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Introduction: The purpose of this study was to investigate the ideal training load
to be applied during periods of fixture congestion to ensure an adequate dose-
response effect for performance maintenance.

Methods: Match performance data and corresponding pre-match training load
sessions (both N = 498 match performance cases and training-block session
cases) were collected (with the catapult system, VECTOR7) from 36 male
professional soccer players (23.5 ± 5.2 years; 178 ± 4 cm; 75.5 ± 6.0 kg)
belonging to the Brazilian First Division team during the 2022 season. The
following data were collected in match and training sessions: jump,
acceleration, deceleration, and change of direction (COD); running distance
producing metabolic power at different intensities (>20, >20–35, >35–45,
>45–55, and >55 W kg−1), total distance (m), relative distance (m/min),
running distance at different speeds (>20, >25, and >30 km/h), number of
sprints (running >25 km/h), and maximum speed (km/h). Mixed linear model
(MLM), decision tree regression (DTR), and cluster K means model (SPSS v.26)
approach were performed to identify the most critical variables (and their
respective load) in the training sessions that could explain the athlete’s match
performance.

Results: MLM and DTR regression show that training load significantly affects
game performance in a specific way. According to the present data, an
interference phenomenon can occur when a high load of two different skills
(running in a straight line vs COD, deceleration, and jumping) is applied in the
same training block of the week. The cluster approach, followed by a chi-squared
test, identified significant associations between training load and athlete match
performance in a dose-dependent manner.
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Discussion: The high load values described here have a beneficial effect on match
performance, despite the interference between stimuli discussed above. We
present a positive training load from a congested season from the Brazilian First
Division team. The study suggests that an interference effect occurs when high
physical training loads are applied to different specific physical skills throughout
the season.
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1 Introduction

In recent years, there has been a growing interest in the detailed
analysis of training and match demands in professional soccer
(Sarmento et al., 2018; Clemente et al., 2019). This is partly due
to the development of GPS and tracking systems that provide
detailed performance analysis (i.e., training load) (Kaloop et al.,
2017; Reinhardt et al., 2019).

Data collected during training and match sessions are
essential to characterize match demands, define optimal
training loads in preparation for competitions (Gómez-
Carmona et al., 2018; Gonçalves et al., 2022), detect fatigue
patterns (Filetti et al., 2019), prevent injuries, reduce the risk
of overtraining (Rodrigues et al., 2023), and provide a broader
understanding of each player’s profile (Carling et al., 2008;
Reche-Soto et al., 2019).

Modern elite soccer involves a large number of competitions
and matches (typically up to 50 games) during the season between
national and international competitions (Thorpe and Sunderland,
2012). Thus, it is not uncommon for a team to play two matches in
a single week (Julian et al., 2021) with little recovery time in
between, which represents a congested schedule. Indeed, the ability
to recover between matches and intense training has previously
been identified as a determinant of success (Rey et al., 2018; Dolci
et al., 2020). Therefore, an approach that identifies the optimal
training load and potential overload between games could be
crucial for coaches.

Indeed, during periods of fixture congestion, the maintenance or
improvement of performance is determined not only by adequate
conditioning, but also by the ability of body systems to recover and
regenerate after multiple stress stimuli (Marqués-Jiménez et al.,
2017; Kalkhoven et al., 2021). Previous evidence has reported
that reducing recovery time between games can lead to residual
fatigue (Lago-Peñas et al., 2011), increase player stress, increase the
risk of injury, and impair performance (Dellal et al., 2015; Mohr
et al., 2016). Thus, in championships that face long and congested
schedules with little recovery time (e.g., Brazil’s Serie A) (Vieira
et al., 2018), the coach’s strategies in squad rotation and the
application of appropriate training loads in a training context are
particularly important.

Training load can be identified with a dose-response
relationship between training stimuli and changes in physical
fitness indicators (Branquinho et al., 2021a; Branquinho et al.,
2021b), which have been widely used to identify peaks in
training load. Monitoring the training load can be essential to
optimize performance, reduce the risk of injury, and give the
coach a general idea of how weekly stimuli affect performance in

a game (Borin et al., 2007; Guerrero-Calderón et al., 2021; Guerrero-
Calderón et al., 2022).

The training load is usually planned to ensure that the player is
available for the next match (Garcia et al., 2022). However, in leagues
(e.g., Brazil’s Serie A) with a tight schedule and long travel times
between games, training time is reduced. For these reasons, it is essential
that the stimuli applied (i.e., training load) do not exceed recommended
levels, yet little is known about the ideal training load for teams facing
these challenges over the course of a season. In fact, the management
and control of training load (i.e., internal load and external load)
throughout the weekly periodization, if done correctly, can be
critical in ensuring that players arrive at the next game in the best
possible condition (Teixeira et al., 2021; Teixeira et al., 2022). New
information on this topic would be of great use to coaches and sports
scientists in optimizing player performance during the season.

Thus, the main objective of this study was to investigate the ideal
training load to be applied during periods of fixture congestion to ensure
the appropriate dose-response effect for performance
maintenance. Our central hypothesis is that the weekly
training load in a congested schedule is strongly associated
with match performance. Also, there is an association between
match performance and multiple contextual factors (such as
home-away match condition, player position, amounts of
training sessions in the weekly macrocycles, and the days
between games). Finally, the type of stimulus applied in the
macrocycles (such as jumping stimulus, change of direction,
the number of explosive actions, and running in a straight
line) might exert a positive or negative influence depending on
the match performance variables assessed.

2 Material and methods

2.1 Participants and sample

Match performance data (N = 1,596 cases) and pitch match
training load sessions (N = 5,515 cases) were collected from 36 male
professional soccer players (age 23.5 ± 5.2 yr; 178 ±4 cm; 75.5 ±
6.0 kg) belonging to the Brazilian First Division team during the
2022 season. Only data corresponding to 77 official matches from
2022 season were analyzed. The 2022 season (with first official
match) started on January 27th and ended on November 11th,
without breaks during this entire period (that is, with one or two
matches every week). Only match performances lasting ≥80 min
were included in the analysis in accordance with previous
recommendations (Guerrero-Calderón et al., 2021; Guerrero-
Calderón et al., 2022). In this sense, the sample was limited to
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498 match performance cases and their corresponding previous
training load cases. Thus, 1,077 match performances cases and their
corresponding previous training load (N = 2,446 cases) with match
duration ≤79 min were excluded, see Figure 1. Players were divided
into four positions: striker (112 pitch training sessions and match
performance cases), fullback (117 cases), winger (88 cases), and
midfielder (181 cases), see detailed description in Table 1.
Goalkeepers were excluded from this analysis due to the different
nature of their movement pattern.

2.2 Data collection

The catapult system (VECTOR7) with global and local
positioning system devices (GPS, GLONASS and SBAS
18 Hz; LPS, Catapult ClearSky 10 Hz) combined with inertial
sensors such as accelerometer (3D ± 16G; sampled at 1kHz,
provided at 100 Hz), gyroscope (3D 2000°/second @ 100 Hz),
and magnetometer (3D ±4,900 µT @100 Hz) were used to
collect data for all games. All three inertial sensors collected
data on acceleration, force, rotation, and body orientation.

2.3 Match performance and session
training variables

The Inertial Movement Analysis (IMA) method was used to
access explosive efforts such as jumps (>40 cm), acceleration (−45 to
0, 0–45°), deceleration (135–180, -180 to −135°), change of direction

(COD) to the left (−135 to −45°) or to the right (45–135°). In
addition, the total explosive effort (the sum of the jump,
acceleration, deceleration, and COD) was recorded as the IMA
explosive effort. IMA was used to derive RHIE (Repeat High-
Intensity Efforts: the player performed three explosive efforts
in ≤60 s) and RHIE block recovery time (the amount of time to
recover and perform another RHIE). The running distance
producing metabolic power (W kg−1) was also collected at
different intensities (>20, >20–35, >35–45, >45–55,
and >55 W kg−1). The player load was collected as the sum of the
accelerations of the tri-axial accelerometer. GPS methods were used
to collect total distance (m), relative distance (m/min), running
distance >20 km/h (m), >25 km/h (m), and >30 km/h. In addition,
the number of sprints (running >25 km/h) and the maximum speed
(km/h) achieved during thematch or training session were recorded.

2.4 Training data collection

Training and conditioning sessions between games were
collected. Pre-season training was excluded from the analysis.
5,512 training sessions were collected. Only the training load
corresponding to players who played in competitive matches for
more than >80 min was included. The average number of training
sessions per week before the game (reported here as weekly training
sessions) was calculated. Players who did not complete a
conditioning session but played a match were excluded from the
analysis (see detailed description in Figure 1). Strength training and
recovery sessions were not included in the analysis.

FIGURE 1
Flowchart with inclusion and exclusion criteria for match performance and pitch training data.
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TABLE 1 Match performance and pitch training load description according to player position.

Match performance p-value Training load p-valuePlayer
position

Striker Fullback Winger Midfield Striker Fullback Winger Midfield

Total distance (m) 9890.7
(9484.5/
10296.8)

10157.6
(9799.3/
10515.8) &

9686.2
(9268.5/
10103.9)

10432.2
(10135.3/
10729.1) #

0.025 3199.5
(2896.1/
3502.8)

2817.7
(2556.7/
3078.7) &

3237.7
(2929.3/
3546.1)

3302.3
(3083.0/
3521.5) #

0.032

Relative distance
(m/min)

98.4 (95.3/
101.5) #

92.6 (89.9/
95.3) *, &

94.0 (90.8/
97.2) &

100.3 (98.1/
102.6) #, @

0.004 64.2
(60.2/
68.1)

63.5
(60.0/67.0)

64.9
(60.8/68.9)

65.1
(62.3/68.0)

0.876

Distance >20 km/
h (m)

568.0
(488.3/
647.7) #

422.1 (356.3/
487.8) *, &

513.7
(434.2/
593.3)

566.8 (509.4/
624.4) #

0.033 174.1
(136.9/
211.2)

104.6 (74.9/
134.2)

151.1
(114.8/
187.3)

143.4 (116.7/
170.1)

0.031

Distance >25 km/
h (m)

177.2
(135.5/
219.0) #

102.3 (69.2/
135.4) *

124.3 (83.9/
164.8)

144.0 (114.0/
174.1)

0.033 48.1 (34.1/
62.1) #

21.7 (10.9/
32.5) *

35.7
(22.5/49.0)

28.8
(18.7/38.8)

0.017

Distance >30 km/
h (m)

20.8
(11.2/30.5)

11.5
(4.1/18.9)

7.9 (0.0/
17.00)

12.6
(5.7/19.5)

0.275 5.7 (2.9/
8.6) #

0.7 (0/2.8) * 3.2
(0.7/5.8)

1.3 (0/3.3) 0.016

Sprints (N) 12.4 (9.8/
15.1)#

7.7 (5.6/9.8)* 8.9
(6.3/11.4)

9.9 (8.0/11.8) 0.045 3.7 (2.7/
4.8) #

1.7 (0.9/2.5) * 2.9
(1.9/3.9)

2.2 (1.4/2.9) 0.010

Max. speed (km/h) 30.2
(29.5/30.8)

30.1
(29.5/30.6)

29.9
(29.3/30.6)

29.9
(29.4/30.4)

8.54 27
(25.9/
28.0)

25.3 (24.4/
26.2) @

27.3 (26.2/
28.4) #

26.5
(25.7/27.3)

0.018

Accelerations (N) 18.5
(15.0/22.1)

17.2
(14.2/20.1)

14.0
(10.1/17.6)

13.5
(11.0/16.1)

0.037 5 (3.9/6) 4.6 (3.7/5.4) 5.7
(4.7/6.8)

5 (4.3/5.8) 0.332

Decelerations (N) 15.7
(12.6/19.2)

20.2
(17.4/23.1)

16.7
(13.3/20.1)

17.4
(14.9/19.9)

0.119 7.4
(5.9/8.8)

6.7 (5.5/8.0) 7.6
(6.2/9.1)

6.7 (5.7/7.8) 0.662

Jumps > 40 cm (N) 3.0 (1.8/
4.3) #

5.4 (4.4/6.5)
*, @, &

2.6 (1.4/3.9) 2.1 (1.2/3.0) <0.001 0.8
(0.4/1.2)

0.5 (0.2/0.8) 0.6 (0.2/1) 0.5 (0.3/0.8) 0.503

COD to left (N) 20.2
(16.2/24.2)

21.1
(17.9/24.4)

15.9
(11.9/19.8)

18.1
(15.2/21.0)

0.087 7.4 (5.9/9) 7 (5.6/8.3) 6.2
(4.6/7.8)

7.7 (6.6/8.9) 0.424

COD to right (N) 20.6
(17.8/23.3)

21.2
(18.9/23.6)

18.6
(15.8/21.4)

20.3
(18.3/22.3)

0.500 8.6
(6.4/10.8)

7.5 (5.8/9.3) 8.9 (6.8/11) 9.1 (7.5/10.6) 0.387

Explosive effort 67.9 (59.8/
76.0) #

84.3 (77.7/
91.0) #, &

65.5 (57.6/
73.6) #

70.71 (64.9/
76.5) #

<0.001 29
(23.7/
34.4)

26
(21.6/30.4)

29.3
(24.0/34.7)

29.2
(25.3/33.1)

0.543

RHIE blocks
effort (N)

24.2
(21.7/26.6)

23.2
(21.1/25.3)

20.6
(18.2/23.1)

22.5
(20.8/24.3)

0.191 9 (7/11) 6 (4.4/7.6) 8.3
(6.4/10.2)

7.9 (6.5/9.4) 0.029

Average RHIE
effort (N)

4.5
(4.4/4.7)

4.5 (4.3/4.6) 4.4 (4.3/4.5) 4.4 (4.3/4.5) 0.375 4 (3.4/4.7) 4.4 (3.8/5) 4.1
(3.4/4.8)

4.1 (3.6/4.6) 0.844

RHIE block
recovery time
(RHIE/min)

3.4 (3.0/
3.9) @

4.2 (3.8/4.5) 4.4 (3.9/
4.8) *

3.9 (3.6/4.2) 0.023 3.5 (2.9/4) 3.6 (3.1/4.1) 3.7
(3.2/4.3)

3.4 (3.1/3.8 8.35

Distance > 20w (m) 2008.4
(1818.4/
2198.3)

1975.2
(1815.1/
2135.2) &

2031.2
(1839.4/
2223.0)

2309.8
(2172.4/
2447.2) #

0.004 684.2
(587.9/
780.4)

544 (464.0/
624.0) &

675.2
(578.7/
771.7)

729.2 (659.6/
798.7) #

0.004

Distance > 55w (m) 250.6
(217.9/
283.2) #

192.6 (165.7/
219.5) *

194.1
(161.5/
226.7)

195.7 (172.1/
219.2)

0.034 101.9
(80.7/
123.2) #

54.5 (38.0/
70.9) *, @

85.8 (65.7/
105.9) #

76.1
(60.9/91.3)

0.001

Player load 1063.5
(982.3/
1144.8)

999.1 (933.3/
1064.8)

1018.9
(938.8/
1099.0)

1035.4
(976.9/
1094.0)

0.628 350.3
(313.4/
387.2)

310.2 (278.6/
341.9) @

373.5
(336.0/
411.1) #

347.5 (320.8/
374.2)

0.052

Data are mean and IC, 95%. The mixed linear model was used to compare match performance and training load across player positions. For this, player ID, was used as a random effect, and

player position as a fixed effect. *, p < 0,05 when compared to striker; #, p < 0,05 when compared to fullback; @, p < 0,05 when compared to winger; &, p < 0,05 when compared to midfield. Bold

values indicate p < 0.05.
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2.5 Contextual factors

Number of training sessions between matches (players are
prevented from playing to safeguard themselves for more
important matches and only accumulate training sessions to
recover); the amount of weekly training (the number of training
sessions before a match) and days between matches.

2.6 Statistical analysis

Data are presented as mean and standard deviation (SD) (or,
when indicated, confidence interval (CI) 95% or minimum a
maximum). To determine the influence of training load on
match performance throughout the season, the mixed linear
model regression fit was used for 19 dependent variables (see
Table 2). Two contextual factors were used as fixed effects: player
position and match location. Three contextual factors were used as
covariables: training sessions between matches, weekly training
sessions, and days between matches, and 17 variables were
collected during the training session (see Table 2). Collinearity
for the inclusion of independent variables was set at a tolerance
of >0.1. Because data from the same player were used multiple times,
players were used as random effects (intercept model). A decision
tree regression (DTR) model was performed to identify the most
important variables (and their respective load) in the training
sessions that could explain the athlete’s match performance. The
DTR model was generated [using the Chi-square Automatic
Interaction Detector (CHAID) method]. The nodes (leaves) of
the DTR were cleared to compare at least 100 samples in each
node. To examine the association between player performance and
training session load, the match performance and training session
load data were standardized to z-scores and then clustered using a
k-means approach. To validate the clusters (i.e., to verify if clusters
are different between then), we use the ANOVA-way (using clusters
as factors and the z-score of training load variables or match
performance as dependent variables). The Chi-squared was used
to test the association between the clusters created by k-means and
with contextual variables (player position and home-away match
condition). All analyses were performed using the statistical package
IBM SPSS Statistics v.26.0.

3 Results

Player match frequency was 4 ± 2 days (ranging from 3 to
20 days), training between matches was 2.7 ± 2.7 (ranging from 1 to
31 sessions), weekly sessions were 2.2 ± 1 (ranging from 1 to
5 sessions), and home/away match performances were 260 and
238, respectively.

Mixed linear model regression (Table 2) shows that training load
and contextual variables significantly influence game performance.
For example, match running relative distance (m/min) was
positively influenced by training variables such as amount of
training between matches and distance covered >20 W kg−1

during training sessions. On the other hand, it is negatively
influenced by training variables such as distance
covered >55 W kg−1, large block recovery time, acceleration, and

days between games, and away match. Table 2 describes those
contextual variables such as match avenue, training sessions
between matches, days between games, and player position has
significant influence on several match performance.

The decision tree regression (DTR) model was used to identify
the most important training load variables associated with match
performance. In addition, the DTRmodel shows the extent to which
match performance variables are negatively or positively affected by
their most important training load variable. Because several match
performance variables are affected by the location of the game and
the player’s position, the DTR model was controlled for these
variables when necessary.

Figure 2 (controlled for game location) shows that the total
distance (shown at node zero) is associated with the amount of
distance spent in activities >20 W kg−1 (Nodes 1 and 2). The total
distance is negatively impacted by decelerations (Nodes 3 and 4).
Thus, Node 1 shows that the distance covered of ≤744.6 m (at
intensity >20 W kg−1) is associated with the predicted distance of
10,157.5 m. While running distance of >744.62 m at >20 W kg−1

(Node 2), the predicted distance will be statistically greater
(10,795.7 m) compared to Node 1. Node 2 (with a statistically
smaller total distance compared to Node 1) is divided into two
more nodes (Nodes 3 and 4), indicating that in this sample subset
there is a difference in performance when considering the number of
decelerations performed in the training session. Thus, Node
3 indicates that performing ≤6.5 decelerations in training
sessions is associated with 10,406.3 m, while Node 4 indicates
that performing >6.5 decelerations in the training session is
associated with 9975.5 m (statistically lower performance
compared to Node 3). Here, the decision tree suggested that high
running load training sessions (i.e., >744.62 m over 20 W kg−1) were
beneficial for overall match running performance, while
deceleration (i.e., >6.5) had a negative effect.

Figure 3 analyzes which variables influence the relative distance
(controlled for game location). Hence, Node 1 shows that players
who run ≤744.62 m above 20 W kg−1 in training sessions have a
predicted relative running distance of 95.431 m/min in matches,
which is statistically different from Node 2 (players who
run >744.62 m above 20 W kg−1 between matches during the
training seasons).

In Figure 4A, the total distance achieved >20 km/h in the
matches is associated with 45-5Wkg−1 running distance
activities. While running distance achieved >25 km/h and
30 km/h during matches are related to distance
covered >55 W kg−1, and sprints during training sessions
(Figures 4B, C).

Also, the maximum speed and the number of sprints (Figures
5A, B) can be explained by the distance >55 W kg−1, but with
interference from player load and relative distance, respectively.
Likewise, the number of jumps >40 cm (Figure 6A) and
decelerations (Figure 6B) were associated with it respectively
variable in training sessions, but interference variables were
present. Accelerations were significantly associated with
sprints (Figure 6C).

Figures 7A, B show the greatest number of COD in the matches
performed by the athletes with the highest incidence of
jumps >40 cm during the training sessions. However, interference
variables associated with performance improvement or decrement
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TABLE 2 Mixed linear model regression of the variables related to the physical performance of 77 matches (2022 season) of an elite team in Brazil.

Contextual factors and
variables from training

sessions

Total
distance (m)

Relative
distance
(m/min)

Distance
>20 km/h (m)

Distance
>25 km/h (m)

Distance
>30 km/h (m)

Sprints
(N)

Max.
Speed
(km/h)

Accelerations
(N)

Decelerations
(N)

Intercept 12248,3
(10.436.0/
13.841.5)

107.7 (95.8/118.3) 634.3 (411.4/857.2) 164.1 (68.2/259.9) 19.1 (−.8 39.0) 13.5
(7.4/19.5)

30.6
(28.5/32.9)

21.7 (11.8/31.7) 20.1 (10.4/29.8)

Match avenue −330.8
(-596.4/-87.4)

−2.9 (-4.6/-1.3) −59.0 (-91.8/-26.2) −17.9 (-32.1/-3.7) −2.5 (−5.3 .4) −1.0
(−1.9/-0.1)

−0.25 (−0.6/0.1) 0.4 (−1.0/1.8) −0.4 (−1.8/1.0)

Player position 69.8 (−95.8/227.9) 1.0 (−0.2/2.2) 16.5 (−8.2/41.2) −.4 (−10.7/9.9) −1.6 (−4.3 1.1) −0.2
(−0.8/0.4)

0.03 (−0.2/0.2) −1.9 (-3.2/-0.7) −0.6 (−1.9/0.7)

Days between games −57.9
(−136.4/22.5)

−0.6 (-1.1/-0.1 −11.0 (-21.3/-0.6) −4.8 (-9.3–0.4) −0.7 (−1.7 .2) −0.4
(-0.6/-0.1)

−0.03 (−0.1/0.1) 0.06 (−0.4/0.5) −0.2 (−0.6/0.3)

Weekly training session −99.6
(−264.8/67.5)

−0.6 (−1.7/0.5) −9.2 (−30.8 12.3) −3.0 (−12.4/6.3) −0.7 (−2.6 1.2) −0.5
(−1.1/0.1)

−0.11 (−0.3/0.1) 0.06 (−0.9/1.0) −0.2 (−1.1/0.8)

Training sessions between matches 120.04 (60.6/
179.1)

0.5 (0.1/0.9) 14.5 (6.8/22.1) 5.5 (2.2/8.9) 1.1(.5 1.8) 0.4 (0.2/0.6) 0.07
(−0.01/0.15)

0.01 (−0.3/0.3) 0.1 (−0.2/0.5)

Total distance (m) −0.1 (−0.6/0.3) 0.0 (0.00/0.00) −0.04 (−0.1/0.0) 0.0 (0.0/0.0) 0.00 (0.0/0.0) 0.00 (0.0/0.0) 0.00
(−0.01/0.02)

−0.00 (0.0/0.0) 0.00 (0.00/0.00)

Relative distance (m/min) −14.8 (-27.7/-1.2) −0.1 (−0.15/0.00) −1.0 (0–2.6/0.9) −.1 (−0.8/0.7) 0.1 (−0.1/0.2 −0.01
(−0.1/0.0)

0.00
(−0.01/0.00)

0.02 (−0.1/0.1) 0.03 (−0.04/0.10)

Distance >20w (m) 3.2 (1.2/5.2) 0.02 (0.00/0.03) 0.35 (0.1/0.6) .1 (0.0/0.2) 0.00 (0.0/0.0 0.00 (0.0/0.0) −0.00
(0.00/0.02)

0.00 (0.0/0.0) 0.01 (0.00/0.02)

Distance >55w (m) −11.7 (-20.4/-3.2) −0.07 (-.012/-0.01) 0.58 (−0.6 1/0.7) .4 (−0.1/0.9) 0.2 (0.1/0.3 0.03 (0.0/0.1) 0.01
(0.00/0.02)

−0.02 (−01/0.0) −0.02 (−0.06/0.03)

Distance >20 km/h (m) −4.7 (-9.3/-0.5) −0.01 (−0.04/0.02) −0.5 (−1.1/0.0) −.2 (−0.4/0.1) −0.01 (−0.1/0.0 −0.01
(0.0/0.0)

0.00 (0.00/0.01) 0.01 (0.0/0.0) 0.00 (−0.03/0.02)

Distance >25 km/h (m) 24.9 (6.1/43.3) 0.1 (−0.02 .22) 4.2 (1.7/6.5) .9 (−0.1/1.9) 0.1 (−0.1/0.3 0.06 (0.0/0.1) 0.01
(−0.02/0.03)

0.07 (0.0/0.2) 0.03 (−0.07/0.13)

Distance >30 km/h (m) 6.1 (−31.2/43.2) 0.2 (−0.07/0.42) 0.4 (−4.5/5.2) .1 (−2.0/2.1) 0.03 (−0.4/0 .5 0.02
(−0.1/0.2)

0.00 (−0.1/0.0) −0.2 (−0.4/0.0) −0.1 (−0.3/0.2)

Sprints (N) −41.3 (−284.5/
203.7)

−0.3 (−1.9/1.3) −35.8 (-67.4/-4.3) −5.4 (−19.0/8.3) −2.1 (−4.8/0.6 −0.4
(−1.3/0.4)

−0.21 (−0.5/0.1) −0.6 (-1.9/0.8) −0.6 (−1.9/0.8)

Maximum speed (km/h) −56.9 (−118.5/4.7) −0.3 (−0.7/0.2) −0.7 (−8.7/7.3) .5 (−2.9/4.0) −0.1 (−0.7/0.7) −0.1
(−.2/0.2)

0.01 (−0.1/0.1) −0.02 (−.4 .3) −0.1 (−0.5/0.2)

Accelerations (N) −52.1 (−112.5/9.8) −0.5(-0.9/0-.1) −5.0 (−12.7/3.1) −.5 (−4.0/2.9) −0.01 (−.7 .7) −0.1
(−.3/0.2)

−0.07 (−0.2/0.0) 0.1 (−0.2/0.4) −0.3 (−0.6/0.1)

Decelerations (N) 35.9 (−17.8/90.1) 0.04 (−0.3/0.4) −1.9 (−9.0/5.1) −.6 (−3.7/2.4) −0.1 (−0.8/0.5) 0.00 (−0.1/0.1) −0.1 (−0.4/0.2) 0.3 (0.0/0.6)

(Continued on following page)
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TABLE 2 (Continued) Mixed linear model regression of the variables related to the physical performance of 77 matches (2022 season) of an elite team in Brazil.

Contextual factors and
variables from training

sessions

Total
distance (m)

Relative
distance
(m/min)

Distance
>20 km/h (m)

Distance
>25 km/h (m)

Distance
>30 km/h (m)

Sprints
(N)

Max.
Speed
(km/h)

Accelerations
(N)

Decelerations
(N)

0.00
(−0.2/0.2)

Jumps >40 cm (N) 12.4 (−127.9/
149.0)

0.19 (−0.7/1.1) 0.6 (−17.5/18.6) −4.2 (−2.0/3.5) −0.9 (−2.5/0.7) −0.3
(−0.8/0.2)

−0.02 (−0.2/0.2) 1.0 (0.2/1.8) 0.2 (−0.6/1.0)

COD to left (N) −15.4 (−70.8/40.4) 0.2 (−0.2/0.6) 1.5 (−5.8/8.9) −.1 (−.3/3.0) 0.2 (−0.4/0.9) −0.05
(−0.2/0.2)

0.02 (−0.1/0.1) −0.02 (−0.3/0.3) −0.2 (−0.5/0.2)

COD to right (N) 14.2 (−37.9/67.0) −0.03 (−0.2/0.6) −4.1 (−11.0/2.8) −3.2 (-6.1/-0.2) −0.7 (-1.3/-0.1) −0.2
(-0.4/0.0)

−0.09 (-0.2/0.0) 0.1 (−0.2/0.4) −0.03 (−0.3/0.3)

RHIE block efforts (N) 17.5 (−78.4/111.9) 0.1 (−0.6/0.7) 1.6 (−10.7/14.0) 3.4 (-2.0/8.7) 0.1 (−1.0/1.2) 0.2 (−.1/0.6) 0.06 (−0.1/0.2) 0.2 (−0.3/0.8) 0.3 (−0.2/0.9)

Average RHIE effort (N) −9.8 (−57.4/37.6) −0.2 (−0.5/0.2) 3.4 (−2.8/9.5) 2.4 (−0.2/5.1) 0.4 (−.2 .9) 0.2 (0.0/0.3) 0.06 (0.0/0.1) −0.1 (−0.3/0.2) 0.01 (−0.2/0.3)

RHIE block recovery time (RHIE/min) 18.1 (−46.9/83.1) −0.1 (−0.5/0.3) −9.1–17.4/0-.7) −4.2 (-7.9/-0.6) −0.2 (−1.0/0.5) −0.3
(-0.5/-0.1)

−0.05
(−0.1//0.0)

−0.2 (−0.5/0.2) 0.02 (−0.3/0.4)

Jumps
>40 cm (N)

COD to
left (N)

COD to
right (N)

Explosive
effort

RHIE blocks
effort (N)

Average RHIE
effort (N)

RHIE block recovery
time (RHIE/min)

Distance
>20w (m)

Distance
>55w (m)

Player load

4.4 (0.8/8.0) 21.6 (10.7/32.4) 22.3 (12.2/32.3) 83.6 (60.5/106.7) 30.1 (21.86/38.31) 4.5 (3.95 5.06) 2.8 (1.50 4.42) 2,666.0 (2,089.1/
3,242.9)

312.4 (223.0/401.8) 1,166.2 (956.5/
1,375.9)

0.1 (−0.4/0.6) 0.5 (−1.1/2.0) −1.2 (−2.7/0.3) −1.5 (−4.8/1.7) −0.9 (−2.08/0.35) −0.05 (−0.13/0.03) 0.1 (−0.10/0.32) −204.4 (-289.6/-
119.1)

−17.7 (-31.1/-4.4) −11.9
(−41.5/17.6)

−0.9 (−1.4/-0.4) −1.7 (-3.1/-0.4) −0.5 (−1.5/0.4) −4.2 (-7.3/-1.1) −0.8 (−1.7/0.04) −0.05 (−0.10/0.00) 0.15 (−0.03/0.32) 84.2 (24.1/144.2) −9.3 (-18.4/-0.2) −3.6
(−33.1/25.8)

0.1 (0.0/0.3) −0.1 (−0.6/0.4) 0.1 (−0.6/0.4) 0.2 (−.9/1.2) −0.3 (−0.7/0.1) −0.02 (−0.05/0.01) 0.03 (−0.03/0.10) −20.2 (−47.0/6.6) −4.2 (-8.4/-0.1) −2.1 (−11.8/7.6)

−0.04 (−0.4/0.3) −0.4 (−1.4/0.7) −0.5 (−1.5/0.5) −1.8 (−4.0/0.4) −0.8 (-1.5/.01) 0.02 (−0.04/0.07) 0.10 (−0.04/0.24) −40.0 (−95.8/15.9) −8.5 (−17.2/0.2) −15.0
(−34.7/4.8)

−0.1 (−0.2/0.0) 0.2 (−0.2/0.5) 0.1 (−0.3/0.4) 0.5 (−0.3/1.2) 0.3 (.07 .63) 0.01 (−0.01 .03) −0.01 (−0.06/0.04) 37.7 (17.8/57.6) 6.1(3.0/9.2) 11.8 (4.8/18.7)

0.00 (0.00/0.00) 0.00 (−0.0/0.02) −0.00
(-0.01/0.00)

−0.01 (−0.01/0.00) 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.00 (0.00/0.00) −0.1 (−0.3/0.1) 0.00 (0.0/0.0) 0.0 (−0.1/0.0)

0.00 (−0.02/0.03) −0.1 (−0.03/0.1) 0.02 (−0.1/0.1) −0.07 (−0.2/0.1) 0.00 (−0.06/0.06) 0.00 (0.00/0.01) 0.00 (−0.02/0.01) −3.4 (−7.9/1.0) 0.01 (−.7/0.7) −1.3 (−2.8/0.2)

0.00 (0.00/0.01) 0.01 (−0.00/
0 .02)

0.01 (0.00/0.02) 0.04 (0.01/0.1) 0.01 (0.00/0.02) 0.00 (0.00/0.00) 0.00 (0.00/0.00) 1.5 (0.8/2.2) 0.1 (0.0/0.2) 0.3 (0.1/0.5)

−0.01 (−0.03/0.01) 0.02
(−0.03/0.01)

−0.04 (−0.1/0.0) −0.1 (-0.2/-0.00) 0.00 (−0.04/0.04) 0.00 (0.00/0.01) 0.00 (−0.01/0.00) −2.6 (−5.6/0.3) 0.6 (0.1/1.1) −1.2 (-2.3/-0.2)

(Continued on following page)
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TABLE 2 (Continued) Mixed linear model regression of the variables related to the physical performance of 77 matches (2022 season) of an elite team in Brazil.

Jumps
>40 cm (N)

COD to
left (N)

COD to
right (N)

Explosive
effort

RHIE blocks
effort (N)

Average RHIE
effort (N)

RHIE block recovery
time (RHIE/min)

Distance
>20w (m)

Distance
>55w (m)

Player load

0.00 (−0.01/0.01) −0.01
(−0.03/0.01)

−0.01
(−0.04/0.02)

−0.02 (−0.1/0.03) 0.0 (−0.03/0.02) 0.00 (0.00/0.00) 0.00 (−0.01/0.00) −2.2 (−3.7/-0.7) −0.1 (−0.3/0.1) −0.2 (−0.7/0.3)

−0.02 (−0.1/0.0) 0.2 (0.1/0.3) 0.1 (0.0/0.2) 0.2 (−0.04/0.4) 0.1 (0.06/0.24) 0.00 (0.00/0.01) −0.01 (0.00/0.00) 10.8 (4.5/17.0) 0.9 (0.0/1.9) 2.8 (0.7/5.0)

−0.01 (−0.1/0.1) −0.1 (−0.4/0.1) −0.1 (−0.3/0.2) −0.3 (−0.8/0.1) −0.1 (−0.28/0.07) 0.00 (−0.02/0.01) 0.03 (0.00/0.06) 0.9 (−11.5/13.5) 0.04 (−1.9/2.0) 2.6 (-1.8/7.0)

0.2 (−0.3/0.7) −3.0 (-4.5–1.5) −1.0 (−2.5/0.4) −1.4 (−4.6/1.7) −1.6 (-2.77/-0.43) −0.07 (−.15/0.01) 0.17 (−0.03/0.38) −54.2 (−136.1/27.7) −9.8 (−22.6/3.0) −18.6
(−47.1/9.8)

0.01 (−0.1/0.1) 0.2 (−0.2/0.5) 0.1 (−0.3/0.5) 0.1 (−0.7/0.9) −0.1 (−0.40/0.19) 0.00 (−0.01/0.03) 0.02 (−0.04/0.06) −18.2 (−38.9/2.6) −1.9 (−5.1/1.3) −3.4 (−10.6/3.9)

−0.02 (−0.1/0.1) 0.13 (−0.2/0.5) −0.2 (−0.5/0.2) −0.1 (−0.9/0.6) −0.2 (−.51 .07) −0.01 (−0.03/0.01) 0.04 (−0.02/0.09) −19.4 (−40.0/1.2) −1.4 (−4.6/1.8) −4.2 (−11.4/3.0)

0.04 (−0.1/0.2) 0.1 (−0.2/0.5) 0.3 (0.04/0.6) 0.7 (0.00/1.4) 0.2 (−0.01/0.51) −0.01 (−0.03/0.01) 0.00 (−0.04/0.05) 7.4 (−10.8/25.6) 0.4 (−2.4/3.2) 3.5 (−2.9/10.0)

0.3 (0.0/0.6) 1.6 (0.7/2.4) 1.2 (0.4/2.0) 1.5 (−0.3/3.4) 0.6 (−0.04/1.30) 0.03 (−0.01/0.08) −0.11 (−0.23/0.01) −15.0 (−61.7/31.8) 1.0 (−6.3/8.2) 16.4 (−0.1/33.0)

−0.00 (−0.1/0.1) 0.1 (−0.3/0.4) 0.02 (−0.3/0.4) 0.05 (−0.7/0.8) 0.1 (−0.18/0.36) −0.02 (−0.03/0.00) −0.04 (−0.09/0.01) 1.5 (−17.4/20.4) 0.01 (−2.9/2.9) 0.9 (−5.9/7.7)

−0.02 (−0.1/0.1) −0.1 (−0.5/0.2) 0.3 (0.01/0.6) −0.3 (−1.0/0.4) −0.2 (−0.49/0.02) 0.00 (−0.02/0.02) 0.04 (0.00/0.09) −6.8 (−24.6 11.1) −3.6 (-6.4/-0.8) 3.3 (−3.2/9.7)

0.08 (−0.1/0.3) −0.3 (−0.9/0.3) 0.1 (−0.5/0.7) 0.4 (−0.9/1.7) 0.1 (-0.31/0.61) 0.01 (−0.02/0.04) −0.01 (−0.09/0.07) 7.6 (−24.5/39.7) .8 (−4.2/5.8) 1.7 (−9.6/13.1)

0.01 (−0.1/0.1) 0.1 (−0.2/0.3) −0.2 (−0.5/0.1) −0.1 (-0.7/0.5) 0.1 (−0.13/0.33) 0.01 (−0.01/0.03) −0.03 (−0.06/0.02) −0.6 (−16.5/15.4) 2.8 (0.3/5.3) −1.8 (−7.3/3.8)

0.1 (−0.1/0.2) −0.4 (−0.8/0.0) −0.03 (−0.4/0.4) 0.00 (−0.8/0.8) −0.5 (-0.79/-0.17) −0.2 (−0.04/0.00) 0.09 (0.04/0.15) −3.6 (−25.4/18.2) −4.7 (-8.1/-1.3) −4.3 (−11.8/3.2)

COD, changes of direction; RHIE, repeated high-intensity exercise. Bold values indicate p < 0.05.
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are present. In Figure 7A, distance >20 km/h impact negatively the
COD, while sprints and RHIE block recovery time improving it.

The distance running >20 or 55 W kg−1 was associated with the
respective activity during training sessions (Figure 8).

The number of explosive efforts in matches (Figure 9A) was
associated with deceleration (Nodes 1 and 2). Running
distance >20 Km/h impacts the explosive effort (Nodes 3 and 4)
negatively, while large RHIE block recovery time positively impacts

the explosive effort (Nodes 5 and 6). RHIE block was associated
with RHIE block recovery time (Figure 9B), with sprints (nodes
3 and 4) and decelerations (nodes 5 and 6) impacting positively.
The average RHIE was associated with sprints and jumps
(Figure 9C). RHIE block recovery time was associated with
their respective training variable (Figure 9D), with the
distance covered at 35–45 W kg−1 improving RHIE block
recovery time, while sprints worsening it.

FIGURE 2
Decision tree regression for mean values of total distance controlled for Home/away condition from 77 matches from an elite team. Independent
variables are data from sessions training between matches during a season.
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FIGURE 3
Decision tree regression for mean values of relative distance from 77 matches of an elite team. Data from training sessions between matches
during a season are used as independent variables.
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To verify the association between training load and match
performance, in Figure 10, three clusters were created from
training load (high, medium, and low load clusters) and match
performance (high, medium, and low performance clusters). All the
variables of the three clusters from both match performances and
training load are significantly different within (ANOVA: p < 0.001).
Figure 10 plot data from match performance data as a function of
training load. The Chi-square test identified a significant association
(p < 0.001, phi = 0.246) between training load and match
performance. The training load clusters were not associated with
player position or home-away match condition (data not shown,
all >0.325). However, the match performances clusters were
associated with player position and home-away match condition
(p = 0.001, phi = 0.364, see Figure 11).

4 Discussion

It is important to note that these data are from a busy season of a
world elite team (77 matches, i.e., one match every 4 days per player).
The team has a 36-man squad that rotates throughout the season to
keep up with the match schedule. This is an extremely high volume for
elite soccer, although it is common in Brazil. Themain challenge for the
training team is to give the athletes the physical conditioning stimulus
(in a few training opportunities, i.e., two training sessions between
matches) without leading them to acute overtraining (high load in one
session) or chronic overtraining (high load of training combined with
high load of matches), which can lead to injuries due to overload
(Kalkhoven et al., 2021). An optimal training load for Brazilian elite
soccer players has not been reported in the literature. Therefore,

Brazilian soccer coaches/trainers certainly learn from trial and error.
This work presents a case study analyzing training load values and their
association with field performance. In this sense, it is indicated here the
load values that will benefit athletes who are subjected to a busy calendar
(such as the Brazilian). The main finding of this study was to identify
that performance variables in games of a team with an extensive and
congested season are related to the training load variables in a specific
way. Possible stimuli interference was also identified, suggesting that a
periodization (or load modulation) of the stimuli is necessary to
improve the performance of athletes.

The mixed linear model and regression trees suggest that the
variables from running sessions (which have a greater mechanical
impact on players), such as COD, accelerations, decelerations, and
jumps (McBurnie et al., 2022), negatively affect game speed variables
(such as running at speeds >20, >25, or >30 km/h) and total running
distance. On the other hand, variables related to greater mechanical
impact positively influence the performance of variables related to
their domain (COD, accelerations, decelerations, and jumps),
indicating the specificity of the stimulus. The variables related to
running in a straight line are positively influenced by the variables
related to distances covered at high intensity (running >25 km/h
or >20 W kg−1), which reinforces the specificity of the stimulus. For
example, total distance, relative speed, or distance traveled at 20 km/
h during games are all positively influenced by distances
traveled >20W. In addition, covering distances >25, >30 km/h,
running at maximum speed, or the number of sprints are all
positively influenced by covering distances at >55 W kg−1 in
training sessions. Previous research (Little and Williams, 2005)
has shown that acceleration, agility and maximal speed are
specific traits and are relatively unrelated to one another in

FIGURE 4
Decision tree regression for distancemean values of distance running at 20 km/h [(A), controlled for home/away condition], 25 km/h [(B), controlled
for home/away condition], and 30 km/h (C) from 77 matches of an elite team. Data from training sessions between matches during a season are used as
independent variables.
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FIGURE 5
Decision tree regression for maximum speed [(A), controlled for home/away condition] and amounts of sprints [(B), controlled for home/away
condition] from 77 matches of an elite team. Data from training sessions between matches during a season are used as independent variables.

FIGURE 6
Decision tree regression for amounts of Jumps [(A), controlled for home/away condition], acceleration [(B), controlled for player position], and
deceleration [(C), controlled for player position] from 77matches of an elite team. Data from training sessions betweenmatches during a season are used
as independent variables.

Frontiers in Physiology frontiersin.org12

Branquinho et al. 10.3389/fphys.2024.1341791

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1341791


FIGURE 7
Decision tree regression for amounts of change of direction to left (A), controlled for player position and to the right (B) from 77 matches of an elite
team. Data from training sessions between matches during a season are used as independent variables.

FIGURE 8
Decision tree regression for the running distance >20W [(A); controlled for home/away condition] and >55W [(B), controlled for player position] from
77 matches of an elite team. Data from training sessions between matches during a season are used as independent variables.
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FIGURE 9
Decision tree regression for amount of explosive of effort [(A), controlled for player position], repeated high-intensity effort (RHIE) block (B), average
RHIE (C), and RHIE recovery time (D) from 77 matches of an elite team. Data from training sessions between matches during a season are used as
independent variables.
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soccer players. In this sense, the authors suggested that training
procedures for each component need to be considered during the
training process. For example, a previous experimental study
(Young et al., 2001) showed that an increase in COD load
reduces the gains in sprint performance. COD training improves
the COD-test, but does not improve straight line speed performance.
Therefore, the present data indicated that an interference
phenomenon could occur in the real scenario, i.e., when a high
load of two distinct capabilities (running in straight line vs COD,
deceleration, and jump) is applied throughout the season. same
training block. It is important to note that individuals with poor
performance in straight-line running (always on the left side of the
decision trees) are influenced by the variables COD, decelerations,
jumps, or player load. For example, the total distance covered in
games is positively influenced by the distance covered at >20 W kg−1;
however, individuals who cover a distance ≤744.62 m at 20 W kg−1

(left side of the tree, Figure 2A) are the ones who suffer a negative
influence from the high load of deceleration activities (>6.5 actions).
The same pattern can be observed for running variables such as
relative distance, running at different speeds (>20, >25, >30 km/h or
maximal speed) or intensities >20 or 55 W kg−1.

In Figure 11, three match performances were plotted as a
function of three training loads. Significant associations were
identified between training load and performance in matches.
The high load values described here have a beneficial effect on
match performance, despite inter-stimuli interference discussed
above. In addition, our cluster analysis revealed that there are
three distinct performances in both match and training
performance. As expected, the match performance cluster was
significantly associated with the player position and the home-

away factor (Figure 11). However, the training load was not
associated with player position or the match venue. Thus, we can
rule out the possibility that the association between training load
and match performance found in the present study is
significantly influenced by player position or the home-
away factor.

In a practical application, the decision tree regression model
suggests beneficial loads and possible corrections to improve
athlete performance. In this sense, the training blocks to improve
agility, accelerations/decelerations, and jumps must be carefully
planned to improve their respective qualities on the match, and at
the same time, strategies must be tested to mitigate drops in
straight-line running performance. For example, match relative
speed was associated with running a distance greater than
744.62 m at an intensity of >20W. However, athletes who do
not reach this distance can improve their relative speed if they
have a lower the activities related to mechanical impacts (e.g.,
COD or jumps). As these data are based on observational data,
future studies experimenting with this load modulation and
periodizing the stimuli may confirm our findings. Also, future
studies investigating whether the interferences identified here are
due to a lack of specific stimulus (due to the short training time to
provide the stimuli in a busy schedule) or due to cross
interference.

5 Conclusion

This study presents a positive training load from a busy season of
an elite Brazilian professional team. In addition, it can be stated that

FIGURE 10
Match performance plotted as a function of three different training loads over a season from an elite Brazilian team.
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the interference effect occurs when high physical training is applied
to different physical skills (e.g., COD and running in a straight line)
throughout the season. Additionally, the regression tree model can
be a useful tool to identify optimal loads and possible corrections to
improve the athlete’s match performance.
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