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Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function
is the premise and basis for various physiological activities. Mitochondrial
dysfunction is commonly observed in a wide range of pathological conditions,
such as neurodegenerative, metabolic, cardiovascular, and various diseases
related to foetal growth and development. The placenta is a highly energy-
dependent organ that acts as an intermediary between themother and foetus and
functions to maintain foetal growth and development. Recent studies have
demonstrated that mitochondrial dysfunction is associated with placental
disorders. Defects in mitochondrial quality control mechanisms may lead to
preeclampsia and foetal growth restriction. In this review, we address the quality
control mechanisms of mitochondria and the relevant pathologies of
mitochondrial dysfunction in placenta-related diseases, such as preeclampsia
and foetal growth restriction. This review also investigates the relation between
mitochondrial dysfunction and placental disorders.
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1 Introduction

Mitochondria are double-membrane organelles consisting of dynamic inner and outer
membranes. Mitochondria are the main sites of biological oxidation and energy conversion
in eukaryotic cells. Mitochondria are involved in the regulation of several physiological
mechanisms. These include energy metabolism (Zhang et al., 2021), biosynthesis (Ryoo and
Kwak, 2018; Fuchs et al., 2020), calcium signal transduction (Jouaville et al., 1998),
production of reactive oxygen species (ROS) (Hernansanz-Agustin and Enriquez, 2021;
Kuznetsov et al., 2022), and apoptosis (Wang et al., 2021; Tian et al., 2022). Therefore,
mitochondrial dysfunction may lead to various diseases, such as cardiovascular diseases,
skeletal muscle disorders, and neurodegenerative diseases (Mani et al., 2021; Sadoshima
et al., 2021; Chen et al., 2022; Vodickova et al., 2022). Mitochondrial homeostasis is
maintained at the organelle level through dynamically regulated quality-control
mechanisms, including mitochondrial fusion and fission, biogenesis, and mitophagy
(Green and Van Houten, 2011; Kotiadis et al., 2014; Suliman and Piantadosi, 2016). At
the molecular level, homeostasis is mediated by the mitochondrial unfolded protein
response, mitochondrial molecular chaperones, and proteases which constitute the
mitochondrial protein quality control system that maintains the dynamic balance of the
mitochondrial proteome (Vazquez-Calvo et al., 2020).
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The placenta consists of the amniotic membrane, chorionic
villous membrane, and decidua basalis, which are important
organs for maintaining foetal growth and development.
Therefore, it has a high energy demand. The placenta performs
material exchange, defence, synthesis, and immunity (Shao et al.,
2022). Mitochondria consume oxygen via oxidative
phosphorylation to produce adenosine triphosphate (ATP).
When mitochondrial dysfunction occurs, ATP synthesis is
reduced and placental function is impaired, resulting in various
pregnancy complications, such as preeclampsia (Marin et al., 2020;
Smith et al., 2021) and foetal growth restriction (Kiyokoba et al.,
2022). Furthermore, mitochondrial dysfunction amplifies oxidative
stress and the production of ROS, leading to a self-perpetuating cycle
of mitochondrial damage. This, in turn, contributes to placental
dysfunction (Manna et al., 2019). In this study, we explored the
intricate relation between mitochondrial dysfunction and placenta-
related diseases, focusing on their role in conditions, such as
preeclampsia and foetal growth restriction.

2 Mitochondrial quality
control mechanism

2.1 Mitochondrial fusion and fission

The morphology, size, and number of mitochondria are controlled
by constant fusion and fission (Zemirli et al., 2018). Inmammalian cells,
mitochondrial outer membrane (MOM) fusion is mainly regulated by
the dynamin-related GTPases mitofusin 1 and mitofusin 2 (MFN2)
(Sloat et al., 2019), whereas mitochondrial inner membrane fusion is
mainly regulated by optic atrophy 1, which is also a dynamin-related
GTPase (Youle and van der Bliek, 2012). Moreover, Misato protein
(MSTO1) is a soluble cytoplasmic protein. MSTO1 translocates to the
MOM and interacts with mitochondrial fusion proteins at the
MOM–cytoplasm interface (Al Ojaimi et al., 2022). F-Box and
Leucine-rich repeat protein 4 is a nuclear-encoded mitochondrial
protein that is in the intermembrane space. F-Box and Leucine-rich
repeat protein 4 may also play a role in mitochondrial fusion by
interacting with and regulating mitochondrial fusion proteins (Wang
et al., 2020). Proteins involved in mediating mitochondrial fission
include dynamin-related protein 1 (Drp1), fission protein 1, and
mitochondrial dynamic proteins MiD49 and MiD51 (Serasinghe
and Chipuk, 2017). The phosphorylation of Drp1 at Ser637 controls
the mitochondrial fission-promoting activity of Drp1 (Kanamaru et al.,
2012). cAMP-dependent protein kinase phosphorylates Drp1 and
inhibits its translocation to mitochondrial fission sites. In contrast,
calcineurin-mediated dephosphorylation of Drp1 causes Drp1 to
accumulate in the mitochondria and promotes mitochondrial fission
(Suarez-Rivero et al., 2016). Mitochondrial dynamics are complex and
are related to mitochondrial function through fusion and fission.
Research has indicated that mitochondrial dynamics play a crucial
role in various pathological manifestations, including
neurodegenerative diseases, cancer, cardiomyopathy, and metabolic
disorders (Serasinghe and Chipuk, 2017).

2.2 Mitophagy

Mitophagy refers to the process by which cells selectively remove
aging and damaged mitochondria through autophagy, thereby
controlling mitochondrial quality and maintaining mitochondrial
homeostasis (Tian et al., 2022). There are two main mitophagy
pathways, the ubiquitin-mediated and the receptor-mediated
pathway (Chen et al., 2022). The ubiquitin-mediated pathway
includes the PINK1-Parkin pathway. PINK1 is localised to the
MOM and is introduced into the intermembrane space by the
translocase outer membrane and into the mitochondrial inner
membrane by the translocase of the inner membrane 23. At the
mitochondrial inner membrane, PINK1 is processed with
mitochondrial processing peptidase and PGAM5-associated
rhomboid-like protease, and eventually degraded (Figure 1).
Under pathological conditions, damaged mitochondria undergo
mitochondrial membrane depolarisation. In the PINK1-Parkin
pathway, when the mitochondria are damaged and undergo
membrane depolarisation, PINK1 accumulates in the MOM.
PINK1 is then activated through autophosphorylation, leading to
the direct or indirect phosphorylation of Ser65 in the parkin Ubl
domain. Subsequently, p-parkin ubiquitinates mitochondrial outer
membrane proteins, forming complexes with sequestosome1 (p62)
and microtubule-associated protein 1 light chain 3 II. These events
ultimately result in mitophagy (Figure 1) (Eldeeb et al., 2022; Wu
et al., 2022; Yildirim et al., 2022).

In addition, various mitochondrial proteins, such as NIP-3-like
protein X (NIX), FUN14 domain-containing 1 (FUNDC1), and
BNIP3 can act as mitophagy receptors to guide the clearance of
damaged mitochondria (Xie et al., 2020; Linqing et al., 2021; Xie
et al., 2021; Liu et al., 2022; Ning et al., 2022). BNIP3, NIX, and
FUNDC1 interact with the autophagosomal membrane protein
LC3 via the LC3 interaction region (Figure 1) (Wei et al., 2015).
Phosphorylation of Ser34/35 near the LC3 interaction region of NIX
enhances its binding to LC3 (Rogov et al., 2017). In addition, NIX
may induce mitophagy by promoting the production of ROS (Li
et al., 2015; Li et al., 2022). Both NIX and BNIP3 are considerably
upregulated by HIF-1α under hypoxic conditions, facilitating the
clearance of damaged mitochondria and preventing ROS
accumulation (Mazure and Pouyssegur, 2010). NIX may act as a
substrate for Parkin in the PINK1-Parkin pathway (Gao et al., 2015).
BNIP3 may interact with PINK1 to prevent its proteolytic activity
and support its accumulation on the mitochondrial membrane,
thereby promoting mitophagy (Zhang et al., 2016).
FUNDC1 mediated mitophagy is primarily regulated through
phosphorylation and ubiquitination. In the presence of oxygen,
FUNDC1 is phosphorylated by Src kinase at Tyr18 and by
CK2 at Ser13 (Zhang et al., 2022). Under hypoxic conditions,
FUNDC1 is ubiquitinated by lysine 119 of the mitochondrial
E3 ligase membrane-associated RING-CH5, which protects
mitochondria from degradation by mitophagy. During severe
hypoxia, CK2 and Src kinases are inhibited, dephosphorylating
FUNDC1 and increasing its binding affinity to LC3, thereby
promoting mitophagy (Chen et al., 2017a).
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3 Mitochondrial protein quantity
control system

Mitochondria have a bilayer membrane structure with
approximately 140 proteins in the outer membrane, 130 soluble
proteins in the intermembrane space, and 800 and 500 proteins in
the inner membrane and matrix, respectively (Jadiya and Tomar,
2020). Molecular chaperones, proteases, the ubiquitin-proteasome
system, mitophagy, mitochondria-derived vesicles, and the
mitochondrial unfolded protein response are involved in
mitochondrial protein quality control (Friedlander et al., 2021;
Song et al., 2021).

Molecular chaperones, such as Hsp60 (Fan et al., 2020) and
Hsp70 (Havalova et al., 2021), can promote andmaintain the correct
folding of proteins to ensure their normal function. Mitochondrial
proteases play crucial roles in controlling the quantity of
mitochondrial proteins. They are responsible for protein turnover
and processing within mitochondria (Steele and Glynn, 2019;
Szczepanowska and Trifunovic, 2022). The ubiquitin-proteasome
system is involved in the degradation of more than 80% of

endogenous proteins in eukaryotes, and ubiquitin molecules
ubiquitinate and degrade substrate proteins mainly through the
formation of multiubiquitin chains (Alsayyah et al., 2020; Kodron
et al., 2021). Currently, the specific mechanism by which
mitochondria-derived vesicles are involved in mitochondrial
protein quality control is not clear. Several studies have pointed
out that vesicles contain damaged MOMs, inner membranes, and
matrix proteins that are transported to lysosomes for degradation
(Soubannier et al., 2012), suggesting that vesicles may be a
complementary mechanism that controls mitochondrial quality
prior to mitochondrial degradation at the organelle level
(Baixauli et al., 2014). The mitochondrial unfolded protein
response is a stress response. Under stress signalling conditions,
such as decreased mitochondrial membrane potential,
mitochondrial DNA (mtDNA) clearance, mitochondrial
accumulation of misfolded proteins, or an imbalance between
nuclear and mitochondrial-encoding proteins, the gene
transcription of nuclear-encoded mitochondrial chaperones and
proteases is activated. This activation enhances protein
homeostasis (Svagusa et al., 2020). Tight-coupled molecular

FIGURE 1
Pathways of mitophagy. Under physiological conditions, PINK1 is localized to the mitochondrial outer membrane, which is introduced into the
intermembrane space by translocase outer membrane (TOM). Then PINK1 is introduced into the mitochondrial inner membrane by translocase of the
inner membrane 23 (TIM23). At the mitochondrial inner membrane, the mitochondrial processing peptidase (MPP) removes PINK1’s N-terminal MTS.
Subsequently, PGAM5-associated rhomboid-like protease (PARL) cleaves PINK1. Finally, PINK1 in the double-cleavage form is released into the
cytoplasm and is degraded rapidly by the ubiquitin proteasome system. Under pathological conditions, the damaged mitochondria undergo
mitochondrial membrane depolarization. PINK1 accumulates at the mitochondrial outer membrane. Then PINK1 kinase is activated by
autophosphorylation, which directly phosphorylates Ser65 in the parkin Ubl domain, or first phosphorylates Ser65 in ubiquitin and leads to
conformational changes in parkin, then causes the release of the Ubl domain from the parkin core, and finally phosphorylates Ser65 in the parkin Ubl
domain. Subsequently, p-Parkin ubiquitinates mitochondrial outer membrane proteins, which bind sequestosome1 (p62) and microtubule-associated
protein 1 light chain 3 II (LC3II). Eventually mitophagy occurs. Additionally, BNIP3, NIX, and FUNDC1 can interact with the autophagosome membrane
protein LC3 through the LC3 interaction region (LIR).
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interactions between multiple players in the mitochondrial protein
quality control system ensures protein balance and mitochondrial
function to maintain overall cellular fitness.

4 Placenta-related diseases

4.1 Preeclampsia

Preeclampsia is a multisystem disorder that occurs during
pregnancy, characterised by new-onset hypertension (systolic pressure/
diastolic pressure,≥140/90 mmHg) and proteinuria (≥300mg/24 h) after
20 weeks of gestation. In 2013, the AmericanConference of Obstetricians
and Gynecologists noted that proteinuria was not necessary for the
diagnosis of preeclampsia. Preeclampsia can also be diagnosed as
hypertension associated with thrombocytopenia, renal insufficiency,
liver impairment, pulmonary oedema, or brain or visual impairment.

The association between mitochondrial dysfunction and
preeclampsia was first explored in 1989, and several members of a
family with mitochondrial dysfunction were found to have a high
incidence of preeclampsia and eclampsia (Torbergsen et al., 1989).
This was followed by a steady stream of studies linking mitochondrial
dysfunction to preeclampsia. One study reported morphological data
showing degeneration and apoptotic changes in the mitochondria of
the preeclamptic placenta (Shi et al., 2013). The study also found that
compared with those in normal placentas, preeclampsia placentas had
four upregulated mitochondrial proteins and 22 downregulated
mitochondrial proteins that are involved in many key processes in
the development of preeclampsia, such as apoptosis, fatty acid
oxidation, respiratory chain, ROS generation, tricarboxylic acid
cycle, and oxidative stress. Thus, mitochondrial dysfunction is
closely associated with the occurrence and development.

As research has progressed in recent years, our understanding of
the specific mechanisms underlying preeclampsia has deepened. It has
become increasingly clear that mitochondrial dysfunction plays a
central role in the molecular mechanism of preeclampsia, particularly
when it is caused by dysfunction in placental 11β-hydroxysteroid
dehydrogenase type 2 (Long et al., 2022). Their study revealed that
dysfunction in 11β-hydroxysteroid dehydrogenase type 2 resulted in
mtDNA instability and impaired mitochondrial dynamics,
contributing to the development of preeclampsia, and the
mitochondrial-targeted antioxidant MitoTEMPO has significantly
alleviated the symptoms of preeclampsia.

Interestingly, conflicting conclusions exist in the literature
regarding the expression of mitochondrial fusion and fission
proteins in preeclamptic placentas. These discrepancies in
protein expression may be attributed to variations in the
severity of preeclampsia and differences in study populations.
Fusion is a process that helps preserve mitochondrial function
by mixing the contents of damaged mitochondria, whereas fission
is the first step in mitophagy. The mitochondrial fusion proteins
mitofusin 1, MFN2, and optic atrophy 1 are downregulated in the
placentas of women with preeclampsia (Zhou et al., 2017). Another
study also showed that MFN2 and ATP expression was
significantly reduced in the preeclamptic placenta compared
with that in normal placenta (Yu et al., 2016). However,
maternal serum MFN2 levels were higher in patients with
preeclampsia (Aydogan Mathyk et al., 2020). In conclusion,

despite conflicting findings from various studies, it is evident
that there is a disruption in the balance between mitochondrial
fusion and fission in the preeclamptic placenta.

Mitophagy serves the function of eliminating damaged
mitochondria. Defects in the autophagic pathway may contribute
to the onset and progression of preeclampsia. A previous study
found that the inhibition of BNIP3 expression reduced autophagic
activity, leading to the accumulation of damaged mitochondria in
vivo, thus participating in the development of preeclampsia (Zhou
et al., 2021). The downregulation of BNIP3 expression in
preeclamptic placentae has also been confirmed in other studies
(Tong et al., 2018; Ma et al., 2019). These results suggest that
decreased autophagy is closely associated with preeclampsia.
However, another study found contradictory results. Low levels
of FUNDC1 ubiquitination have been found in hypoxic trophoblast
cells and the placentas of pregnant women with preeclampsia (Chen
et al., 2022). Mitochondrial E3 ligase membrane-associated RING-
CH5 has been reported to inhibit hypoxia-induced mitochondrial
autophagy through ubiquitination and degradation of FUNDC1,
and inhibition of FUNDC1 ubiquitination and degradation
increases mitochondrial sensitivity to autophagy-induced stress
(Chen et al., 2017a; Chen et al., 2017b). Therefore,
FUNDC1 ubiquitination is a process of mitochondrial
desensitisation that prevents functional mitochondria from being
removed via autophagy. The decrease in FUNDC1 ubiquitination
promotes autophagy, resulting in excessive enhancement of
autophagy and destruction of normal mitochondria, which are
related to the occurrence and development of preeclampsia. In
summary, changes in autophagic activity are associated with
preeclampsia.

4.2 Foetal growth restriction

Foetal growth restriction is defined as foetal body mass or
abdominal circumference less than the 10th percentile of body
mass for gestational age and is also known as intrauterine growth
restriction (IUGR). According to the 2021 guidelines issued by the
American College of Obstetricians and Gynecologists, the aetiology
of FGR can be divided into maternal, foetal, and placental factors.

Many recent studies have explored the relation between
mitochondrial dysfunction and foetal growth restriction.
Excessive oxidative stress and perturbed mitochondrial
antioxidant capacity can interfere with mtDNA replication,
leading to a decrease in mtDNA content in the peripheral blood
(Knez et al., 2017). A study found that the mtDNA copy number
(mtDNAcn) in the peripheral blood of women with preeclampsia
associated with IUGR was significantly lower than that in women
with preeclampsia associated with appropriate for gestational age
intrauterine foetal growth (Busnelli et al., 2019). Moreover, several
studies have reported a reduction in mtDNA copy number levels in
the placenta of patients with IUGR (Diaz et al., 2014; Mando et al.,
2014; Poidatz et al., 2015; Luo et al., 2018). However, another study
found that an increase in mtDNA copy number was an indicator of
mitochondrial functional impairment, and the mtDNA content in
the IUGR pregnancy group was significantly increased (Naha et al.,
2020). Therefore, we speculate that the change in mtDNA copy
number is closely related to foetal growth restriction. It was also
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found that mitochondrial Sirtuin-3 (Sirt3) protein levels were
significantly decreased, and succinate dehydrogenase activity was
decreased in the IUGR pregnancy group (Naha et al., 2020). Sirt3 is
translated as a 44 kDa inactivated protein that is cleaved by
142 amino acids to produce an active 28 kDa protein that acts as
a deacetylase on several mitochondrial maintenance proteins
(Sundaresan et al., 2008). In addition, mitochondrial Sirt3 has
been shown to be associated with ATP synthase subunits to
regulate ATP synthesis and maintain membrane potential (Yang
et al., 2016). Therefore, decreased Sirt3 protein expression and
succinate dehydrogenase activity suggest that mitochondrial
function is impaired in growth-restricted placentas.

5 Discussion and outlook

The placenta is crucial for the growth and development of the
foetus, and because of its high energy demand, the maintenance of
mitochondrial function is a necessary condition for the growth and
development of the foetus. Studies have shown that abnormalities in
mitochondrial fusion and fission, mitophagy, and various
mechanisms in the mitochondrial protein quantity control system
may lead to mitochondrial dysfunction and placenta-related diseases.
Recent studies have shown that exogenous supplementation with
antioxidants, such as vitamin D, coenzyme Q10, and melatonin, can
improve mitochondrial function, inhibit oxidative stress, reduce
inflammatory responses, and protect mitochondria from oxidative
damage (Reiter et al., 2020; Phillips et al., 2022). One study has shown
that mitochondrial transfer can improve embryo quality and resolve
pregnancy complications caused by abnormal mtDNA (Morimoto
et al., 2023). However, the specific mechanisms by which
mitochondrial dysfunction leads to placental disorders remain
unclear. It is expected that the specific molecular mechanisms will
be further clarified using animal models and human placental samples
to provide new ideas for the prevention and treatment of placenta-
related diseases.
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