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Background: Flavin monooxygenases (FMOs) are enzymes responsible for the
oxidation of a broad spectrum of exogenous and endogenous amines. There is
increasing evidence that trimethylamine (TMA), a compound produced by gut
bacteria and also recognized as an industrial pollutant, contributes to
cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO),
which is an emerging marker of cardiovascular risk. This study hypothesized that
blood pressure phenotypes in rats might be associated with variations in the
expression of FMOs.

Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys,
liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto
rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats
(SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma
concentrations of TMA and TMAO were measured at baseline and after intravenous
administration of TMA using liquid chromatography-mass spectrometry (LC-MS).

Results:We found that the expression of FMOs inWKY, SHR, andWKY-ANG ratswas
in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs
was observed in the liver. Notably, SHRs exhibited a significantly elevated expression
of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma
TMAO/TMA ratio was significantly higher in SHRs than in WKY rats.

Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher
plasma TMAO/TMA ratio. The variability in the expression of FMOs and the
metabolism of amines might contribute to the hypertensive phenotype
observed in SHRs.
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GRAPHICAL ABSTRACT

Introduction

NADPH-dependent flavin-containing monooxygenases are a
family of enzymes that catalyze the oxidation of a wide range of
nitrogen-containing compounds and metabolize drugs
(Eswaramoorthy et al., 2006; Phillips and Shephard, 2020).
Based on the cDNA sequence, FMOs were classified into five
subfamilies (FMO1 to 5) (Lawton et al., 1994; Lattard et al., 2003).
Species, age, sex and tissue-dependent variability in the
expression of FMOs has been described (Nagata et al., 1990;
Hvattum et al., 1991; Lawton et al., 1991; Hines et al., 1994;
Shehin-Johnson et al., 1995; Dolphin et al., 1996; Kawaji et al.,
1997; Lattard et al., 2002; Lattard et al., 2003; Zhang and
Cashman, 2006; Shimizu et al., 2011). FMOs are expressed in
the liver, lungs, kidney and, to a lesser extent, in the heart,
intestine and brain (Lawton et al., 1991; Bhamre et al., 1993;
Kawaji et al., 1995; Bhagwat et al., 1996; Kawaji et al., 1997;
Lattard et al., 2002; Novick et al., 2009).

FMO mediates N-oxygenation of tertiary amines, including
vasoactive amines such as phenethylamine and tyramine, (Gut
and Conney, 1993; Cashman, 1995; Mitchell et al., 1997;
Cashman et al., 2004; Krueger et al., 2006). Changes in FMOs
gene expression have been detected in the following diseases:
trimethylaminuria (Cashman et al., 1997; Dolphin et al., 1997;
Treacy et al., 1998; Akerman et al., 1999; Cashman et al., 2003),
atherosclerosis (Motika et al., 2007; Shih et al., 2015), diabetes
mellitus (Rouer et al., 1987; Rouer et al., 1988; Takamura et al.,
2004; Toda et al., 2005), primary hemochromatosis
(Muckenthaler et al., 2003; Cashman and Zhang, 2006), atrial
fibrillation (Kim et al., 2003); sideroblastic anaemia (Barber et al.,
2000) and in neoplastic tissues (Krueger and Williams, 2005;
Fialka et al., 2008).

Trimethylamine is a gut microbiota metabolite and air pollutant
originating from chemically synthetized compound used in
industrial production of and an air pollutant (Pospischil et al.,
2017). In mammalian organism TMA is generated by bacterial
metabolism of dietary choline, betaine, and carnitine,
trimethyllysine and by reduction of dietary trimethylamine
N-oxide to the parent amine (Lang et al., 1998; Craciun et al.,

2014; Koeth et al., 2014; Zhu et al., 2014; Hsu et al., 2019; Sun et al.,
2019; Muralitharan et al., 2020). TMA is oxidized to TMAO by first-
pass metabolism in the liver (Al-Waiz et al., 1987; Lin and Cashman,
1997b; Lang et al., 1998; Karoly and Rose, 2001; Krueger and
Williams, 2005).

Interestingly, high TMAO concentrations has been suggested
to corelate with increased cardiovascular risk (Tang et al., 2013;
Qi et al., 2018). The blood TMAO level has been reported to be
positively correlated with long-term mortality risk in patients
with atherosclerosis, heart failure, and chronic kidney disease
(Koeth et al., 2013; Tang et al., 2014; Tang et al., 2015).

However, the role of TMAO as a causative factor in
cardiovascular disease is debatable as contradictory data on
TMAO effects are available (Yin et al., 2015; Collins et al.,
2016; Meyer et al., 2016; Huc et al., 2018; Stubbs et al., 2019;
Aldana-Hernandez et al., 2020; Gawrys-Kopczynska et al., 2020;
Maksymiuk et al., 2022). Previously, we have found that TMA,
but not TMAO, administered intravenously IV) produced a
significant hypertensive effect in normotensive rats (Jaworska
et al., 2019). Furthermore, TMA after the administration was
rapidly oxidized to TMAO, which was associated with a decrease
in the hypertensive response (Jaworska et al., 2019).

We hypothesized that the hypertensive rat phenotype might be
linked to changes in the expression and activity of FMOs.
Consequently, the main aim of our study was to compare the
expression of FMOs in normotensive and hypertensive rats. We
carried out this experiment using two different models of
hypertension: the genetic SHR model and the pharmacologically
induced model using Ang II.

Materials and methods

Animals

All animal procedures conformed to the guidelines
from Directive 2010/63/EU of the European Parliament on
the protection of animals used for scientific purposes.
The study was approved by the II Local Ethical
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Committee in Warsaw (Certificate of approval No. WAW2/
082/2018). Wistar Kyoto rats (WKY) and Spontaneously
Hypertensive Rats (SHR) were obtained from the Central
Laboratory for Experimental Animals, Medical University of
Warsaw, Poland.

Rats were housed in groups of two to three animals, in
polypropylene cages with environmental enrichment, 12 h light/
12 h dark cycle, temperature 22–23°C, humidity 45%–55%, food and
water ad libitum. 12-week-old, male.

The experiments were performed on rats (WKY, n = 48) (SHR,
n = 48) and (WKY-ANG, n = 48) WKY-ANG group constituted of
WKY rats implanted at the age of 10 weeks with subcutaneous
osmotic minipump (ALZET 2ML; Durect, Cupertino, CA). The
minipumps were releasing Ang II at the rate of (0.76 pmol s−1;
0.8 ngs−1) as previously described (Zera et al., 2015). All surgical
procedure were performed using general anaesthesia with
ketamine 100 mg/kg body weight intraperitoneally and xylazine
10 mg/kg body weight.

Blood pressure measurement

Before the experiment, blood pressure was recorded in rats
anaesthetized with urethane (1.5 g/kg intraperitoneally, Sigma-
Aldrich, Poland) via a polyurethane catheter inserted into the
femoral artery. Haemodynamics were recorded using Biopac MP
160 system (Biopac Systems, Goleta, CA, United States). Blood
pressure was assessed as a baseline prior to the intravenous
infusion of TMA.

Gene and protein expression

12-week-old WKY, SHR and WKY-Ang II rats were killed,
tissues samples were collected and frozen immediately. Real-time
PCRwas used to detect FMO1, FMO3 and FMO5 gene expression in
the kidney medulla, kidney cortex, liver, lungs, small intestine
and colon.

Real-time PCR

In short, about 20 mg of every tissue was homogenized on
BeadBug™ microtube homogenizer (Benchmark Scientific, Inc.).
Total RNA was isolated from samples according to TRI Reagent®

protocol. cDNA was transcribed from RNA samples according to
iScript™ Reverse Transcription Supermix protocol (Bio-Rad). The
qPCR mixes were prepared according to the Bio-Rad SsoAdvanced™
universal SYBR® Green Supermix protocol. Amplifications were
performed in a Bio-Rad CFX Connect Real-Time System under
standardized conditions using commercial assays.

We used semi-quantitative analysis of PCR products to carry out
with glyceraldehyde 3-phosphate dehydrogenase (PrimePCR™ SYBR®

Green Assay: Gapdh, Rat, qRnoCID0057018, Bio-Rad), actin
(PrimePCR™ SYBR® Green Assay: Actb, Rat, qRnoCID0056984,
Bio-Rad), succinate dehydrogenase (PrimePCR™ SYBR® Green
Assay: Sdha, Rat, qRnoCID0057011, Bio-Rad) as internal references.

Genes investigated in this study were flavin containing
monooxygenase 1 (PrimePCR™ SYBR® Green Assay: FMO1,
Rat, qRnoCID0008990, Bio-Rad), flavin containing
monooxygenase 3 (PrimePCR™ SYBR® Green Assay: FMO3,
Rat, qRnoCID0003196, Bio-Rad) and flavin containing
monooxygenase 5 (PrimePCR™ SYBR® Green Assay: FMO5,
Rat, qRnoCID0053250, Bio-Rad).

Western blot

For the analysis of target proteins, total protein extracts were
prepared from the, liver,. In short, frozen samples were
suspended in a histidine-sucrose buffer (30 mM histidine,
250 mM sucrose, 2 mM EDTA, proteases inhibitors, PMSF,
pH 7.4), homogenized, centrifuged (10,000 RCF, 10 min, 4°C).
After removing the supernatant, 150 µL of lysis buffer (20 mM
HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA, 2% Triton-X,
proteases inhibitors) was added to the pellet and resuspended
by vortexing. The supernatant was separated for protein
concentration analysis using a Bradford Protein Assay (Bio-
Rad, Hercules, CA, United States). For all Western blot
analyses, a 4× Laemmli sample buffer was added to samples.
To determinate the levels of FMO1, FMO3 and FMO5 all
samples were resolved by electrophoresis on 12% SDS/PAGE
gels. Resolved proteins were transferred onto PVDF membranes
(Bio-Rad, Hercules, CA, United States), blocked using skim milk
and incubated with primary and secondary antibodies. For
quantitative analysis of protein content, reactive bands were
quantified relative to those of actin using a ChemiDoc MP
Imaging System, Densitometric analysis was performed using
Quantity One software version 4.6.8 (Bio-Rad, Hercules, CA,
United States). Uncropped blots and list of antibodies are
presented in Supplementary Figure S5 and Supplementary
Table S1.

Pharmacokinetics of TMA, TMA/
TMAO oxidation

Twelve-week-old WKY, SHR, WKY-ANG were anaesthetized
with urethane (1.5 g/kg intraperitoneally, Sigma-Aldrich, Poland)
and catheterized with polyurethane catheters in femoral artery and
both femoral veins.

Blood samples from femoral vein, were collected at baseline,
10 min and 20 min after the intravenous infusion of TMA at a dose
of 45 μmol/kg, 135 μmol/kg or 405 μmol/kg.

Plasma concentrations of TMA and TMAO was evaluated
using Waters Acquity Ultra Performance Liquid
Chromatograph coupled with Waters TQ-S triple-quadrupole
mass spectrometer. Samples were prepared using the
derivatization technique based on Johnson’s protocol with
modification (Johnson, 2008). The mass spectrometer was
operated in multiple-reaction monitoring (MRM)- positive
electrospray ionization (ESI+) mode for all analytes. The
concentrations of analytes were calculated using calibration
standard mix derived from a series of calibrator samples by
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spiking standard stock solutions into water. Plasma samples
were compared with an obtained calibration curve.

Statistics

The Kolmogorov-Smirnov test was used to test normality of the
distribution.

To evaluate changes in pharmacokinetic data in response to
treatment, baseline values were compared with post-treatment values
using one-way analysis of variance (ANOVA) for repeated measures.
This was followed by Tukey’s post hoc test for multiple comparisons to
identify differences between baseline and post-dose time points.
Differences between groups/series were assessed using multivariate
ANOVA, followed by Tukey’s post hoc test or by a t-test, as
appropriate. A two-sided p-value of less than 0.05 was considered
statistically significant. Analyses were performed using GraphPad
Prism version 8.4.3 (GraphPad Software Inc., San Diego, CA, USA).
Sample size calculation for Fmo’s analysis was conducted using
G*Power software version 3.1.9.7, estimating a minimum required
number of animals per group to be 6. Measurements was
determined based on the following assumed parameters: difference
between subjects (groups) 40% population mean 10 arbitrary unit
(a.u) common standard deviation 0.9, for alpha error 0.05, test
power 0.8. The post hoc power analysis was performed for
significant differences by utilizing the online calculator: https://
clincalc.com/stats/Power.aspx (Supplementary Table S2). The analysis
of false discovery rate (FDR) for FMO3 mRNA and protein expression
was conducted (Supplementary Tables S3, S4).

Results

Blood pressure at baseline

Anaesthetized SHR (n = 17) rats and WKY-ANG (n = 14), had
significantly higher mean arterial blood pressure thanWKY (n = 17)
118.4 ± 1.3; 110.2 ± 0.9; 76.5 ± 1.2, respectively. SHR and WKY-
ANG rats showed higher heart rate than WKY 331 ± 4, 322 ± 5 and
308 ± 4. respectively. Post-hoc test revealed significant differences
only between SHR vs. WKY rats (p < 001).

FMO’s mRNA expression in tissues

We have characterized gene and protein expressions of FMO1,
FMO3 and FMO5 subfamilies, in kidney medulla, kidney cortex,
liver, lungs, small intestine and colon in WKY (n = 7), SHR (n = 6),
and WKY-ANG (n = 6) groups (Figure 1).

In general, all the groups, independently on tissue type, showed
the gene expression of FMOs subfamilies in the following order of
magnitude FMO3>FMO1>>FMO5 (Figure 1). With regard to tissue
distribution of FMOs gene expression, high expression of FMOs was
found in the liver, lungs and kidneys, whereas low FMOs expression
was present in small intestine and colon. In relation to the liver’s
most abundant mRNA FMO’s expression, we have conducted
comprehensive investigations aimed at identifying the FMOs in
this organ at the protein level.

Hepatic mRNA and protein expression
of FMOs

In the liver, there was notably elevated mRNA expression of
FMO3 in SHR compared to WKY (p < 0.01), while FMO1 and
FMO5 exhibited no significant differences between the two strains.
Interestingly, the WKY-ANG group showed significantly higher
expression levels of FMO3(p < 0.01) and FMO5 (p < 0.05) than
WKY strain (Figure 2 A).

Moving to the protein level, SHR (n = 6) rats displayed
significantly higher expression of all the mentioned FMOs
(FMO1, FMO3, and FMO5) (p < 0.05) compared to WKY (n =
6). On the other hand, the WKY-ANG (n = 6) group demonstrated
significantly higher expression of only FMO5 (p < 0.05) when
compared to WKY (Figures 2B,C).

All statistical comparisons were made against WKY which was a
control group in all gene and protein-based experiments.

Pharmacokinetics of TMA/TMAO oxidation

At baseline, SHR (n = 6) showed significantly higher TMAO
plasma concentration than WKY (n = 6) and WKY-ANG (n = 6)
10.52 ± 0.97, 3.31 ± 0.57 and 6.11 ± 0.55 μmol/L, respectively. TMA
plasma level was not significantly higher in SHR than in WKY and
WKY-ANG 0.15 μmol/L ± 0.01, 0.14 μmol/L ± 0.02 and 0.09 ±
0.02 μmol/L, respectively) (Figures 3A,B).

Infusion of TMA produced a significant, dose-dependent
increase in plasma TMA and TMAO in all the groups. The
increase in plasma TMAO was more rapid in SHR than in the
other groups (Supplementary Figures S1-S4).

SHR group showed significantly higher plasma TMAO/TMA ratio
thanWKY andWKY-ANG 10min after the infusion of TMA at a dose
of 45 μmol/kg, whereas 20 min after the infusion, SHR showed
significantly higher plasma TMAO/TMA ratio than WKY and
WKY-ANG, for all TMA doses, i.e. 45, 135 and 405 μmol/kg
(Figures 4A–C).

FIGURE 1
Heatmap of FMOs genes expression in WKY, SHR and
WKY-ANG groups. Pattern expression peaks were found
across tissues and FMOs. WKY - Wistar-Kyoto; SHR -
Spontaneously Hypertensive Rats; WKY-ANG - Wistar-Kyoto
with angiotensin II.
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Discussion

The novel finding of our study is that SHRs show higher hepatic
gene expression and protein levels of FMOs and more rapid
oxidation of TMA to TMAO.

In the present study we evaluated two animal models of
hypertension: SHRs and WKY-ANG. The SHR strain, derived
from WKY rats, is the most commonly used animal model for
essential hypertension in humans (Louis and Howes, 1990).

SHRs begin to develop hypertension between the fourth and
sixth weeks of age, and by the 10th week of life, their arterial
blood pressure is 30% higher than that of WKY rats (Kokubo
et al., 2005; Koga et al., 2008). Blood pressure measurements in
anesthetized rats in this study revealed higher mean arterial
blood pressure in both SHR and WKY-ANG rats, confirming
their hypertensive phenotype.

Oxidation performed by FMOs is considered as one of
important detoxifying mechanism (Sehlmeyer et al., 2010;
Basaran and Can Eke, 2017). FMOs oxidize TMA as well as
other amines including those exerting cardiovascular effect, for
example, tyramine, phenethylamine, cys-teamine (Vrba et al.,
1988), methionine and several cysteine-s-conjugates (Bull et al.,
1964). Gut-bacteria derived TMA is oxidized to TMAO mostly by
the FMO3 in the liver (Lang et al., 1998).

Here, we found that WKY, SHR and WKY-ANG show
expression of the three subfamilies of FMO in the following
order of magnitude FMO3>FMO1>>FMO5. Furthermore, we
found that FMOs are expressed in the following tissues: liver,
kidney, lungs, colon and intestines, with the greatest expression
of FMOs was found in the liver.

In general, the most significant differences in gene and protein
expression of FMOs and the pharmacokinetics of TMA were
observed between the WKY and SHR, with WKY-ANG rats
displaying characteristics that were a blend of both WKY and
SHR strains. Specifically, compared to WKY, SHR exhibited
significantly higher liver protein expression across all subfamilies
of FMOs, whereas WKY-ANG rats showed an increase
only in FMO5.

FIGURE 3
Plasma TMA (A) and TMAO (B) levels at baseline in WKY, SHR and
WKY-ANG rats; *p < 0.05 SHR vs WKY, †p < 0.05 SHR vs WKY-ANG.

FIGURE 2
(A) RT-qPCR analysis of FMO1 FMO3 and FMO5 transcript levels in the liver of WKY, SHR and WKY-ANG rats (displays on histogram use arbitrary
units). (B) FMO1, FMO3 and FMO5 protein levels in the liver examined by Western blot analysis. Beta-actin and the Ponceau-S staining were used as a
reference for equal protein loading control. Quantification of the band intensity of protein expression was performed using Quantity One software The
relative levels of the test proteins are plotted in arbitrary unit (means ± SD). (C) Representative blots of hepatic FMO’s protein of WKY, SHR andWKY-
ANG rats. *p < 0.05 vs. WKY, **p < 0.01 vs. WKY #p < 0.05 SHR vs. WKY-ANG.
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Importantly, the elevated expression of FMOs in SHR was linked
to a more efficient and rapid oxidation of TMA to TMAO following
the intravenous infusion of the amine. This was evidenced by SHRs
demonstrating a significantly higher TMAO/TMA ratio after the
administration of TMA in increasing doses. Lastly, SHRs also
exhibited significantly higher baseline levels of TMAO,
corroborating the findings of previous research (Huc et al., 2018).
This study, suggests that greater oxidation of TMA to TMAO in SHRs
may contribute to higher plasma TMAO levels in hypertensive rats, in
addition to previously described factors such as increased gut-blood-
barrier permeability to bacterial metabolites including TMA in
hypertensive intestines (Jaworska et al., 2017; Drapala et al., 2020).

Some research suggest that alterations in FMOs expression are
associated with several diseases including trimethylaminuria
(TMAU) (Montoya Alvarez et al., 2009), diabetes mellitus (Rouer
et al., 1988; Siddens et al., 2014), familial adenomatous polyposis
(Cruz-Correa and Giardiello, 2003), breast (Krueger et al., 2006),
prostate (Mondul et al., 2015) and colorectal cancer (Xie et al., 2012),
peptic ulcer and gastro-oesophageal reflux (Chung et al., 2000) and
hemochromatosis (Muckenthaler et al., 2003). Furthermore, some
evidence suggests that patient with trimethylaminuria show higher
blood pressure and exaggerated response to pressor amines like
tyramine and phenethylamine (Forrest et al., 2001; Cashman et al.,
2003), however, data are not consistent (Dolan et al., 2005; D’Angelo
et al., 2013). There is also limited data on FMO3 polymorphisms and
its effect on hypertension, but studies provide conflicting results
(Akerman et al., 1999; Cashman et al., 2000; Cashman et al., 2003;
Dolan et al., 2005; D’Angelo et al., 2013). Finally, some links between
blood pressure and inactivation of biogenic amines by FMO3
(Cashman et al., 1997; Lin and Cashman, 1997; Treacy et al.,
1998; Cashman et al., 2000) exist.

In the scientific literature, various models of hypertension are
well-documented. For our research, we chose two models that are

widely recognized and extensively used to represent human
hypertension. This selection was influenced by the unique and
differing etiologies of hypertension presented by these models, as
well as their widespread acceptance as representative models for
studying human hypertension (Jama et al., 2022). The presence of
numerous underlying mechanisms driving hypertension
underscores the critical need for future research to use alternative
models for more comprehensive exploration.

The limitation of this study arises from its exclusive use of male
rats, a decision aimed at minimizing biological variability due to
hormonal fluctuations, which are known to significantly impact
small experimental study outcomes. For future research, it is crucial
to consider the inclusion of both sexes to ensure amore comprehensive
understanding of TMAmetabolism and FMOs activity in hypertensive
rats. Additionally, measuring FMO expression in the heart, brain, and
blood vessels would be beneficial, considering their potential impact on
blood pressure and blood flow regulation within these tissues.

In conclusion, this study offers a comprehensive demonstration
of the relationship between hepatic FMO expression and the
oxidation of TMA to TMAO in the two animal models of
hypertension. Our results indicate that hypertension in SHRs is
linked to an increased expression and activity of liver FMOs. Further
experimental research is necessary to clarify the role of FMOs in the
pathogenesis of cardiovascular diseases. The findings from this study
lay the groundwork for subsequent investigations into FMOs as a
potential therapeutic target for hypertension treatment.
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