2+, ROS, GSH,
malondialdehyde (MDA), LPO, and GPX4. The lack of specificity
of indicators hampers the determination of ferroptosis in iron
overload induced, IE. Therefore, it is imperative to identify
specific biomarkers associated with ferroptosis. Although it is
clear that iron metabolism and ROS metabolism participate in
the interaction between, IE and ferroptosis, the specific molecular
mechanisms of iron or ROS metabolism are still unclear, and the
common molecular mechanisms of iron and ROS are also not
clarified. This suggests that the mechanism of the interactions
between, IE and ferroptosis in β-thal requires further
investigation. In conclusion, current treatments for patients with
β-thal do not fully relieve their symptoms, and there is great
potential that the study of the interactions between, IE and
ferroptosis in the treatment of β-thal.
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