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Mood disorders, including major depressive disorder and bipolar disorder, are
highly prevalent and stand among the leading causes of disability. Despite the
largely elusive nature of the molecular mechanisms underpinning these
disorders, two pivotal contributors—mitochondrial dysfunctions and
epigenetic alterations—have emerged as significant players in their
pathogenesis. This state-of-the-art review aims to present existing data on
epigenetic alterations in the mitochondrial genome in mood disorders, laying
the groundwork for future research into their pathogenesis. Associations
between abnormalities in mitochondrial function and mood disorders have
been observed, with evidence pointing to notable changes in mitochondrial
DNA (mtDNA). These changes encompass variations in copy number and
oxidative damage. However, information on additional epigenetic alterations
in the mitochondrial genome remains limited. Recent studies have delved into
alterations in mtDNA and regulations in the mitochondrial genome, giving rise to
the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics
encompasses three main categories of modifications: mtDNA methylation/
hydroxymethylation, modifications of mitochondrial nucleoids, and
mitochondrial RNA alterations. The epigenetic modulation of mitochondrial
nucleoids, lacking histones, may impact mtDNA function. Additionally,
mitochondrial RNAs, including non-coding RNAs, present a complex
landscape influencing interactions between the mitochondria and the nucleus.
The exploration ofmitochondrial epigenetics offers valuable perspectives on how
these alterations impact neurodegenerative diseases, presenting an intriguing
avenue for research on mood disorders. Investigations into post-translational
modifications and the role of mitochondrial non-coding RNAs hold promise to
unravel the dynamics of mitoepigenetics in mood disorders, providing crucial
insights for future therapeutic interventions.
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Introduction

Mood disorders, such as bipolar disorder (BD) and major
depressive disorder (MDD), are highly prevalent and profoundly
disabling conditions. BD is specifically characterized by severe lows
(depression) and elevated highs (hypomania or mania), whereas
MDD includes only the depressive pole. Common symptoms often
observed in depression, such as psychomotor retardation, reduced
engagement in daily activities, difficulty in concentrating, decreased
attention span, and slower processing speed, as well as symptoms in
mania, such as increased psychomotor activity, increased
talkativeness, rapid speech, reduced need for sleep, racing
thoughts, and distractibility, suggest that disruptions in energy-
related processes through mitochondrial abnormalities may
underlie mood episodes (Stork and Renshaw, 2005; Karabatsiakis
et al., 2014). This connection is supported by evidence indicating a
high prevalence of MDD (37%–54%) and BD (17%) in individuals
with mitochondrial diseases (Kasahara and Kato, 2018).

Mitochondria, recognized as the “powerhouses of cells”, have
been linked to mood disorders. Neuronal functioning requires a
high amount of energy; therefore, the brain utilizes 25% of the
body’s energy substrates and consumes 20% of its oxygen
(Wong-Riley et al., 1989; Zhu et al., 2012). As energy derived
from anaerobic glucose is insufficient to sustain the brain’s
energy metabolism without high-energy sources such as
glycogen, proper mitochondrial metabolism becomes crucial,
generating 92% of the body’s energy through oxidative
phosphorylation. Mitochondria also play direct roles in
processes crucial for neural functioning, such as calcium
homeostasis, apoptosis, signal conduction, and neurogenesis,
all of which have significant implications in mood disorders
(Rizzuto et al., 2012; Bock and Tait, 2020). Additionally, various
mechanisms that actively interact with mitochondrial processes,
such as oxidative stress, inflammation, neuroplasticity,
neurogenesis, and stress-related processes, are associated with
the pathogenesis of mood disorders (Manoli et al., 2007; Miller,
2011; Bansal and Kuhad, 2016; Midzak and Papadopoulos, 2016;
Culmsee et al., 2018; Konttinen et al., 2019; Lapp et al., 2019).
Additionally, studies have indicated the impact of various
psychotropic agents such as antidepressants and mood
stabilizers on mitochondrial function (Lundberg et al., 2020).
Proteomic studies have highlighted mitochondrial pathways
(Föcking et al., 2016), and animal models of depression have
revealed a connection between mitochondrial dysfunction and
depression-like behaviors (Kolar et al., 2021). This highlights the
current evidence, emphasizing the pivotal role of mitochondria
as a vital research area in mood disorders (Manji et al., 2012;
Morava and Kozicz, 2013; Allen et al., 2018; Kuffner et al., 2020).

The heritability of MDD has been estimated to be
approximately 40%, and for BD is estimated to be
approximately 70%, with first-degree relatives of individuals
with mood disorders facing an elevated risk of mood disorders
2–3 times higher for depression and up to 10 times higher for BD
(Sullivan et al., 2000; Penner-Goeke and Binder, 2019). Despite its
high heritability, a specific gene that strongly contributes to mood
disorders remains unidentified, and genome-wide association
studies explain only a fraction of the genetic diversity in these
disorders (Menke et al., 2012; Malhi and Mann, 2018). One of the

major challenges to comprehending the progression of mood
disorders is the lack of a single genetic, biological, or
psychosocial explanation. Instead, these disorders are thought
to result from the complex interplay of multiple factors.
Individuals with mood disorders manifest symptoms that arise
from a complex interplay of genetic and environmental factors,
including childhood trauma, migration, loneliness, poverty, work
stress, violence, and even air pollution (Zeng et al., 2019). The
interplay between genetic and environmental factors in mood
disorders is shown by epigenetic alterations (Penner-Goeke and
Binder, 2019; Legrand et al., 2021), which play a role in mood
disorders and influence the effects of antidepressants and mood-
stabilizing agents (Menke et al., 2012; Mikhed et al., 2015; Saavedra
et al., 2016).

Mitochondria are semi-autonomous organelles that contain
their own, circular, maternally inherited genomes. While
traditional epigenetic studies have primarily concentrated on the
nuclear genome, recent research underscores that mtDNA
undergoes epigenetic changes, leading to the emergence of new
fields of mitochondrial epigenetics and mitoepigenetics (Ghosh
et al., 2015; Cavalcante et al., 2020). Given the crucial role of
mitochondrial dysfunction and epigenetic alterations in the
pathogenesis of mood disorders, changes in the epigenetics of the
mitochondrial genome have gained significance. In this review, we
aim to compile and present existing data regarding epigenetic
alterations in the mitochondrial genome in mood disorders,
thereby establishing a foundation for future research on the
origins of these conditions.

Mitochondrial genome alterations and
mood disorders

Mitochondrial DNA (mtDNA) encodes 13 polypeptides,
22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a
non-coding region known as the displacement loop (D-loop).
Unlike nuclear DNA, mtDNA is in the matrix of the
mitochondria rather than the cell nucleus. It lacks histones but is
organized into clusters coated with nuclear counterpart proteins,
called nucleoids. Research in mtDNAmodifications remains limited
and mainly focuses on mtDNA alterations, reporting changes in
both mtDNA copy numbers and oxidation levels (Wang et al., 2018;
Bodenstein et al., 2019; Czarny et al., 2020b; Chung et al., 2022). On
the other hand, mitochondrial epigenetics explores changes in
mtDNA and the mitochondrial genome (Manev, 2014), whereas
mitoepigenetics encompasses a broader scope, incorporating
interactions between mtDNA and nuclear DNA.

MtDNA copy number is a measure of the quantity of
mitochondrial genomes per cell and serves as a surrogate
indicator of mitochondrial health. Numerous studies have
investigated mtDNA copy numbers in various types of
specimens, including brain slices, saliva, and blood, among
individuals with mood disorders (Kakiuchi et al., 2005; Kim
et al., 2011; Cai et al., 2015; Chang et al., 2015; Nicod et al.,
2016; Lindqvist et al., 2018; Chung et al., 2019; Tsujii et al.,
2019). In human postmortem studies, mtDNA copy number was
found to be increased in the dorsolateral prefrontal cortex and
decreased in the superior temporal gyrus in individuals with BD
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(Das et al., 2022). Wang et al. suggested that leukocyte mtDNA copy
number was significantly lower in individuals with BD (even in
mania or depression) than in healthy controls (Wang et al., 2018).
Chung et al. found that mtDNA copy number decreased in
individuals with BD type I but increased in individuals with BD
type II compared to controls (Chung et al., 2022). On the other hand,
Fries et al. showed that individuals with BD had elevated levels of
mtDNA copy numbers compared to controls, while there was no
significant difference between siblings of individuals with BD and
controls (Fries et al., 2017). Despite some conflicting results, most of
the literature suggests significant alterations in mtDNA copy
numbers in MDD and BD (Czarny et al., 2020a).

During oxidative phosphorylation in mitochondria,
approximately 5% of the oxygen consumed in the electron
transport chain is transformed into reactive oxygen species
(ROS), such as superoxide (O2

−) and hydrogen peroxide
(H2O2)). ROS can damage various components of the cell,
including the mitochondrial and nuclear genomes. Owing to its
proximity to oxidative phosphorylation and the absence of histone
protection, mtDNA has been suggested to be three times more
vulnerable to the effects of ROS than nuclear DNA (Yakes and Van
Houten, 1997). To date, a very limited number of studies have
focused on the oxidation of mtDNA, although increased oxidation
of nuclear DNA has repeatedly been shown in mood disorders
(Ceylan et al., 2018; Ahmadimanesh et al., 2019; Ceylan et al.,
2020a; Czarny et al., 2020a; Kucuker et al., 2022; Çelik et al., 2023).
Two clinical studies have reported increased mtDNA damage in
peripheral samples of patients with unipolar depression (Chang
et al., 2015; Czarny et al., 2020b). Chang et al. reported that
individuals with MDD, even in remission, exhibited higher

mitochondrial oxidative damage than healthy controls (Chang
et al., 2015). Furthermore, Czarny et al. reported that
individuals with depression showed elevated levels of mtDNA
damage in peripheral blood mononuclear cells (PBMCs)
compared to controls, whereas there was no alteration in
mtDNA copy number (Czarny et al., 2020b). On the other
hand, a post-mortem study showed a significant decrease in
oxidative mtDNA damage in the brain slices of patients with
BD (Bodenstein et al., 2019). In addition, a recent study showed
that oxidative mtDNA damage may induce short- and long-term
immune activation (Xian and Karin, 2023). While these findings
may not be conclusive on their own, it can be posited that
oxidatively induced mtDNA damage plays an important role in
mood disorders.

Due to methodological limitations, mitochondrial epigenetic
changes have not been extensively studied; however, it is known
that mtDNA epigenetic changes differ from those in nuclear DNA.
Three types of modifications have been identified for
mitoepigenetics: 1) mtDNA methylation/hydroxymethylation, 2)
modifications of mitochondrial nucleoids, 3) mitochondrial RNA
modifications, and modulation of non-coding RNAs (ncRNAs)
originating from nuclear DNA or mtDNA (Figure 1).

mtDNAmethylation/hydroxymethylation

The most extensively studied epigenetic mechanism is DNA
methylation, particularly in the nuclear DNA. DNA methylation is
facilitated by a group of enzymes, known as DNA
methyltransferases. These enzymes transfer a methyl group from
a co-factor molecule, S-adenosyl-L-methionine, to the C5 position of
cytosine and the N6 position of adenine residues, producing 5-
methylcytosine (5mC) and N6-methyladenosine (6mA). Both 5mC
and 6 mA are involved in either silencing or activating gene
transcription. Epigenetic modification of mtDNA has been a
topic of controversy and ongoing research. Although it was
previously believed that mtDNA did not undergo significant
epigenetic modifications, recent studies have challenged this
notion (Delsite et al., 2002; Smiraglia et al., 2008; Santos, 2021).
The presence of both 5mC and 5-hydroxymethylcytosine (5hmC)
alterations in mtDNA suggests that epigenetic modifications may
play an important role in mitochondrial functions (Shock et al.,
2011; Manev et al., 2012; Bellizzi et al., 2013). A previous study
showed that 6 mA in mtDNA can disrupt the DNA binding of
mitochondrial transcription factor A (TFAM), thereby reducing
mtDNA transcription (Hao et al., 2020). The ten-eleven
translocation (TET) protein family of dioxygenases catalyzes an
oxidative reaction (hydroxylation) that converts (5mC) to 5-
hydroxymethylcytosine (5hmC) in an iron (II)- and α-
ketoglutarate-dependent manner (Iyer et al., 2009; Tahiliani et al.,
2009; Ito et al., 2010; Dzitoyeva et al., 2012) showed that both 5mC
and 5hmC are present in mitochondrial DNA of the mammalian
central nervous system (Dzitoyeva et al., 2012). Cytosine
methylation is more widespread in eukaryotes and predominantly
occurs within CpG dinucleotides located on CpG islands within the
cell nucleus (Jin and Robertson, 2013; Lyko, 2018). Methylation of
CpG dinucleotides occurs in certain regions, such as heavy strand
promoter 1 (HSP1), heavy strand promoter 2 (HSP2), the light

FIGURE 1
The research about mtDNA modifications focuses on changes in
mtDNA copy numbers and oxidation levels, in addition to
mitoepigenetic changes in mood disorders. Different types of
modifications have been identified for mitoepigenetics. (1)
mtDNA methylation/hydroxymethylation; (2) modifications of
mitochondrial nucleoids; (3) mitochondrial RNA modifications and
modulation of non-coding RNAs (ncRNA) originating from nuclear
DNA or mtDNA. (Created with BioRender.com).
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strand promoter (LSP), and TFAM binding sites, because
mitochondrial DNA contains a low proportion of CpG islands.
(Bellizzi et al., 2013; Dostal and Churchill, 2019). MtDNA
methylation and hydroxymethylation have been shown that these
changes have effects on neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis (Blanch et al., 2016; Stoccoro et al., 2018; Nikolac Perkovic
et al., 2021; Stoccoro and Coppedè, 2021; Stoccoro et al., 2022).
Several animal studies have shown TET-mediated antidepressant-
like effects, but most of them are related to nuclear epigenetic
regulation. One study showed that sodium butyrate exerts
antidepressant-like effects, with an increase in TET1 leading to
elevated 5hmC levels in the BDNF gene in the prefrontal cortex
in a rat model of depression (Wei et al., 2014). DNA
hydroxymethylase deficiency has been demonstrated lead to a
non-negligible epigenetic alteration in response to stress and is
implicated in the pathophysiology of depressive behaviors in
mice (Cheng et al., 2018). Another study showed that
neuroinflammation can decrease 5hmC enrichment in the brain-
derived neurotrophic factor (BDNF) gene, which is an essential
epigenetic element related to depression-like behaviors (Zhao et al.,
2023). In addition, Scola et al. showed that lithium may have a
protective effect on rotenone-induced mitochondrial complex I
dysfunction and decrease the levels of mtDNA methylation and
hydroxymethylation in rat primary cortical neurons (Scola
et al., 2014).

mtDNA replication and transcription are impacted by altered
methylation in the D-loop, a non-coding region of mtDNA (Shock
et al., 2011; Liu et al., 2016). Alterations or mutations in the D-loop
region can affect mitochondrial function, contributing to various
diseases, such as neurodegenerative disorders and mood disorders
(Blanch et al., 2016; Stoccoro et al., 2018; Chung et al., 2019).
Blanch et al. reported elevated levels of methylation in the D-loop
region of mtDNA in the entorhinal cortex of brain samples from
patients with Alzheimer’s disease (Blanch et al., 2016). Stoccoro
et al. showed that patients with amyotrophic lateral sclerosis had
significantly lower methylation levels in the D-loop region of
mtDNA (Stoccoro et al., 2018). A previous study presented that
the methylation status of the D-loop region did not differ
significantly between individuals with MDD and controls
(Chung et al., 2019); however, individuals with MDD displayed
increased mtDNA copy number and reduced DNA methylation
levels within the PGC1α promoter (Chung et al., 2019). In contrast,
Ceylan et al. showed increased methylation in the D-loop region in
MDD compared to that in BD and healthy controls (Ceylan
et al., 2023).

Modifications of
mitochondrial nucleoids

Nuclear DNA has several post-translational changes of histone
proteins (such as methylation, acetylation, phosphorylation,
ubiquitination, sumoylation, and poly ADP-ribosylation
(parylation)) (Kouzarides, 2007). Unlike nuclear DNA,
mitochondrial DNA lacks histones. Mitochondrial nucleoids are
distinct entities located within the mitochondria that house mtDNA
and associated proteins. These nucleoids play a vital role in the

organization and maintenance of the mitochondrial genome and
participate in tasks such as mtDNA packaging, maintenance, and
the regulation of gene expression (Kukat et al., 2015). Mitochondrial
transcription factor A (TFAM), the major component of the
mitochondrial nucleoids, mitochondrial single-stranded binding
protein, mitochondrial RNA polymerase, and mitochondrial
DNA polymerase gamma (POLG) are some of the most well-
known nucleoids, and they can be post-translationally modified
via acetylation, O-linked glycosylation, and phosphorylation
(Sharma et al., 2019). Therefore, epigenetic changes occurring in
nucleoid proteins play a crucial role in the regulation of mtDNA
gene expression. POLG is responsible for replicating and repairing
mitochondrial DNA and is involved in various processes that are
critical for maintaining mitochondrial genome integrity. Reportedly,
rapid cycling patients with BD exhibit significant downregulation of
POLG expression compared with controls, regardless of illness
episodes (Munkholm et al., 2015). However, our study group
presented unchanged levels of POLG in both euthymic patients
and depressive individuals with BD, as well as in individuals with
MDD (Yılmaz et al., 2022). Neuron-specific DNA methylation
analysis of neurons isolated from certain brain areas that
expressed the proofreading-deficient POLG1 transgenic mice
showed that mutant mice displayed depression-like and bipolar
disorder-like behavioral abnormalities (Kasahara et al., 2016;
Sugawara et al., 2022). On the other hand, TFAM, a nuclear-
encoded transcription factor, is involved in regulating the
replication and transcription of mtDNA, interacts with the DNA
to facilitate condensation into nucleoids and binding to the D-loop
(Choi et al., 2005), and serves as an instance of a mitochondrial
protein subject to post-translational modifications (Suarez et al.,
2008; Lu et al., 2013; King et al., 2018). A study showed that
mitochondrial poly ADP-ribose polymerase 1 (PARP1) induces
NAD + -dependent mitochondrial nucleoid poly ADP-
ribosylation, influencing the recruitment of TFAM to stimulate
mtDNA transcription and indicating epigenetic nucleoid
reorganization (Lee et al., 2022). The expression level of TFAM
has been demonstrated to be altered in various cancers, including
breast cancer, lung cancer, and melanoma (Fan et al., 2017; Araujo
et al., 2018; Lin et al., 2018). However, no data has indicated an
association between TFAM and mood disorders. Since
mitochondrial epigenetics is a newly recognized research area, no
study to date has investigated the posttranslational modifications of
nucleoids in mood disorders.

Mitochondrial RNA modifications and modulation of ncRNAs:
There are various types of mitochondrial RNAs, including 2 rRNAs,
22 tRNAs, 13 mRNAs, and numerous ncRNAs, found in the
mitochondrial matrix. Post-transcriptional mechanisms play a
crucial role in governing the translation, maturation, stability,
and assembly of mitochondrial RNAs. Modifications of
mitochondrial mRNAs, rRNAs, and tRNAs have been linked to
various mitochondrial diseases (Dong et al., 2020). N1-
methyladenosine and N6-methyladenosine have been identified as
post-transcriptional modifications of mitochondrial RNAs (Wang
et al., 2017; Zhang and Jia, 2018). Alterations in the methylation
levels of mitochondrial tRNAs have been observed in tumor tissues
(Hodgkinson et al., 2014). However, the potential roles of
mitochondrial RNA modifications in the pathophysiology of
mood disorders have not been elucidated.
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RNA transcripts that cannot be translated into proteins are
referred to as non-coding RNAs (ncRNAs). ncRNAs, encompassing
both small and long ncRNAs, play crucial roles in biological
processes such as developmental pathways, cellular responses,
and regulatory functions in transcription, and contribute to post-
transcriptional processes by regulating gene expression through
epigenetic mechanisms. They also play crucial roles in
mitochondrial function (Kobayashi et al., 2023). Mitochondria-
derived ncRNAs can be found both inside and outside the
mitochondria, regulating communication between the
mitochondria and nucleus through anterograde and retrograde
signals. ncRNAs inside the mitochondria can be transcribed from
either the nuclear or mitochondrial genome, and certain
mitochondrial ncRNAs are transcribed from the mitochondrial
genome before being transported to the cell nuclei or cytosol
(Liang et al., 2021). MitomiRs are promising targets for future
research in mood disorders.

MicroRNAs (miRNA) are the most abundant ncRNAs and play
roles in regulating protein synthesis and controlling gene expression.
Numerous studies have provided evidence for the significant role of
miRNAs in various psychiatric disorders, including MDD, BD, and
schizophrenia (Maffioletti et al., 2016; Cao and Zhen, 2018; Ceylan
et al., 2020b; Zhang et al., 2020). MtDNA also encodes miRNAs that
are involved in the regulation of mitochondrial gene expression
(Sripada et al., 2012). miRNAs localized in mitochondria, whether
transported from the nucleus or transcribed in themitochondria, are
known as mitomiRs (Rencelj et al., 2021). Most mitomiRs are
encoded in the genome, and a small portion of the mitochondrial
genome encodes these mitomiRs (Shinde and Bhadra, 2015).
MitomiRs have been demonstrated to be important regulators of
mitochondrial function (Rencelj et al., 2021). The regulation of
mitochondria bymitomiRs influences the development of numerous
diseases caused by mitochondrial dysfunction, contributing to the
pathophysiology of conditions such as cardiovascular, metabolic,
and neurodegenerative diseases as well as cancers (Dong et al., 2020;
Wagner et al., 2022).

Circulating RNAs (circRNAs) are ncRNAs that are involved in
depolarization, plasticity, neuronal activity, and synaptic
transmission. A recent study showed that 55 circRNAs were
altered in individuals with schizophrenia and BD compared to
healthy controls, and 71% of these circRNAs were downregulated
(Mahmoudi et al., 2021). Mitochondria-encoded circRNAs have
also been identified. Four major types of circRNAs have been shown
to have an impact on the function of mitochondria, including
mecciND1, and mecciND5-mc-COX2-circRNA SCAR (Liu and
Shan, 2021).

Long ncRNAs (lncRNAs) are the most abundantly expressed
ncRNAs in the brain and contribute to the regulation of chromatin
remodeling, protein scaffolding, translation, splicing, and
transcription. Studies have confirmed that they interact with
epigenetic mediators and transcription factors and subsequently
regulate transcription by targeting gene promoters (Qureshi et al.,
2010; Kadakkuzha et al., 2015; Quinn and Chang, 2016). Changes in
lncRNAs have been associated with depression (Liu et al., 2014),
bipolar disorder (Sayad et al., 2019; Shirvani Farsani et al., 2020),
schizophrenia (Mishra and Kumar, 2021), autism (Wilkinson and
Campbell, 2013), dementia, and other neurodegenerative diseases
(Riva et al., 2016). Numerous lncRNA genomic regions have been

associated with depression in genome-wide association studies
(Zeng et al., 2017), and single-gene polymorphisms in lncRNA
genes have been reported to be associated with the risk of
depression (Delacrétaz et al., 2015; Ye et al., 2017). Studies have
demonstrated the differential regulation of various lncRNA
expressions in peripheral blood samples of individuals with MDD
or BD compared to healthy controls (Liu et al., 2014; Cui et al., 2016;
Cui et al., 2017; Ghafelehbashi et al., 2017; Ye et al., 2017; Naghavi-
Gargari et al., 2019; Sayad et al., 2019). In addition, a recent study
denoted the increased gene expression levels of long intergenic
ncRNA 173 (LINC00173) in the postmortem brain tissue of
individuals with BD (Akula et al., 2014).

In recent years, mitochondria-derived ncRNAs have attracted
the attention of researchers because of their critical roles in the
pathophysiology of many disorders (Zhao et al., 2018; Ren et al.,
2023). However, there is currently no published study in the
literature that has investigated mitochondrial-encoded ncRNAs,
such as miRNAs, circRNAs, and lncRNAs, in mood disorders.
Examining the roles of ncRNAs in mitoepigenetics remains a
central focus for further exploration.

Conclusion and future directions

The integration of mitoepigenetics into the broader framework
of mood disorder research has the potential to enrich our
understanding of the molecular underpinnings of these
conditions. Currently, limited research exploring D-loop
methylation and mtDNA oxidation in mood disorders suggests
the need for a more detailed focus on this area of research. In
addition, investigating post-translational modifications of nucleoids
and their impact on mitochondrial function in mood disorders
could provide crucial insights into the epigenetic regulation of
mtDNA. Mitochondrial RNA, including ncRNAs such as
mitomiRs, circRNAs, and lncRNAs, emerges as a dynamic
component influencing mitochondrial and nuclear interactions.
miRNAs, in particular, have been implicated in various
psychiatric disorders, and mitochondrial-encoded mitomiRs
present a novel dimension in understanding mitochondrial
contributions to mood regulation. Exploring the roles of
mitomiRs, circRNAs, and lncRNAs in mood disorders can
deepen our understanding of the intricate regulatory networks
governing the mitochondrial contributions to these conditions.
Considering the multifactorial nature of mood disorders, future
research should explore the interactions between mitoepigenetics
and environmental factors such as stressors, trauma, and lifestyle to
comprehensively understand the etiology of these conditions.
Translating the insights gained from mitochondrial epigenetic
research into clinical applications holds great promise.
Identifying therapeutic targets related to mitoepigenetics could
pave the way for innovative interventions in mood disorders.
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