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Introduction: In the search for objective measures of therapeutic outcomes for
patients with spinal cord stimulation (SCS) devices, various metrics of cardiac
performance have been linked to pain as well as overall health. To track such
measures at home, recent studies have incorporated wearables to monitor
cardiac activity over months or years. The drawbacks to wearables, such as
patient compliance, would be obviated by on-device sensing that incorporates
the SCS lead. This study sought to evaluate the feasibility of using SCS leads to
record cardiac electrograms.

Methods: The quality of signals sensed by externalized, percutaneous leads in the
thoracic spine of 10 subjects at the end of their SCS trial were characterized
across various electrode configurations and postures by detecting R-peaks and
calculating signal-to-noise ratio (SNR). In a subset of 5 subjects, cardiac metrics
were then compared to those measured simultaneously with a wearable.

Results: The average signal quality was acceptable for R-peak detection (i.e., SNR
> 5) for all configurations and positions across all 10 subjects, with higher signal
quality achieved when recording in resting positions. Notably, the spinal lead
recordings enabled more reliable beat detection compared to the wearable (n =
29 recording pairs; p < 0.001). When excluding wearable recordings with over
35% missed beats, the inter-beat intervals across devices were highly correlated
(n = 22 recording pairs; Pearson correlation: R = 0.99, p < 0.001). Further
comparisons in these aligned wearable and corresponding spinal-lead
recordings revealed significant differences in the frequency domain metrics
(i.e., absolute and normalized high and low frequency HRV power, p < 0.05),
but not in time domain HRV parameters.
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Discussion: The ability of an implanted SCS system to record electrocardiograms,
as demonstrated here, could provide the basis of automated SCS therapy by
tracking potential biomarkers of the patient’s overall health state without the
need for additional external devices.
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Introduction

Spinal Cord Stimulation (SCS) has been used as an effective
therapy for chronic pain for over 50 years (Shealy et al., 1967; Sdrulla
et al., 2018; Vallejo et al., 2020). The current standards for assessing
the effectiveness of pain therapies such as SCS are patient-
determined scores such as the Visual-Analog-Scoring (VAS) or
Numerical Rating Scale (NRS). These subjective measures do not
encompass the broad effects that pain has on overall wellbeing
(Haefeli and Elfering, 2006). Accordingly, questionnaires such as the
Oswestry Disability Index (ODI) or Patient Reported Outcomes
Measurement Information System (PROMIS-29) (Fairbank and
Pynsent, 2000; Licciardone et al., 2017; Pope et al., 2021) are
used to understand the multidimensional influence of pain and
therapy on the patient’s activity, sleep, mood, and social engagement
(Russo et al., 2020; Pilitsis et al., 2021; Goudman et al., 2022; Levy
et al., 2023). While they provide more holistic measures of wellbeing,
these questionnaires are self-reported and lengthy. The applications
of these surveys are best suited towards occasional, interval
assessments—rather than continuous and repeated
assessments—of healthcare interventions and changes in health
(Hays et al., 2018).

Automated, objective feedback of the patient’s response to
therapy could further improve outcomes with SCS. To this end,
recent research has assessed an assortment of biosignals that may
correlate with chronic pain (Eldabe et al., 2022). One such example
in chronic pain patients is the overall decrease in parasympathetic-
related heart rate variability (HRV)metrics–as assessed with the root
mean square of successive differences (RMSSD) and high frequency
power of HRV (Hallman et al., 2015; Koenig et al., 2016; Tracy et al.,
2016). A potential reversal of this effect has been noted in patients
receiving SCS for both chronic pain (Goudman et al., 2019) and
refractory angina (Anselmino et al., 2009). These studies have used
electrocardiograms (ECG), Holter monitors, or other wearables to
collect HRV metrics. While ECG and Holter monitors provide rich,
highly accurate data, they are typically limited in study duration;
ECG is commonly only measured in-clinic, and Holter monitors are
worn over a limited interval (typically 24–48 h but can be up to
several weeks) out-of-clinic. Cardiac metrics monitored over
months to years—beyond the scope afforded by an ECG or
Holter monitor—in the patient’s home environment may give
important insights about a patient’s overall wellbeing and
response to pain therapies, as well as better align with the
individual fluctuations in pain intensity.

To track long-term chronic pain outcomes via potential objective
measures, recent studies have leveraged the use of wearables for at-
home collection for patients implanted with an SCS device (Reinen
et al., 2022; Patterson et al., 2023). However, there are limitations with
the analysis used in wearables including the manufacturer-specific

calculations and timing of measurements, reliability of heart beat
detection, and patient compliance in wearing the device (Han et al.,
2022). Thus, for patients implanted with an SCS device, using on-
device sensors may improve the ability to track these objective
measures of pain. In addition to potentially enabling physicians to
better follow long-term outcomes, the signals may also be leveraged in
automated remote programming of therapy adjustments.

Just as implantable cardiac pacemakers have incorporated
biopotential sensing to assist in therapy optimization (Escher,
1973), some emerging SCS systems can directly sense
biopotentials. These systems record the spinal evoked compound
action potential (ECAP), a quantitative measure of neural activation
elicited by a stimulation pulse (Russo et al., 2018; Vallejo et al., 2021).
Interestingly, other biopotentials beyond the spinal ECAP can be
sensed with epidurally placed leads. Leads placed in the thoracic
spine are well-positioned to detect cardiac signals due to the
proximity of the heart. An early feasibility study in pigs has
demonstrated that cardiac signals can be detected by SCS leads
(Verma et al., 2023). However, to the best of our knowledge, the
ability to sense these signals has thus far not been explored in the
human chronic pain population.

In this study, we assess the clinical feasibility of acquiring cardiac
signals from SCS leads over an assortment of electrode
configurations and postures. Additionally, we compare number of
beats detected and inter-beat intervals (IBIs) recorded from a
wearable to those recorded from the SCS lead. Finally we
compare HRV metrics across the time and frequency domain to
evaluate whether any potential differences may impact these
summary measures.

Methods

Study protocol

This study was a Nonsignificant Risk (NSR) device early clinical
research feasibility study in which evoked (e.g., ECAPs) waveforms
collected with externalized leads were recorded from subjects with
chronic pain undergoing a commercial SCS trial according to
approved labelling. This multi-center study conducted in the
United states was registered with clinicaltrials.gov (NTC
06499220) and was approved by the WIRB Copernicus Group
(WCG study#20192352). All research was conducted in
accordance with the Declaration of Helsinki. Subjects provided
written informed consent prior to participation in study activities
and were compensated for their time.

During the study visit, biopotentials from the SCS leads of
10 subjects were collected during various electrode configurations
and subject body postures to determine the effect on signal-to-noise
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ratio (SNR). In a subset of 5 subjects, a comparison was made
between IBIs and derived cardiac metrics from SCS leads to those
recorded simultaneously using an Apple Watch.

Research system

Cardiac signals were recorded with a custom research system, as
previously detailed in Chakravarthy et al. (2020). Briefly, the cardiac
signals were amplified (Digitimer D440) and recorded with a
sampling rate of 40 kHz before digitization (Biopac MP160) and
storage on a laptop (via Biopac AcqKnowledge software) for further
processing. The system also included stimulation components
including an isolated, clinical-grade stimulator (Digitimer DS5)
and National Instruments hardware. The system was configured
to interface with standard, commercially available, 8-electrode,
60 cm-long percutaneous SCS leads (Model 977D260, Medtronic
plc) through a Multi-Lead Trialing Cable (MLTC model #3555-31,
Medtronic) and custom adapter. Each electrode was 3 mm long with
an inter-contact spacing of 4 mm. For monopolar recordings, the
amplifier was referenced to a disposable ground patch electrode
(40 × 50 mm contact area ground plate electrode with 2.0 m lead
length, Natus Neurology Inc.) placed on the subject’s lower back.
Signals were recorded in the absence of stimulation except where

noted, where 50 Hz, 200 µs stimuli were applied at amplitudes up to
5.5 mA. Stimulation was applied neighboring bipoles at the opposite
end of the lead as the recording contacts in either neighboring or
half-lead configurations.

Clinical data acquisition

Data from 10 subjects, all of which had intractable back and/or
limb pain, were collected at the end of their SCS trial period prior to
the lead pull. Two 8-electrode SCS leads were already implanted in
the dorsal epidural space (Figure 1). Images of lead locations taken at
the beginning of the study (i.e., at the end of the commercial trial)
showed the location ranged from T5 to T11, with 90% of leads being
within T7-T11 and the typical lead implanted from T8 to T10. At the
end of the SCS trial period and before trial lead removal, the research
system was connected to each lead and recordings were collected for
at least 30 s.

Given that body position can impact the proximity of the SCS
lead to the spinal cord (Cameron and Alo, 1998; Olin et al., 1998;
Kuechmann et al., 2009; Abejón et al., 2014), the impact of posture
and activity on the fidelity of recordings were evaluated.
Specifically, the positions tested included: seated, supine, and
walking in place.

FIGURE 1
Cardiac signal collection and processing from the SCS lead implanted in the epidural space of the thoracic spine (A). The SCS trial lead has eight
3 mm electrodes with 4 mm spacing. The signals collected from the lead were collected across four different configurations (B) and were processed (C)
to detect R-peaks (red circles). Abbreviations. E: electrode; L: lumbar; T: thoracic.
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Signals were recorded in four different electrode configurations:
across the full lead (e0–e7), across half the lead (e0–e4 or e4–e7),
with neighboring electrodes (e0–e1 or e6–e7), and monopolar (e.g.,
e0–patch electrode), where e0 is the cranial-most electrode. Unless
otherwise noted, comparisons of the signal quality between
configurations was performed across resting positions including
seated, recumbent, supine, and prone.

In a subset of subjects (n = 5), spinal lead recordings were done
simultaneously with wearable cardiac recordings to compare and
validate cardiac metrics. The wearable recording acquisition is
detailed further below.

Analysis of spinal lead recordings

Data analysis of the spinal recordings was conducted in
MATLAB R2020b (MathWorks; Natick, MA, USA). R-peaks
were identified as outlined in Figure 2 using a modified approach
to the Pan-Tompkins method of QRS detection (Pan and Tompkins,
1985). For all recordings with stimulation, the stimulation artifacts
were removed by linear interpolation. All signals were down-
sampled to 1,000 Hz and filtered using a third order Butterworth
bandpass filter from 5 to 50 Hz. Any potential remaining line noise
at 60 Hz was removed with a third order Butterworth band-stop
filter from 59 to 61 Hz. These filtered signals were squared to
accentuate and rectify R-peaks for detection. Next, the movmean
function was applied as moving average filter to identify and remove
remaining noise, such as movement artifacts.

Following de-noising, R-peaks were isolated using a two-stage
approach. First, the template of the processed R-peaks was found by
using the findpeaks function with two constraints: the minimum IBI
of 0.4 s between successive peaks (i.e., a maximum of 150 beats per
min) and with an amplitude threshold of twice the RMS of the
squared signal to ensure spurious signals or T-waves were not
identified as peaks. The template was 82 ms to encompass the

full R-peak which is 70ms or less (Pérez-Riera et al., 2016). Secondly,
the signal-derived R-peak template was convolved with the rectified
signal to form a matched filter output. Finally, the R-peaks were
detected from the matched filter using the findpeaks function with
the following two constraints: a minimum distance of 0.4 s and an
amplitude threshold of a moving average filter. The moving average
filter was similar to the dynamic threshold approach used by Nguyen
et al., with the moving average having a window size of 0.83 s
(Nguyen et al., 2019). The amplitude threshold was found by scaling
the moving average by 5.25 and adding to the baseline. Finally,
R-peak detection was visually verified for each trace.

To quantify the signal quality, SNR was calculated with the
signal estimated by the QRS template and noise estimated by
removing the QRS template from the signal when R-peaks were
detected. Given that the template was 82 ms, the estimated noise
would incorporate any potential P- and T-waves present in the trace,
which may over-estimate the noise but ensured sufficient time
points were included. Previous studies found that ECG signals
with SNR values above 5 had sufficient fidelity for QRS detection
(Smital et al., 2020) and HRV analysis (Cavalieri and Filho, 2020).
Visual inspection of our filtered data supported that SNR values
above 5 enabled consistent detection of R-peaks. Thus, signals with
SNR below 5 were defined as ‘poor quality’ and above 5 as
‘good quality’.

To identify the presence of any additional cardiac waves beyond
the R-peak, an ensemble averaging approach was used to find mean
segments that included the P-, QRS- and T-waves. Briefly, raw data
was preprocessed similar to the R-peak detection but targeting lower
frequencies: after removal of any stimulation artifact and down-
sampling to 1,000 Hz, all signals were filtered using a third order
Butterworth bandpass filter from 0.5 to 10 Hz (Elgendi et al., 2016).
For each recording, traces were taken from 300 ms prior to 400 ms
after each detected R-peak. Traces with a maximum deflection more
than 15 ms from the R-peak were considered corrupted by noise and
removed prior to averaging. The mean P-QRS-T-waves were plotted

FIGURE 2
Spinal lead recording signal analysis processing pipeline to detect R-peaks.

Frontiers in Physiology frontiersin.org04

Brinda et al. 10.3389/fphys.2024.1342983

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1342983


and visually inspected to determine if a P- and T- wave was readily
apparent. SNR analysis for these waves was not performed as less
than 10% of signal would remain to estimate noise for heart rates of
78 bpm or more.

Data are summarized by mean and standard deviation. For
R-peak analysis of SNR, statistical significance for stimulation on vs.
stimulation off, as well as neighboring configurations (e0e1 vs. e6e7)
was tested using the Wilcoxon signed-rank test. Significant
differences in SNR across body postures and electrode
configurations was performed with Kruskal–Wallis tests, followed
by Dunn’s post hoc testing.

Analysis of wearable recordings

In a subset of 5 subjects, the performance of the spinal lead was
compared to that of the Apple Watch (series 7, watchOS version
8.5), as a validated wearable for measuring HRV measurements
(Hernando et al., 2018). Subjects wore the Apple Watch on their
wrist and were asked to remain still throughout the duration of each
approximately 5-min recording. Similar to Hernando et al. (2018),
the Breathe session within the Mindfulness app was used to record
beat-to-beat measurements of HR while cardiac signals were
simultaneously recorded from the SCS lead. The Breathe app
stores raw RR values within the session that would otherwise not
be accessible. Similar to other wrist-worn wearables, the Apple
Watch uses a photoplethysmography (PPG) signal to measure
the pulses generated by blood flow in the wrist. Pulse-to-pulse
(PP) intervals were found by taking the difference in time
between successive beats detected by the Apple Watch.

For each ‘recording pair’, data from the Apple Watch and
corresponding SCS recoding were synchronized using the first

15-20 IBIs for all but two recordings (wherein the Apple Watch
had too many missed beats at recording onset) and trimmed to
ensure the same recording duration between SCS and
AppleWatch recordings. The analyses are summarized
in Figure 3.

Heartbeat detection and inter-beat interval
comparison

The performance of the spinal recordings was validated by
comparing the number of beats detected to those detected in the
wearable recordings. Statistical significance was tested using the
Wilcoxon signed-rank test.

Next, IBI correlation analysis (Pearson’s correlation), Bland-
Altman plots (Ran Klein, 2023), and Intraclass Correlation
Coefficient (ICC) (Arash Salarian, 2023) were calculated to
compare IBI measurements across the two devices. For these
analyses, the IBIs between the wearable and the spinal recordings
were aligned in time similar to other IBI alignment approaches
(Hernando et al., 2018). Specifically, gaps were introduced to
segments where the corresponding recording had ectopic beats.
Ectopic beats were identified via outlier RR-intervals, defined by
having an IBI more than 0.3 s above or below the mean IBI (e.g., a
typical IBIs of 0.9 s would remove values outside 0.6–1.2 s) for each
5-min recording. All alignment was visually inspected, and
recordings with greater than 35% missed beats were excluded
from IBI correlation analysis due to difficulty of visual alignment.
ICC values above 0.7 are considered reproducible, while values
above 0.8 are considered good and above 0.9 are considered
excellent (Sandercock et al., 2005; Yperzeele et al., 2016;
Goudman et al., 2019).

FIGURE 3
Conducted analyses to compare the spinal lead and wearable cardiac recordings and resulting cardiac metrics. (A) Inter-beat intervals (IBIs) were
compared to determine reliability of heartbeat detection across devices. After heartbeats were detected, Apple Watch and SCS recordings were
synchronized by aligning the first 15-20 IBIs and trimming ends to match durations. For recordings with sufficient beat detection, all IBIs from entire
recordings were aligned and correlation statistics were calculated. (B) Heart rate (HR) and heart rate variability (HRV) metrics were calculated to
determine correlation across devices with and without the wearable recordings with insufficient beat detection (defined as >35% missed beats).
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Cardiac metrics comparison: heart rate
variability metrics

Differences in time and frequency domain parameters of HRV
were compared from all synchronized spinal lead and wearable
recording pairs. A variety of HRV metrics (see Shaffer and
Ginsberg, 2017 for a review) can be derived - here a number of
commonly-used time and frequency domain HRV metrics were
calculated.

HR was calculated from the wearable by averaging beat-to-
beat HR over the course of the recording. In addition, the
following time domain HRV metrics were calculated: the
average RR interval (AVRR), the standard deviation of the RR
intervals (SDRR), and the root mean square of successive
differences (RMSSD). For time domain metrics, ectopic beats
were identified via outlier RR-intervals and removed from
analysis after visual inspection. Similar to IBI alignment,
outlier RR-intervals were defined by having an IBI more than
0.3 s above or below the mean IBI.

The following frequency domain HRV metrics were derived:
absolute high frequency (HFabs) and low frequency (LFabs) values,
along with normalized values (HFnu and LFnu). For frequency
domain metrics, outlier IBIs were identified and replaced via
linear interpolation to minimize the effect on metrics. HRV
Analysis Software (HRVAS) (Ramshur, 2010) was then used to
further process and analyze the signals. Similar to (Goudman et al.,
2019), ectopic beats were identified with a median filter and
corrected with cubic spine interpolation. Signals were then
detrended, linearly interpolated and resampled at 2 Hz. Spectral
power was calculated using the Burg method between 0.04 and
0.15 Hz for low frequencies and between 0.15 and 0.4 Hz for high
frequencies.

To compare the wearable and spinal lead derived values, Pearson
correlation statistics for each HRV metric were calculated, with
p-values corrected for multiple comparisons using Bonferroni’s
correction. A linear regression was fitted, where the explanatory
variable (x) was the spinal-lead derived metric and the dependent
variable (y) was the wearable derived metric.

The effect of the missed beats in the wearable recordings on
these cardiac metrics were further investigated by excluding
recordings with greater than 35% missed beats and re-
calculating HRV metrics. Pearson correlation tests were again
performed and linear regression was also fitted with this subset
of recordings.

Finally, Bland-Altman plots were created to compare
agreement in HRV metrics between aligned-only recordings,
with the bias and Limits of Agreement (LOA) summarized for
each data set. The ICC was also computed for these HRV metrics.
Differences in metrics across devices were determined using the
Wilcoxon signed-rank test. For both difference testing and ICC,
p-values were corrected for multiple comparisons using
Bonferroni’s correction.

Results

Cardiac signals were recorded from SCS leads in 10 chronic pain
subjects. The average age of the 10 subjects was 71.4 ± 10.8 years

(range: 56.3–87.8 years) with 8 females and 2 males. The primary
indication was Failed Back Surgery Syndrome for 5 patients, post-
laminectomy pain for 4 subject, and Multiple Back Operations for
1 subject. The effect of body posture and recording electrode
configuration on the signal quality was then assessed. In a subset
of 5 subjects, the number of beats detects, IBIs, and HRV metrics
derived from the spinal recordings were compared to those from the
wearable recordings.

Cardiac signals across a variety of postures
and electrode configurations

A total of 157 recordings of at least 30 s in duration (average
149 ± 120 s, range 31–404 s) were taken of cardiac signals in various
positions and electrode configurations. Of these recordings, 14 had
concurrent stimulation while the other 143 were recorded in the
absence of stimulation. All 14 recordings with electrical stimulation
had SNR above 5 (average 14 ± 3) and were not significantly
different than recordings with stimulation off (p > 0.05,
Wilcoxon rank sum test). Hence, all of these recordings were
included in subsequent analyses. In addition, of the 53 recordings
performed on neighboring electrode recordings in resting positions,
43 recordings were acquired on cranial contacts (i.e., e0e1), while
10 recordings were performed on caudal electrodes (i.e., e6e7). The
signal quality was not significantly different (p > 0.05, Wilcoxon
rank sum test) between these two orientations, and thus were also
grouped together as ‘neighboring’ in subsequent analyses.

When comparing with the same electrode configuration, the
R-peaks were comparable in amplitude for all three positions
(i.e., seated, supine, and walking) (e.g., raw examples recorded in
an across-lead configuration as shown in Figure 4A). However, the
signal quality (i.e., SNR) was significantly higher for supine
recordings compared to walking for both across-lead (e0–e7; p =
0.01) and neighboring (e.g., e0–e1; p < 0.01) sensing configurations
(Figure 4B). The seated position was also significantly higher in SNR
compared to walking for the neighboring sensing configuration (p =
0.01) (Figure 4C). No significant differences were observed between
supine and seated for either neighboring or across-lead
configurations.

To identify those configurations that produce high quality
signals with the least impact by noise, signals were compared
across four different electrode configurations: across the full lead
(e0–e7), half the lead (e.g., e0–e4), neighboring electrodes (e.g.,
e0–e1), and monopolar (e.g., e0–patch electrode). The electrode
recording configurations and examples of the raw signals recorded
can be found in Figure 5. Sensing across the lead (e0–e7) yielded
large amplitude cardiac signals that were minimally susceptible to
noise. While the monopolar configuration resulted in a larger signal,
it was easily corrupted by movement artifacts and other noise
sources that led to significantly reduced SNR compared to other
sensing configurations (p < 0.05). Despite resulting in the smallest
cardiac signal, neighboring electrode pairs (e.g., e0–e1) still
maintained an acceptable SNR (>5) for successful R-peak
detection for 51 of 53 recordings, with an average SNR of 12 ±
4. Moreover, there was no significant difference in signal quality in
neighboring configurations compared to the full-lead or half-lead
configurations (p > 0.05).
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Detection of additional waves in the
cardiac signals

Across the cardiac recordings, additional features of the
heartbeat beyond R-peaks were evident including the presence
of P-waves and T-waves. To best identify them, raw data was pre-
processed at lower frequencies (see Methods for details) as seen
in Figure 6A. The waveforms for each beat were then aligned
using the pre-identified R-peak and ensemble averaged for each
recording as seen in Figure 6B. Across 143 recordings in
10 subjects while in resting positions, 64% (n = 92 recordings
across 9 subjects) had visually-evident P-waves and T-waves. For
these recordings, the size of the ensemble-averaged P-wave was
on average 18% ± 12% of the R-wave, and the T-wave
was 37% ± 17%.

Association and agreement of cardiac
signals between wearable and spinal lead

To compare heartbeat detection across devices, 32 simultaneous
recordings were collected from the wearable and the spinal lead
across a subset of 5 subjects. Three recordings from a single subject
had to be removed from analysis due to excessive movement, leaving

a total of 29 recording pairs. These recording pairs were
synchronized by aligning the first 15-20 IBIs (see Methods for
details) and trimming the durations to match, with an average
duration of 282 ± 3 s.

The number of detected beats was significantly lower (Wilcoxon
signed-rank test: p < 0.001) when using the wearable (avg: 265 ± 104;
range: 67–397 beats) compared to the spinal lead (avg: 323 ±
62 beats; range: 215–401) (Figure 7A). In 22 of those recordings,
the wearable detected a sufficient number of beats to enable visual
IBI alignment. Specifically, the wearable recording missed an
average of 7.2% ± 8.8% beats (range 0.8%–32.2%) compared to
the corresponding SCS recording. The remaining seven wearable
recordings missed over 35% of beats (avg: 58.0% ± 11.8%; range:
41.8%–71.5%) compared to the spinal lead recordings, making it
difficult to reliably align the IBIs (examples of alignment shown in
Figures 7B, C). Therefore, these recordings were not included in the
subsequent IBI correlation analysis or Bland-Altman plots (Figures
7D, E). Of the 29 recording pairs, 5 recordings had concurrent
electrical stimulation: two of these recordings allowed for IBI
alignment while three did not.

For the 22 recordings with sufficient beats, visual IBI alignment
was performed and outlier IBIs in the wearable data were detected
(n = 202) and then removed from the recording pair. In the
corresponding spinal lead recordings, 10 outlier IBIs were

FIGURE 4
Cardiac signals recorded via SCS leads across different postures. Signals at rest are more robust than during movement. (A) Examples of raw signals
recorded across different positions in the e0e7 recording configuration, in the absence of stimulation. (B) Summary of average Signal-to-Noise Ratio
(SNR) across different postures using the across-lead recording configuration and (C) neighboring contacts. *p < 0.05,**p < 0.01. Note: Within each violin
plot, the center white square is the median with the thick vertical gray line representing the interquartile range (similar to a boxplot) and the
horizontal line is the mean. The surrounding colored dots are values from individual recordings.
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detected across four recordings. Some of these corresponded to
outlier IBIs detected on the wearable recording, and thus 4 outlier
IBIs across two recordings were additionally removed. Once the
outliers were accounted for in both the wearable and spinal lead
recordings, IBIs were highly correlated (Pearson correlation: R =
0.99, p < 0.001, n = 6609; Figure 7D). Strong agreement between the
two device recordings can further be observed with the Bland-
Altman plot (Figure 7E) (bias = 0.0, LOA -0.03 to 0.03), as well as the
ICC of 0.996 (95% CI of 0.9958–0.9962).

Heart rate variability metrics

To evaluate whether differences in beat detection would affect
summary measures, HRV metrics in the time and frequency
domains were evaluated across the synchronized wearable and
spinal lead recordings. As detailed above, all 29 recording pairs
were initially included in this analysis, and then a second analysis
was done for only the 22 recording pairs with IBIs where visual
alignment was possible (Figure 8).

FIGURE 5
Cardiac signals recorded via SCS leads across different recording electrode configurations. (A) Examples of raw signals recorded using different
electrode configurations in the absence of stimulation. (B) Violin plots summarizing average Signal-to-Noise Ratio (SNR) across different recording
configurations while subject is stationary. *p < 0.05, **p < 0.01. Note: Within each violin plot, the center white square is the median with the thick vertical
gray line representing the interquartile range (similar to a boxplot) and the horizontal line is the mean. The surrounding colored dots are values from
individual recordings.

FIGURE 6
Ensemble averaging using detected R-peaks may identify additional waves within the heartbeat across different recording electrode configurations.
(A) An example trace in the cross-lead configuration after processing for P- and T-wave detection, with detected R-peaks (red circles). (B) Examples of
ensemble averaged waveforms across configurations in one subject.
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Correlation statistics summarizing Pearson correlation with
Bonferroni’s correction for multiple comparisons can be found in
Table 1. The spinal lead and wearable were significantly correlated for
all cardiac metrics tested, whether including or excluding recording pairs
with insufficient beats detected by the wearable. When all 29 recording
pairs were included, time-domain and absolute frequency-domain HRV
metrics showed strong correlation (R> 0.89) betweenwearable and spinal
lead derived values; normalized HF and LF revealed weaker correlation
across devices (R = 0.71).When evaluating cardiacmetric correlations for
only the 22 recordings pairs with sufficient wearable beat detection,
correlation coefficients were at or above 0.86 for all cardiac metrics
reported. Notably, R values for all frequency domain metrics rose when
excluding deficient recording pairs, with the greatest increase in
correlation occurred for HFnu and LFnu where R grew from 0.71 to
0.86 after excluding insufficient beat recordings by the wearable.

For the 22 recordings with sufficient beats, agreement in HRV
metrics between the devices was further investigated with Bland-
Altman plots in Figure 9, with summary statistics in Table 2,
demonstrating a high overlap in agreement between the two
devices. Also summarized in Table 2, the ICC also shows good
or excelled correlation (above 0.8) for all time domainmetrics as well
as for HFabs and LFabs, with HFnu and LFnu just below that cutoff at

0.79 but still considered reproducible. Finally, we tested whether
HRV metrics were statistically different across devices (Table 2). All
frequency-domain metrics significantly differed across devices (p <
0.05, Paired Wilcoxon test with Bonferroni’s correction); however,
differences in time domain metrics between devices were not
statistically significant. Thus, while there was high correlation
and agreement between devices for HRV metrics, the exact
values for frequency metrics were statistically different.

Discussion

In this study, cardiac signals recorded via SCS leads
implanted in the thoracic spine were characterized to
determine the feasibility of chronic cardiac monitoring using a
fully implanted SCS system in future applications. Our results
showed that SCS leads, as a part of a recording system, are capable
of sensing cardiac signals wherein detected R-peaks can be
processed for HR and HRV metrics. Moreover, the lead-
derived signals out-performed wearable beat detection in this
feasibility study, which could enable long-term monitoring at
home and during activities of daily living. The SCS leads were

FIGURE 7
Inter-beat interval (IBI) comparison between SCS lead system and Apple Watch highlights one limitation of IBI measurements using PPG–missed
beats. (A) The number of beats detected for each Apple Watch (blue) and SCS lead (orange) recording pair shows several Apple Watch recordings with
insufficient beat detection denoted by an ‘X’ (missed >35% of beats). (B) Example of aligned IBIs over a 5 min recording when Apple Watch detected a
sufficient number of beats (missed 2.4%). (C) Example of aligned IBIs when AppleWatch performed poorly, missing amajority of beats (50.2%) during
the 5 min recording. This recording was not included in IBI correlation analysis and only segments with at least 3 consecutive IBIs were included in this
manual alignment to demonstrate the difficulty in aligning data with missed beats. (D) There was high correlation of IBIs between the Apple Watch (PP
intervals) and SCS lead (RR intervals) synchronized, aligned data (22 recordings). Line shown is x = y. (E) Bland-Altman plot showing agreement between
the Apple Watch and SCS lead recordings, with the horizontal line showing mean difference (i.e., bias), and the dashed lines representing 95% limits
of agreement.
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also capable of detecting other features of the cardiac signal,
including P-waves and T-waves, for a majority of recordings
based on visual assessment.

Quality of cardiac signals recorded from
spinal leads

This study demonstrated that SCS lead recordings in resting
positions, especially supine, resulted in higher signal quality
compared to walking as quantified with SNR. This finding is
similar to results using a traditional 12-lead ECG (Fouassier et al.,
2020; Hamada et al., 2022). Distance between electrode pairs
influenced signal amplitude, since the across-lead recording pairs
(e.g., e0–e7) resulted in larger amplitude signals compared to

neighboring pairs (e.g., e0–e1). This is expected and seen in other
studies using traditional ECG devices (Nedios et al., 2014; Hamada
et al., 2022) because larger inter-electrode spacing affords a wider
electrical vector to acquire the electrical dipole generated by the heart.

Notably, this increase in amplitude did not result in a statistically
significant effect on SNR, suggesting that these changes were
accompanied by similar increases in noise. Moreover, 51 of 53 of the
smaller amplitude signals observed in narrow electrode pair recordings
still resulted in an acceptable signal quality (SNR >5) when the subject
was stationary. Overall, all electrode configurations during rest produced
recordings with an average SNR greater than 5, which is acceptable for
R-peaks to be easily distinguished from noise. This flexibility in
recording configuration is critical in future applications with
therapeutic stimulation, given that proximity to stimulation contacts
increases the probability for artifacts. For example, recording cardiac

FIGURE 8
Cardiac metric correlation between Apple Watch and SCS lead system show that while time domain metrics are not likely affected by missed beats,
the frequency domain metrics may be altered by this limitation. Dashed line of x = y indicates parity.

TABLE 1 Cardiac metrics across devices–Correlation Statistics.

All recording pairs IBI aligned pairs only

Pearson correlation Fit equation Pearson correlation Fit equation

HR R = 1.00, p < 0.001 y = 1.01 x–0.6 R = 1.00, p < 0.001 y = 1.00 x + 0.17

AVRR R = 1.00, p < 0.001 y = 1.02 x–11.44 R = 1.00, p < 0.001 y = 1.00 x + 0.10

SDRR R = 0.97, p < 0.001 y = 0.89 x + 2.8 R = 0.99, p < 0.001 y = 0.97 x + 1.76

RMSSD R = 0.89, p < 0.001 y = 0.87 x + 5.32 R = 0.89, p < 0.001 y = 0.85 x + 6.52

HFabs R = 0.93, p < 0.001 y = 0.83 x + 15.78 R = 0.98, p < 0.001 y = 0.99 x + 12.62

HFnu R = 0.71, p < 0.001 y = 0.72 x + 0.11 R = 0.86, p < 0.001 y = 1.05 x + 0.04

LFabs R = 0.94, p < 0.001 y = 0.94 x + 27.41 R = 0.99, p < 0.001 y = 1.11 x + 4.63

LFnu R = 0.71, p < 0.001 y = 0.72 x + 0.16 R = 0.86, p < 0.001 y = 1.05 x–0.09
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signals with narrowly-spaced electrodes on one end of the spinal lead
may allow for stimulation on the opposite end, as is currently done with
closed-loop ECAP-responsive SCS therapy (Russo et al., 2018; Vallejo
et al., 2021). It was also observed that walking significantly decreased
SNR, likely due to added noise from movement artifacts. Thus, future
implementations of on-device cardiac sensing should incorporate robust
noise detection algorithms to ensure errant signals are not incorrectly
labeled as heart beats.

Utility of cardiac metrics in quantifying
chronic pain and wellbeing

Many studies have investigated the complex nature between HRV
metrics and pain towards the goal of definingmore objectivemeasures of

pain. Several seminal studies have demonstrated that parasympathetic
related HRV metrics decrease with experimentally induced acute pain
(Jiang et al., 2017; Luo et al., 2020; Forte et al., 2022). However, the
translation of these results to fluctuations of pain within the chronic pain
population is unclear, especially since this population has an increased
likelihood of autonomic nervous system imbalance as evidenced by
lower baseline parasympathetic related HRV metrics (Hallman et al.,
2015; Koenig et al., 2016; Tracy et al., 2016; Karri et al., 2017). A number
of studies investigated how HRV fluctuates in response to changes in
chronic pain with SCS therapy with inconsistent trends. Goudman et al.
found that SCS increased theHFHRV, while lowering LFHRV, and not
affecting LF/HF ratio across 22 subjects. An increase in HF HRV aligns
with the theory that pain treatment, whether SCS or otherwise, helps to
restore parasympathetic activity and hence restore the imbalance
between both output mechanisms of the autonomic nervous system.

FIGURE 9
Bland-Altman plots showing agreement between cardiac metrics recorded by the SCS lead and the Apple Watch. Data in black summarizes aligned
pairs. The solid lines represent the difference in cardiac metrics between the recording modalities (bias), while the dotted lines represent limits
of agreement.

TABLE 2 Intraclass coefficients, Bias, and Wilcoxon test p-values (after Bonferroni’s correction) on HRV Parameters derived from aligned SCS leads and
Apple Watch recordings with sufficient beat detection (n = 22). LOA, Limits of Agreement; CI, Confidence Interval.

Wilcoxon test p-value Bias (LOA) ICC (95% CI)

HR p > 0.05 −0.1 (−0.5 to 0.3) 0.9999 (0.9996–1)

AVRR p > 0.05 0.9 (−3.6–5.5) 0.9999 (0.9997–1)

SDRR p > 0.05 0.5 (−5.9–6.9) 0.99 (0.97–0.997)

RMSSD p > 0.05 2.5 (−15.0–20.0) 0.88 (0.65–0.96)

HFabs p = 0.03 11.5 (−36.1–59.2) 0.98 (0.94–0.99)

HFnu p = 0.04 0.1 (−0.1–0.2) 0.79 (0.44–0.93)

LFabs p = 0.02 29.3 (−94.8–153.5) 0.98 (0.92–0.99)

LFnu p = 0.03 −0.1 (−0.2 to 0.1) 0.79 (0.44–0.93)
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Conversely, Kalmar et al. (2013) found that the SCS decreased HFHRV,
and did not affect other HRV parameters, while Black et al. (2022) found
no significant differences in HRV metrics with SCS therapy. Both of
these studies were limited by small sample size with only 6-7 subjects
completing follow-up. Meanwhile, Moens et al. (2023) found no
correlation between HRV recordings of over 350 subjects and their
pain intensity over 7 days. However, only one 5min recording was taken
in this study, and thus results did not capture any fluctuations in pain or
HRV that subjects may have over time. Notably, these studies
investigated HRV in the clinical setting with a so-called “snapshot
recording”, where results may be confounded by the additional stress
compared to a more comfortable home setting. Recently, Patterson et al.
(2023) used wearables to track chronic pain patients implanted with a
SCS device over 6 months and found that HR and HRV (SDRR
specifically), among other objective measures, was identified as a
contributing feature in modeling pain levels. Here, we demonstrate
that this type of information, aswell as the rawmetrics used to compute a
variety of physiological metrics, can be collected without the need for a
wearable. On the long-term, this would allow continuous patient
monitoring (i.e., ecological momentary assessment), without the need
for wearables, to gain better insights in the impact of chronic pain in
patients treated with SCS. Future studies should further explore how and
to what extent the array of HRV parameters change with chronic pain
over a duration of months or years for chronic pain patients with
SCS devices.

While wearables are gaining traction in pain assessment (see
Leroux et al., 2021 for review) and provide the ability to do longer
at-home studies with subjects to establish a baseline HRV
measurement, these external devices have key limitations
compared to an implantable SCS system: patient compliance,
manufacturer-specific calculations and timing of measurements,
and reliability of beat detection. First, patient compliance in
wearing devices may be low, such as in the Han study where
chronic pain patients only wore the wearable for an average of
143 of 365 days (Han et al., 2022). A SCS system with integrated
sensors and metrics would reduce patient burden and thus capture
more data. Secondly, while most smartwatches report out the
RMSSD metric of HRV, the timing of measurements and
calculations differ and access to raw data is limited. Thirdly,
despite the Apple Watch being validated previously for HRV
measurements against traditional ECG, we see in our study and
others (Hernando et al., 2018; Cajal et al., 2022; Patterson et al.,
2023) that the Apple watch has limitations when it comes to
reliable detection of heart beats. The reliability of beat detection
may greatly impact cardiac metrics, given that errors
representing <0.1% of IBIs may impact HRV parameters
dramatically (Kemper et al., 2007). To address this, a variety of
correction methods may be used, including removing outliers or
using gap filling methods (Cajal et al., 2022). Even with these
methods, limiting the loss of missed beats is important especially as
some metrics are less resilient than others. Specifically, Cajal et al.
showed that while the mean heart rate can tolerate up to 35%
missed beats and have a relative error of less than 20% with
corrections applied, frequency domain metrics such as HFnu
can tolerate only up to 15% errors even with advanced gap
filling approaches.

Despite these limitations, wearables will continue to be a
valuable tool for studies investigating objective measures of

chronic pain, and indeed we observed minimal effects in time
domain metrics of missed beats in the Apple Watch data.
Caution should be exercised for frequency domain analysis of
HRV parameters, as missed beats caused decreased correlation
with the spinal lead as well as significant differences in HRV
metrics for IBI-aligned recordings. Time domain and frequency
domain analysis give several parameters corresponding to different
aspects of autonomic balance (Stein and Pu, 2012; Koenig et al.,
2016; Shaffer and Ginsberg, 2017; Hohenschurz-Schmidt, 2020),
and accessing these rich metrics may provide clarity in future
research studying the relationship between HRV and chronic
pain. Moreover, these metrics could provide insights into
generalized health beyond pain, as HR and HRV are useful in
assessing sleep quality (Tobaldini et al., 2013; Mitsukura et al.,
2020) and are indicators of heart health and risk level for
cardiovascular diseases (Dekker et al., 2000; Kleiger et al., 2005).
Having reliable, on-device recordings could also further research
into objective measures of stress, which is not recommended using
traditional statistical methods with an Apple Watch in a healthy
population (Velmovitsky et al., 2023). Furthermore, future studies
could assess the full cardiac waveform from implanted SCS lead
recordings towards arrythmia detection considering chronic pain
patients are at a higher risk of cardiovascular disease (Rönnegård
et al., 2022).

Limitations

While this study focused on the feasibility of collecting cardiac
data in a small number of subjects, there are some limitations to
consider. First, only subjects with thoracic-implanted leads were
included, and thus the ability to record these signals in cervically-
implanted subjects is unclear. Moreover, signals were only recorded
on externalized leads at the end of the trial, and fully-implantable
systems should be evaluated with a gold-standard ECG across a
larger sample size. Additionally, the statistical tests used here
intrinsically assume independence across recordings, which may
affect some confidence intervals and thus significance testing. In this
feasibility work, we did not sufficiently power the study to
characterize differences between lead positioning or to
thoroughly determine the effect of stimulation on versus off,
though the data presented here suggests any potential differences
would not cause the signal to degrade in quality to such a degree that
would make R-peak detection unreliable (i.e., an SNR below 5). In
addition to detecting R-peaks, we also observed smaller features
including P-waves and T-waves in 64% of recordings. The
prevalence of these features likely varied with lead position, as
the recording vector is non-ideal for P-waves or T-waves, as well
as the quality of the signal as we anecdotally observed that
recordings with large SNR for R-peaks often had these waves
apparent. Thus, further analysis of these features would require
concurrent ECG recordings for further validation. This study is an
important step towards future research that should investigate
changes in cardiac signal quality over time in a chronically
implanted system with the presence of SCS therapy. In initial
feasibility studies in sheep (n = 5), we have found cardiac signals
could be recorded months after implantation of SCS leads (data not
shown), though this should be further explored in humans.
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Moreover, future research should also further correlate summary
metrics of these signals with pain scores to identify potential
biomarkers.

Conclusion

Cardiac metrics discussed herein could inform researchers and
clinicians through automated feedback about their patients’ health
and wellbeing. Combined with on-device accelerometry, a plethora of
health measures can be collected, including heart, sleep, and activity
metrics. In addition, these insights could also inform machine
learning algorithms that attempt to predict patient outcomes and
therapy adjustments to further improve SCS therapies. Moreover,
these holistic measures could be used in a closed-loop device that
automatically adjusts and improves long term durability of therapy to
increase patient satisfaction. To achieve this goal, the data must be
reliable to determine whether it is reflective of the patient’s response to
therapy, either as a correlate to the person’s chronic pain or other
wellbeing factors. With sensing capabilities built into existing
implantable SCS systems, longitudinal cardiac monitoring may
help us to investigate the relationship between cardiac metrics,
pain, and wellbeing.
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