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Introduction: Brain tumors are abnormal cell growths in the brain, posing
significant treatment challenges. Accurate early detection using non-invasive
methods is crucial for effective treatment. This research focuses on improving the
early detection of brain tumors in MRI images through advanced deep-learning
techniques. The primary goal is to identify the most effective deep-learning
model for classifying brain tumors fromMRI data, enhancing diagnostic accuracy
and reliability.

Methods: The proposed method for brain tumor classification integrates
segmentation using K-means++, feature extraction from the Spatial Gray
Level Dependence Matrix (SGLDM), and classification with ResNet50, along
with synthetic data augmentation to enhance model robustness.
Segmentation isolates tumor regions, while SGLDM captures critical texture
information. The ResNet50 model then classifies the tumors accurately. To
further improve the interpretability of the classification results, Grad-CAM is
employed, providing visual explanations by highlighting influential regions in
the MRI images.

Result: In terms of accuracy, sensitivity, and specificity, the evaluation on the
Br35H::BrainTumorDetection2020 dataset showed superior performance of the
suggested method compared to existing state-of-the-art approaches. This
indicates its effectiveness in achieving higher precision in identifying and
classifying brain tumors from MRI data, showcasing advancements in
diagnostic reliability and efficacy.

Discussion: The superior performance of the suggested method indicates its
robustness in accurately classifying brain tumors from MRI images, achieving
higher accuracy, sensitivity, and specificity compared to existing methods. The
method’s enhanced sensitivity ensures a greater detection rate of true positive
cases, while its improved specificity reduces false positives, thereby optimizing
clinical decision-making and patient care in neuro-oncology.
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1 Introduction

The human brain is a highly intricate organ that performs a
multitude of functions through the activity of billions of cells. An
irregular proliferation of brain cells that occurs when the cells
surrounding the brain begin to multiply uncontrollably is
referred to as a brain tumor (Saba et al., 2020). Hence, the
development of cell groups and the destruction of healthy cells
result in abnormal brain activity or have an impact on normal
function. The two main categories of brain tumors in humans are
malignant and benign (Sharif et al., 2020). Benign tumors, which are
generally considered non-malignant, non-cancerous, or non-
proliferative, exhibit a less aggressive nature, have a moderate
rate of growth, and cannot metastasize to other areas of the
body, unlike their malignant counterparts. Among the most
serious tumors are brain tumors (Amin et al., 2020). Brain
tumors typically have complicated shapes and differ substantially
in size, texture, and position. As a result, clinical data about tumors
show significant spatial and structural heterogeneity between
patients (Pereira et al., 2016). According to some experts, MRI is
one of the best imaging methods for predicting tumor growth in
both the detection and treatment phases (Vijh et al., 2020). The MRI
is the most versatile imaging technology for depicting specific areas
in the brain, such as tumors, as it normalizes the tissue contrast
(Yazdan et al., 2022). The ability of MRI scans to provide a range of
data, including the structure of the brain and anomalies within the
brain tissues, makes them extremely important in the realm of
medical image analysis (Arunkumar et al., 2020).

The exponential development of deep learning networks has
made it possible for us to handle challenging jobs, even in the
intricate field of medicine. One of the study fields that has generated
the most interest recently is deep learning (Pavan et al., 2020)
However, not everything in Deep learning is straightforward.
Having a large enough amount of data to effectively train AI
models for various tasks is one of the primary issues. The most
important aspect of this restriction is how expensive or few study
volunteers have access to images in the medical field (Mahmud et al.,
2023). In addition, respondents must consent to be scanned, and
they are free to decline even though their data is anonymized
(Willemink et al., 2020). Delineating diseased areas is necessary
for medical image segmentation. Segmenting brain tumors manually
is a task that demands a lot of time and is susceptible to mistakes,
especially when the tumors possess irregular shapes, sizes, and
characteristics. Therefore, it is crucial to devise automated
techniques for the segmentation of brain tumors that can
enhance the precision and productivity of the model (Abdelaziz
Ismael et al., 2020).

Deep learning techniques are thought to be effective for
segmentation; convolutional neural network (CNN) (Amin et al.,
2018) in particular is used for pattern identification. When
compared to statistical techniques, such as support vector
machines (SVM) (Shah et al., 2020) which rely on manually
extracted features, these methods learn features in the form of a
hierarchy. For the study of medical images, including pre-
processing, segmentation, and classification, Deep CNN models
are successfully used (Krishnapriya and Karuna, 2024). The latest
research studies for the identification of brain tumors offered
various classification and segmentation algorithms (Krishnapriya

Srigiri and Karuna Yepuganti, 2023). A comprehensive analysis of
prior research reveals that the overwhelming majority of inquiries
encounter or neglect to consider the prevalent issues of overfitting
and inadequately sized datasets (Liaqat et al., 2018). Huge hidden
layers that extract noisy characteristics that impair the effectiveness
of the classifier are one cause of the overfitting issue (Paul and
Bandhyopadhyay, 2012).

Shree and Kumar (2018) utilized a probabilistic neural network
(PNN) classifier for classifying normal and pathological brain MRIs
based on GLCM-derived features. DCNNs are widely used for their
exceptional performance but require significant computational
resources. Various CNN models, including ResNet-50, DenseNet-
201, Inception V3, and Google Net (Deepak et al., 2019), were
employed to achieve high accuracy. Abd-Ellah et al. (2020)
improved a deep CNN architecture for brain tumor detection,
reaching 97.79% accuracy. Saxena et al. (2019) applied transfer
learning approaches to Inception V3, ResNet-50, and VGG-16
models, achieving the best accuracy rate of 95%. Khan et al.
(2020) used deep transfer learning methods to classify brain
tumors from MRI scans, improving the VGG-16 model using the
Brain Tumor Segmentation (BraTS) dataset and achieving an
accuracy of 96.27%.

A recent study suggests using transfer learning networks to
categorize brain cancers in MR images using pre-trained models
from VGG16, VGG19, ResNet50, and DenseNet21, trained using
four optimization strategies including Adadelta, Adam, RMSprop,
and SGD (Maqsood et al., 2022). In the Figshare dataset, containing
3064 MR images from 233 patients with various brain tumors,
ResNet50, optimized with Adadelta, achieved the highest
classification performance at 99.02%.

Çinar and Yildirim (2020) suggested a technique that substituted
the primary tumor region with an augmented tumor region obtained
via image dilation as the region of interest (ROI). The authors then
divided the enlarged tumor region into small, ring-shaped
subregions using feature extraction techniques such as the
intensity histogram, the gray level co-occurrence matrix (GLCM),
and the bag-of-words (BoW) model. The results indicated a
significant enhancement in classification accuracy for the
intensity histogram, GLCM, and BoW model, increasing from
71.39% to 82.31%, 78.18%–84.75%, and 83.54%–88.19%,
respectively (Krishnapriya S. and Karuna Y., 2023).

Anitha et al. (2022) applied deep learning techniques to classify
lung diseases using chest X-ray (CXR) images. ResNet50 achieved
86.67% validation accuracy, while DenseNet outperformed with
98.33%. Comparative analysis favored DenseNet, highlighting its
superior efficiency in lung disease classification. These findings
emphasize the potential of deep learning architectures for
improving early diagnosis of lung diseases.

Roy and Shoghi (2019) used a hybrid segmentation approach,
combining fast k-means clustering, morphology, and level set
techniques, for computer-aided tumor segmentation in T2-
weighted MR images of patient-derived tumor xenografts. The
method improved segmentation accuracy, resulting in an
increased Dice score. Roy et al. (2017a) developed an iterative
Level Set method for precise MRI brain tissue segmentation,
encompassing normal tissues and abnormalities. The method
generated a hierarchical structure for accurate segmentation,
validated by evaluation metrics like accuracy and similarity index.
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Their work significantly contributes to enhancing precision in brain
tissue segmentation within the field of medical image analysis.

Roy et al. (2017b) propose a novel computerized MRI brain
binarization method, focusing on refining feature extraction and
abnormality identification. The method addresses challenges, such
as extensive black backgrounds and contrast variations, by utilizing
mean, variance, standard deviation, and entropy for threshold
determination, along with a non-gamut enhancement. Their
approach, extensively tested on diverse MRI datasets,
demonstrates superior accuracy and reduced errors compared to
established methods. The comparative analysis highlights its
effectiveness, marking a significant advancement in MRI
preprocessing for enhanced brain imaging.

Gangopadhyay et al. (2022) developed MTSEU-Net, a
groundbreaking architecture for fetal brain imaging that performs

three tasks in a single framework: segmenting the fetal brain into
seven components, predicting the brain type, and estimating
gestational age. The model achieved a Jaccard similarity of 77%
and a Dice score of 82%, demonstrating robust segmentation
performance. It achieved impressive accuracies of 89% for
predicting brain type and 0.83 weeks for estimating gestational
age. This work represents a significant advancement in fetal brain
imaging tasks. Roy et al. (2022) reviewed the integration of
supervised machine learning (SML) in healthcare 4.0,
emphasizing its potential across various sectors and the need for
explainable AI. The insights provided serve as a valuable guide for
researchers in academia and industry, shaping future discourse on
SML in the healthcare and biomedical sectors.

Roy et al. (2017c) present an efficient method for computerized
prediction and segmentation of multiple sclerosis (MS) lesions in
brain MRI. The approach integrates adaptive background
generation, global threshold-based binarization, and a three-phase
level set for comprehensive lesion detection and segmentation.
Notably, the method addresses spurious lesion generation and
over-segmentation issues. Results demonstrate high accuracy with
an average Kappa index of 94.88%, a Jacard index of 90.43%, a
correct detection ratio of 92.60%, a false detection ratio of 2.55%,
and a relative area error of 5.97%. This method successfully detects
and accurately segments MS lesions in brain MRI. Furthermore, the
method has the potential to improve clinical diagnosis and
monitoring of MS progression. Additionally, it shows promise for
enhancing treatment planning and evaluation in patients with
multiple sclerosis.

The objective of this study is to address the significant challenge
of accurately and reliably finding brain tumors in MRI scans,
particularly at early stages where the visual differences between
healthy and diseased tissues are minimal and difficult to detect. Early
detection of brain tumors is crucial for improving patient outcomes,
yet the subtle nature of early-stage tumors often leads to
misdiagnosis or delayed diagnosis with conventional imaging
techniques. The accuracy and applicability of traditional methods
for brain tumor detection are limited, making it essential to develop
more effective diagnostic tools. Therefore, this study focuses on
creating an advanced method that can effectively differentiate
between healthy and sick tissues in MRI scans, enhancing the
early detection and treatment of brain tumors. The proposed
methodology addresses this concern by utilizing K-means++
segmentation, SGLDM characteristic extraction,
ResNet50 classification, and synthetic data augmentation to
enhance the precision and adaptability of the model. This is
represented through the flowchart in Figure 1. The ultimate goal
is to create a tool that can assist medical professionals in precisely
and promptly detecting brain tumors, resulting in better patient
outcomes. This unique amalgamation sets our approach apart from
existing methods and contributes to addressing the specific
challenges associated with Brain Tumor detection.

The key offerings of this paper are:

• Accurate Segmentation of tumor region using K-means++
algorithm which minimizes the noise and initialization
sensitivity.

• Efficient feature extraction using the Spatial gray level
dependence matrix (SGLDM) to capture spatial correlations

FIGURE 1
Flowchart of the proposed methodology..
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between pixels in an image, resulting in a more comprehensive
representation of tumor regions.

• Robust classification of tumorous and non-tumorous Brain
MR scans using ResNet50, results in faster training and better
accuracy. An attribute-based technique, Grad-CAM was
employed for better interpretability of the tumorous scans.

• The image dataset is subjected to synthetic data augmentation
methods, that boosts the volume of training data and enhance
the effectiveness of the deep learning model without overfitting.

• The findings reveal that the suggested approach performs
better than current approaches in terms of sensitivity and
accuracy, highlighting its potential for enhancing brain tumor
detection and identification.

This paper is sectioned as follows. Section 2 will detail the suggested
strategy for the detection of brain tumors, encompassing the procedures
for data augmentation and model training. This section will provide an
overview of the methodology used for detection along with the steps
taken to train the model. In Section 3, the experimental results will be
presented, and a comparison will be drawn between the proposed
method and the existing state-of-the-art methods. This section will
focus on the findings of the research and how they compare to previous
research in the field. Finally, in Section 4, the paper will be concluded,
and the implications of the suggested approach will be discussed. This
section will summarize the main points of the paper and examine the
potential impact of the research on the medical field.

2 Methods

2.1 Dataset

The data used was gathered from Kaggle, a website that offers
publicly accessible datasets for data analysis and machine learning. The
dataset utilized is Kaggle’s Br35H::Brain Tumor Detection 2020 dataset
(available at Br35H:: Brain Tumor Detection 2020 (kaggle.com)), which
includes 3,060 images of both tumorous and non-tumorous brain MRI
scans. Out of these, 802 images—401 from each category—were chosen
to create a new dataset. Our research makes use of this new dataset. We
selected this dataset because it has a high number of images, which can
aid in improving the precision of our model, and because it has both
images with and without brain tumors, which are necessary for training
a binary classification model. We chose MRI images for our study
because MRI is the most effective technology for detecting brain
malignancies.

2.2 Implementation platform

The proposed methodology is implemented and tested on the
specified dataset using Google Colab, a cloud-based platform that
supports Python 3.9.16. The computations are performed on a
laptop equipped with a 12th Gen Intel(R) Core(TM) i5-1235U
processor, operating at 1,300 MHz, featuring 10 cores and
12 logical processors. The operating system used is
Microsoft Windows 11.

2.3 Data pre-processing

Before we could train our model, we needed to pre-process the
data to prepare it for use in the deep learning model. Resizing the
images from their initial dimensions to the necessary input size of
224 × 224 pixels constitutes the initial phase in pre-processing raw
data for the deep learning model. To train the deep learning model,
all Images must comply with the same size and aspect ratio. Upon
scaling, the image’s pixel values are normalized to scale between
0 and 1. This is commonly accomplished by multiplying each pixel
value by the highest potential value of the image, which is 255 in the
case of an 8-bit image. Themodel learns more quickly and effectively
when the pixel values are normalized. It also stops the gradients
from growing too wide, which can be problematic during training.

The images are then subjected to a Gaussian blur filter in order
to eliminate any potential noise and artifacts. A commonmethod for
smoothing out images by removing high-frequency elements like
noise and edges is the Gaussian blur filter. It operates by convoluting
the image using a bell-shaped-curve function called a Gaussian
kernel. The standard deviation of the Gaussian kernel, which is
normally set to a low value to prevent blurring significant features in
the image, regulates the amount of smoothing. Figure 2 shows the
visual representation of the data pre-processing technique.

2.4 Data augmentation

Synthetic data augmentation is employed to generate additional
modifications of segmented MRI images, such as rotations, translations,
and alterations in brightness and contrast, to enhance diversity and
robustness of the training dataset. These random transformations help
the model generalize better, reducing the risk of overfitting and
improving its performance. Specifically, fundamental augmentation
techniques such as rotation, shifting, shearing, zooming, flipping, and

FIGURE 2
Image Pre-processing.
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fill mode, which manages how vacant pixels are filled after
transformations, were used. This process is crucial in medical
imaging, where tumors can appear in various forms and orientations,
and adjusting brightness and contrast mimics the variability in MRI
scans. Consequently, the dataset size was expanded from 802 to
1,604 images, providing a more comprehensive training set. As
illustrated in Figure 3, the augmented images demonstrate the
effectiveness of these transformations in creating a robust training
dataset. This approach is supported by studies like those by Shorten
and Khoshgoftaar (2019), which highlight the significant improvements
in deep learning model performance and generalization through data
augmentation techniques.

2.5 Image segmentation

To segment the brain tumors from MR images, K-means++
clustering technique was employed. This is a well-known clustering
technique that distributes data points to a predetermined number of
clusters according to how similar they are. The initial centroid of each
cluster is chosen at random by the algorithm, which then iteratively
updates the centroid by calculating the mean of all the clustered data
points. After the centroids stopmoving appreciably or when the allotted
number of iterations has been achieved, the algorithm stops.

The K-means++ algorithm delivers more accurate centroid
initialization. This may contribute to better segmentation
accuracy by ensuring that the clusters created throughout
segmentation are more indicative of the underlying distribution

of the data. The initial centroids are more uniformly spread among
the data points in K-means++, making it less sensitive to the original
beginning points and decreasing the likelihood of becoming stuck in
an unfavorable local minimum.

Due to the initial centroids being chosen in a way that promotes
the clusters being well-separated, this can converge more quickly. As
a result, fewer rounds may be necessary to obtain convergence.
Because the initial centroids are less likely to be impacted by extreme
data points, the clustering results are more stable, making them
more resistant to outliers and noise.

Functioning of the K-means++ algorithm

• The procedure begins by choosing the initial cluster centroid
from a random data point.

• Based on how far they are from the current cluster centroids, the
remaining centroids are selected. The likelihood that a data. In
our study, we used the Euclidean distance metric to find the
subsequent cluster of centroids. It is calculated as shown in Eq. 1.

d a, b( ) �
����������∑q
i�1

ai − bi( )2
√√

(1)

Where a, and b are two points in Euclidean “q-space”, ai and bi are
Euclidean vectors, starting from the origin of the space and q refers
to q-space

• After selecting all the centroids, the algorithm places each data
point on the closest centroid.

FIGURE 3
Images before and after Data Augmentation representing the original image (A) Rotated image (B) Horizontally Flipped image (C) Vertically Flipped
image (D) Zoomed image (E) Horizontally Sheared image.
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• The centroids are then recalculated by the algorithm using the
new data points.

• Steps 4 and 5 are repeated till the centroids stop moving
noticeably or up to a predetermined number of repetitions.

Brain MRI scans can be automatically segmented into
regions that are likely to represent the tumor and those that
represent healthy brain tissue using the K-means++ algorithm.
As a result, medical professionals may be better able to pinpoint
the location of the tumor and gauge its extent for diagnostic and
therapeutic purposes. In comparison to many other
segmentation techniques, utilizing K-means++ for brain
tumor segmentation can produce findings that are more
precise, reliable, and effective.

Figures 4A, B depicts the RawMR image of a Brain tumor, which
is then segmented using K-means++.

2.6 Feature extraction

In our study, textural features were extracted using the
Spatial gray level dependence matrix (SGLDM) as a feature
extraction method. Based on the gray-level values of the
pixels in an image, SGLDM calculates the spatial
dependencies between them. A gray-level dependence matrix
(GLDM), which is produced by this method, measures the
distribution of pairs of pixels with particular gray-level values
and particular spatial relationships.

The SGLDM represents a distribution in two dimensions that
relies on the frequency of traversing from 1 Gy level i to another gray
level j. This is achieved by taking into account the inter-sample
distance D and the direction angle θ. Consider two pixels f(X1, Y1)
and f(X2, Y2) positioned at coordinates (X1, Y1) and (X2, Y2) within
an image, separated by a distance d along the horizontal axis. The
resulting SGLDM value P (i, j | D, θ) is thus derived.

It is represented as shown in Eq. 2.

P i, j( ) ≡ P i, j
∣∣∣∣D, θ( ) � * ( X1, Y1( ), X2, Y2( ) ϵW∣∣∣∣{

D � X1 –X2, Y1 –Y2( ), X1, Y1( ) � i, f X2.Y2( ) � j, θ} (2)
Where * represents the frequency of appearances, (X1-X2, Y1-

Y2) indicates the dot product of (x1-x2) and(Y1-Y2). The image
domain, denoted as W, is specified as in Eq. 3.

W � { x, y( ) |xϵ 0, Nx[ ], yϵ 0, Ny[ ] ; x and y are integers (3)
Here, N refers to the largest dimension of the image in both
horizontal and vertical directions.

Steps involved in the calculation of SGLDM features:

• Select a tumor-containing ROI in the image, typically the
output of segmentation.

• Convert the image to gray scale.
• Set the number of gray scale levels (usually 16 or 32).
• Using a specified distance and direction, compute the co-
occurrence matrix (GLCM) for the selected ROI.

• Normalize the co-occurrence matrix by dividing each member
by the sum of all entries in the matrix.

• Calculate the sum of each diagonal and off-diagonal element
for each gray level to get the SGLDM from the
normalized GLCM.

• Calculate SGLDM properties like contrast, homogeneity,
and energy.

• Apply these features as input to a classifier, such as
ResNet50 in our case, for tumor classification.

We specifically estimated the energy, dissimilarity, correlation,
homogeneity, and contrast statistical aspects from the SGLDM.

Dissimilarity: Dissimilarity is a metric used to determine how
dissimilar two things or data points are from one another as
calculated in Eq. 4.

K � ∑N−1

i,j�1
Pi,j i − j

∣∣∣∣ ∣∣∣∣ (4)

FIGURE 4
(A) Raw MR scan of brain tumor (B) Tumor after segmentation.
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Energy: The energy refers to the sum of the squared gray level
values which is calculated as in Eq. 5.

E � ∑N−1

i,j�0
〖Pi,j − lnPi,j〗( ) (5)

Homogeneity: It gauges how similar adjacent pixels are to one
another and it is calculated using Eq. 6.

H � ∑N−1

i,j�0

Pi,j

1 + i − j( )2 (6)

Contrast: Contrast is a measurement of the variations in
intensity levels between adjacent pixels, calculated using Eq. 7.

C � ∑N−1

i,j�0
Pi,j i − j( )2 (7)

Correlation: The degree to which two parameters are linearly
related to one another is measured by correlation as in Eq. 8.

L � ∑N−1

i,j�0
Pi,j

i − μj( )
〖 σ〗( 2

i ) σ2j( )⎡⎢⎣ ⎤⎥⎦ (8)

The SGLDM features were taken from the segmented MRI
images and fed into the classification deep learning model. We
choose SGLDM as a feature extraction method since it has been
demonstrated to be successful in extracting texture characteristics
from medical Images and has been applied in numerous studies for
the identification of brain tumors. The capacity for the detection of
brain tumors in MRI images may be enhanced overall by combining
SGLDM features with additional image features and deep learning
algorithms.

2.7 Classification

For image classification tasks, a convolutional neural network design
called ResNet50 is frequently employed. In our study, we classified brain
MRI images as either having tumors or not using the ResNet50 model.
Utilizing the use of transfer learning an improvised ResNet50 model is
developed, which had already been trained using the Image net dataset.
Convolutional layers, pooling layers, and fully connected layers are
among the 50 layers that make up the ResNet50 model. The fully
connected layers are in charge of classifying the images, while the
convolutional layers are in charge of identifying features in the input
images. The pooling layers contribute to the model’s increased efficiency
by reducing the spatial dimension of the feature maps produced by the
convolutional layers.

Figure 5 presents a concise representation of the
ResNet50 architecture, a key element in the experimental
framework of our study. The ResNet50 model was first placed
onto the ImageNet dataset with pre-trained weights, and all of its
layers were frozen to stop further training. On top of the pre-trained
model, two fully connected layers were added, of which, the first one
had 512 neurons and a Rectified Linear Unit (ReLU) activation
function, and the latter of which had a single neuron and a sigmoid
activation function for binary classification. The loss function used
was binary cross-entropy.

A ReLU activation function was employed in every
convolutional layer. Through the activation function, the input-
weighted sum is converted into the output of the node. ReLU is
mathematically represented by Eq. 9.

f W( ) � max 0,W( ) (9)

‘W’ represents the input in this case. When W is negative or
equal to zero, the negative input is transformed to zero. Inputs

FIGURE 5
ResNet 50 Architecture Overview (reprinted from Jananisbabu, 2024).
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greater than zero yield a value of 1. As a result, in the ReLU function,
the neuron is considered dead and is not triggered if the input is 0.’,
which is shown in Eq. 10.

f w( ) � 1, forw≥ 0
0, forw < 0

(10)

In deep learning, the loss function is used to compute the variance
amid the actual label values and the values predicted algorithmically.
Thereafter, any optimization technique is employed to reduce the error
to its lowest potential value. For the classification of MRI images as
binary in nature, we utilized binary cross entropy. In binary calculations,
the cross-entropy error rate varies between 0 and 1, and is represented
mathematically as such in Eq. 11.

J w( ) � w logK w( ) + 1 –w( ) log 1– k w( )( ) (11)

The predicted label in this instance is k(w), and the actual label is
w. Because w is multiplied by the log, when the actual labels, w, are
equal to 0, the first term will be zero. Similarly, the second
constituent also becomes zero, When w = 1. If w = k(w), N(w)
will be 0.

Various optimization methods are available to diminish the loss
in deep neural networks by altering parameters such as weights and
learning rates. In our investigation, we utilized the Adaptive
Moment Estimation (Adam) optimizer, which combines
momentum-based stochastic gradient descent with RMSprop.

During every epoch of stochastic gradient descent, we calculate
the weight (dN) and bias (dM) derivatives, which are thenmultiplied
by the learning rate, as in Eq. 12.

N � N – η × dNM � M – η × dM (12)

For the current batch, we computed dN and dM, and the results
were a moving mean between 0 and 1. The moving mean of the
gradients is obtained using stochastic gradient descent with
momentum I, calculated as in Eq. 13.

IdN � γ × IdN + 1 – γ( ) × dNIdM � γ × IdM + 1 – γ( ) × dM

(13)
Similar to this, Hinton developed the Root Mean Squared Prop

as an adaptable learning rate technique [46]. We employ RMSProp’s
exponential moving mean square of the gradients. The
mathematical representation of RMSProp is given in Eq. 14,

RdN � γ × RdN + 1 – γ( ) × dN2RdM

� γ × RdM + 1 – η( ) × dM2 (14)

The exponentially weighted means are adjusted using a
hyperparameter known as Gama γ. The traits of the weighted
mean and the weighted mean of the squares of the prior
gradients were combined to employ the Adam optimization
strategy. Therefore, the revised weights and bias of the Adam
Optimizer will be as in Eq. 15.

N � N – η × I
dN/

����
RdN

√ + R( )
M � M – η × I

dM/
����
RdM

√ + R( ) (15)

Zero division is eliminated by Epsilon R (Epsilon = 10-8), and η
stands for the learning rate.

The output of the feature extraction phase was deployed as the
input to the ResNet50 model. The categorical cross-entropy loss
function was utilized to determine the variance between the
predicted and actual labels during the training process. The
model was trained for 30 iterations with the Adam optimizer and
a learning rate of 0.001.

Additionally, the inclusion of Gradient-weighted Class
Activation Mapping (Grad-CAM) has been done, following the
convolutional layers of our ResNet50 architecture, to enhance the
interpretability of our brain tumor classification model. Grad-CAM
is a visualization method that helps us identify the areas of the brain
MRI scans that have a major impact on the final categorization.
Grad-CAM computes the gradients of the anticipated class scores
with respect to the feature maps after the convolutional layers have
extracted features. The spatial areas that contribute most to the
classification output are highlighted in a heatmap created using
these gradients. We may learn a great deal about the characteristics
and regions that the model gave priority to throughout the
classification process by superimposing these heatmaps on the
original MRI images. In addition to offering a potent tool for
model interpretation, this inclusion contributes to the
development of trust and comprehension in the clinical
application of our approach for classifying brain tumors.
Examples of the Grad-CAM heatmaps that highlight the regions
of interest found by our model are shown in Figure 6.

Following training, we assessed the model performance of
ResNet-50, using the performance measures mentioned below on
the validation set. A confusion matrix was also used to visualize how
well the model performed.

3 Experimental results and discussion

3.1 Experimental setup

The proposed methodology is tested on the aforementioned
dataset using Google colab, which uses Python 3.9.16, on a laptop

FIGURE 6
Accuracy graph of the proposed model.
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with a Processor 12th Gen Intel(R) Core (TM) i5-1235U,
1,300 MHz, 10 Core(s), 12 Logical Processor(s), and
Microsoft Windows 11.

The initial dataset was split into training and testing data in a 70:
30 proportion.

3.2 Performance metrics

The effectiveness of our suggested method was assessed
using the subsequent performance metrics, as in Eqs 16–19
respectively.

Accuracy: The percentage of correctly categorized images in the
test set as compared to all the images in the test set.

Accuracy � TP

Total number ofpredictions
(16)

Precision: The ratio of correctly predicted positives (TP) to all
predicted positives (TP + FP), where TP is the count of accurate
positive predictions and FP is the count of inaccurate positive
predictions.

Precision � TP

TP + FN
(17)

Recall: The ratio of correctly predicted positives (TP) to all actual
positives (TP + FN), where TP represents the count of accurate
positive predictions and FN represents the count of inaccurate
negative predictions.

Recall � TP

TP + FN
(18)

F1 score: This is a single score that balances both metrics and is
computed as the harmonic mean of precision and recall.

F1 score � 2 p
precision p recall

Precision + recall
(19)

3.3 Results and discussions

3.3.1 Performance of the proposed model
Table 1 shows the features that are extracted from the tumorous

and non-tumorous MR images.
The results shown in Table 2 demonstrate that the suggested model

attained remarkable levels of accuracy throughout the training and

TABLE 1 Features extracted from random images in the dataset using the SGLDM method.

Image number Contrast Dissimilarity Homogeneity Energy Correlation

Y32 [Tumorous Image] 696.974707 1,136.726091 502.257311 1,024.496 11.57009

Y313 [Tumorous Image] 504.299777 829.300708 387.387861 706.5730 10.46417

Y390 [Tumorous Image] 2487.90452 3,673.003989 2129.828718 3,817.196 28.23669

Y397 [Tumorous Image] 1737.46131 2608.654610 1,451.894017 2751.701 22.64054

Y398 [Tumorous Image] 1,226.44633 1890.735612 932.658447 1920.585 17.11975

No6 [Non-Tumorous Image] 106.580234 172.769611 77.178417 170.1018 5.080357

No50 [Non-Tumorous Image] 143.365402 222.801614 102.2258832 216.1244 6.358559

No56 [Non-Tumorous Image] 60.419799 96.324885 42.411867 100.1154 2.982598

No364 [Non-Tumorous Image] 168.464468 218.7196 94.853518 233.4348 6.268135

No396 [Non-Tumorous Image] 54.576343 78.760849 24.918817 76.10711 2.132773

TABLE 2 Training and validation accuracies and losses of the Proposed
model.

Training Validation

Loss 0.024101 0.017044

Accuracy 0.992519 0.995012

FIGURE 7
Loss graph of the proposed model.
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validation periods. The model specifically had a training accuracy of
99.25%, meaning it could correctly predict the class for 99.25% of the
training data. Also, the validation accuracy increased to 99.50%,
indicating that the model performed well when applied to fresh,
untested data. Also, the training loss was 0.024, indicating that
throughout training, the model’s predictions were reasonably accurate.

The validation loss, which was again 0.017, showed that the
model could correctly predict the classes of the validation data.
Figures 7, 8 represent the Model accuracy and loss graphs
respectively.

The evaluation results of the proposed model is presented in
Table 3. The precision, accuracy, recall, and F1-Score of the
algorithm were derived by employing the aforementioned
equations. The findings imply that the suggested algorithm
surpassed alternative state-of-the-art techniques.

3.3.2 Performance comparison of the proposed
model with state-of-art methods

ResNet50, VGG16, andVGG19 are some of themost well-liked and
frequently employed architectures for deep learning models for image
classification. Deep convolutional neural network architectures like
ResNet50, VGG16, and VGG19 vary in the model’s complexity and
number of layers. ResNet50 features 50 layers, compared to 16 and
19 layers for VGG16 and VGG19, respectively. ResNet50 has been
demonstrated to perform better than both VGG16 and VGG19 on a

number of image classification tasks. This is because, in comparison to
VGG16 and VGG19, it uses residual connections, which enable the
network to learn and improve feature representations. In addition, the
usage of skip connections in ResNet50 makes it more computationally
efficient than VGG19 even though it has more layers. VGG16 and
VGG19, however, each have advantages of their own. These models are
simpler to train and use than ResNet50 because of their simplified
architecture. Moreover, transfer learning works well with VGG16 and
VGG19, enabling the models to be tailored for certain image
classification tasks with fewer data. Due to their enormous capacity
and capacity to learn complicated feature representations, VGG16 and
VGG19 have also been demonstrated to perform well on datasets with
small images or little training data.

We also experimented VGG 16 and VGG 19 using the same
dataset along with the same preprocessing, segmentation, and feature
extraction methods, to compare the performance of these models with
ResNet50. According to the results, ResNet50 had the best accuracy,
scoring 99.50, while VGG16 and VGG19 scored 90% and 96.75%,
respectively. Table 4 and Figure 9 represents the same. These findings
are in line with earlier research, which demonstrated that
ResNet50 outperformed VGG16 and VGG19 on a range of Image
classification tasks.

To sum up, ResNet50, VGG16, and VGG19 are all effective deep-
learning models for classifying images, each with specific advantages
and disadvantages. ResNet50 is more accurate and computationally
efficient thanVGG16 andVGG19, yet VGG16 andVGG19 are easier to
use and better suited for transfer learning.

In comparing the transfer learning approach, utilizing pre-
trained ResNet50, with Graph Neural Networks (GNN), the
transfer learning model excels in spatial relationship modeling.
Through its convolutional layers, it adeptly captures hierarchical
spatial features crucial for segmentation, providing a foundation for
precise spatial understanding. Additionally, the transfer learning
model seamlessly integrates contextual information within learned
hierarchical features, contributing to robust tumor segmentation
capabilities. Its strength in handling irregular tumor shapes, derived
from adaptability during pre-training on diverse image datasets, sets

FIGURE 8
Bar graph showing the proposed model with the existing Transfer learning model.

TABLE 3 Classification report of the proposed model.

Precision Recall F1-score Support

0 1.00 1.00 1.00 20

1 1.00 1.00 1.00 12

Accuracy 1.00 1.00 1.00 32

Macro average 1.00 1.00 1.00 32

Weighted average 1.00 1.00 1.00 32
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it apart. Furthermore, the model demonstrates computational
efficiency, making it a practical choice for medical image
segmentation and classification, while GNN may encounter
challenges in computational complexity for large-scale datasets.
This analysis emphasizes spatial and contextual relationships,
highlighting the transfer learning technique as a powerful
mechanism for more successful brain tumor detection.

3.3.3 Performance comparison of the proposed
model with existing methods

Table 5 and Figure 10 shows the performance comparison of the
proposed model with existing state-of-art models.

4 Limitations

Few restrictions apply to the proposed approach to detect
brain tumors.

1. Quality of Input Data: The success of the proposed approach
heavily relies on the quality of the input data, encompassing
factors such as image resolution, noise levels, and contrast.
Poor image quality or unconventional imaging techniques can
compromise the accuracy of segmentation and feature
extraction processes, thereby affecting the reliability of the
predictions made by the model. Strategies to address this
limitation may involve implementing robust preprocessing

techniques to enhance image quality, standardizing imaging
protocols across different systems, or exploring alternative
imaging modalities that offer higher resolution and contrast.

2. Computational Power Requirements: The approach demands
substantial computational resources, particularly during the
training phase. This high computational overhead may pose
challenges for real-time processing in practical applications,
where timely diagnosis is crucial. To alleviate this limitation,
optimizations such as algorithmic efficiency improvements,
parallel computing techniques, or utilization of specialized
hardware accelerators (e.g., GPUs, TPUs) could be explored.
Additionally, techniques like transfer learning or model
distillation may reduce the computational burden without
sacrificing performance.

3. Capturing Real-World Variability: While the approach
demonstrates promising performance, there is a concern that it
may not fully capture the variability present in real-world datasets.
The model training data may not adequately represent the diverse
range of pathologies, imaging artifacts, and patient demographics
encountered in clinical practice. To address this limitation,
incorporating more diverse and representative training data,
augmenting the dataset with synthetically generated examples,
or employing techniques like domain adaptation could enhance
the ability of the model generalize to unseen variations. Although
the strategy demonstrated promising results on a particular
dataset, further investigations must be conducted to determine
if it can be applied to other datasets or clinical settings.

TABLE 4 Performance Comparison of Proposed Model with other Transfer learning models.

Model Training accuracy (%) Validation accuracy (%) Dataset used

VGG16 86 90 Br35H::Brain Tumor Detection 2020 dataset (Kaggle, 2020)

VGG19 95.2 96.7 Br35H::Brain Tumor Detection 2020 dataset (Kaggle, 2020)

ResNet50 99.25 99.50 Br35H::Brain Tumor Detection 2020 dataset (Kaggle, 2020)

FIGURE 9
Bar graph showing the performance comparison of the proposed model with Existing models.
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TABLE 5 Performance comparison of proposed model with existing state-of-art methods.

S.NO Authors Methods used Dataset used ACCURA
CY

1 T. Saba et al. (Saba et al., 2020) wavelet-based texture features and morphological features as
hand-crafted features, and a convolutional neural network

BRATS2015 96.34%

BRATS2016

BRATS2017

2 S. Deepak and P. M. Ameer
(Khawaldeh et al., 2017)

VGG16-SVM Dataset from Figshare 95.71%

3 P. Saxena et al. (Tazin et al.,
2021)

CNN, LSTM BRATS 91.91%

4 A. Çinar and M. Yildirim.
(Sarah et al., 2023)

VGG16, ResNet50 BRATS 97.9%

5 S. Khawaldeh et al. Cheng et al.
(2015)

CNN The Cancer Genome Atlas (TCGA) Low
Grade Glioma (LGG) collection

89.5%

6 Ö. Polat and C. Güngen. (Khan
et al., 2020)

VGG 19 BRATS 97.94%

7 J. Cheng et al. (Han et al., 2019) SVM A collection of MR images of brain
tumors with four different types of tumors

93.7%

8 Abdelaziz Ismael et al. (Shah
et al., 2020)

Enhanced residual networks like ResNet and DenseNet BRATS 97.5%

9 M.A.; Ashraf et al. (Yan et al.,
2023)

VGG-19, VGG-19 BRATS 96.9%

10 Han et al. (Munir et al., 2022) VGG-16, Alexnet BRATS 98%

11 Nayak et al. (Salama and
Shokry, 2022)

ResNet 50, MobileNet, MobileNetV2 BRATS 98.78

12 Amin et al. (Krishnapriya and
Karuna, 2023a)

SVM, naïve-bay es, ensemble DT, KNN BRATS 98%

13 Ari et al. (Amran et al., 2022) ResNet-50 for Detection GAN for Data Augmentation BRATS 87%

14 Proposed method K-means++ for segmentation, Feature extraction using SGLDM,
Classification using ResNet50 along with synthetic data
augmentation

Br35H::Brain Tumor Detection
2020 dataset (Kaggle, 2020)

99.50%

FIGURE 10
Heat map visualization of images using Grad-CAM (A) Y190 (B) Y468.
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4. Generalizability of Other Datasets/Clinical Settings: Despite its
efficacy on a specific dataset, the generalizability of the approach to
different datasets or clinical environments remains uncertain.
Variations in imaging protocols, equipment, and patient
populations across institutions can impact the performance of
the model. Further validation studies on external datasets,
spanning multiple clinical sites and populations, are essential to
assess the robustness and applicability of the approach in diverse
real-world scenarios. Additionally, techniques like cross-
validation, external validation cohorts, and model
interpretability analyses can provide insights into the model
performance across different settings and aid in identifying
potential sources of bias or variability.

5 Discussion

While our work proposes a potential method for detecting brain
tumors, a few limitations are to be noted. To begin, the proposed
strategy is strongly reliant on the integrity of the input data. Image
resolution, noise, and contrast can all have an impact on the accuracy of
the segmentation and feature extraction steps. As a result, for datasets
with poor image quality or non-standard imaging techniques, the
algorithm may not perform well. Secondly, the suggested method
requires a lot of computing, especially during the training phase.
This could be a hindrance in actual applications that demand real-
time processing. Third, despite the fact that synthetic data augmentation
improved themodel’s performance, it may not adequately represent the
unpredictability of real-world data. The employment of more
diversified and complex augmentation techniques may result in
further performance improvements. Finally, while the suggested
strategy outperformed existing state-of-the-art methods on the
Br35H::Brain tumor detection dataset, its applicability to other
datasets or clinical contexts needs to be tested further.

While our current study presents a robust transfer learning-based
approach for brain tumor segmentation, the ever-evolving field of
medical image analysis offers opportunities for continuous
improvement and innovation. In the realm of adaptive segmentation,
we foresee significant potential in the integration of Reinforcement
Learning (RL) strategies. Future research endeavors will delve into the
exploration of howRL can dynamically optimize segmentation pathways,
adapting processing steps to the unique characteristics of medical images.
The envisioned research will undertake a comprehensive analysis,
comparing our transfer learning-based approach to RL strategies and
exploring synergies between these methodologies. RL, known for its
capacity in learning from sequential decision-making processes, holds
promise in guiding the segmentation process by dynamically selecting
and sequencing processing steps based on varying contexts within
medical images. This adaptive approach could lead to more nuanced
and context-aware segmentation models.

The combination of prior knowledge encoded in transfer learning
models with RL’s adaptive decision-making capabilities is expected to
enhance segmentation precision, making the approach more flexible
and adaptable across diverse medical imaging scenarios. This research
not only aligns with current trends in medical image analysis but also
sets the stage for the development of more dynamic and responsive
segmentation models. The outcomes of this investigation have the
potential to contribute valuable insights to the broader field of adaptive

medical image analysis, paving the way for advancements that
transcend specific applications.

6 Conclusion

This proposed work concludes with a method for detecting brain
tumors that combines segmentation usingK-Means++, feature extraction
from SGLDM, classification using ResNet50, Visualization through
Grad-CAM, and data augmentation using synthetic data. The
suggested method seeks to improve the accuracy and resilience of
detecting brain tumors while requiring as little manual intervention as
possible. Testing on the Br35H::Brain Tumor Detection 2020 dataset
revealed that the suggestedmethod outperforms the existing state-of-the-
art methods. The incorporation of synthetic data augmentation also
contributed to enhancing the performance of the model. To summarize,
the suggested method has the potential to increase the accuracy and
reliability of brain tumor detection, which has important implications for
early diagnosis and treatment. Future research could include testing the
approach on larger and more varied datasets, as well as in real-world
clinical situations. This research serves as a foundation for future research
into more complex tumor segmentation and classification techniques.
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