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Through decades of empirical data, it has become evident that resistance training
(RT) can improve strength/power and skeletal muscle hypertrophy. Yet, until
recently, vascular outcomes have historically been underemphasized in RT
studies, which is underscored by several exercise-related reviews supporting
the benefits of endurance training on vascular measures. Several lines of evidence
suggest large artery diameter and blood flow velocity increase after a single bout
of resistance exercise, and these events are mediated by vasoactive substances
released from endothelial cells andmyofibers (e.g., nitric oxide). Weeks tomonths
of RT can also improve basal limb blood flow and arterial diameter while lowering
blood pressure. Although several older investigations suggested RT reduces
skeletal muscle capillary density, this is likely due to most of these studies
being cross-sectional in nature. Critically, newer evidence from longitudinal
studies contradicts these findings, and a growing body of mechanistic rodent
and human data suggest skeletal muscle capillarity is related to mechanical
overload-induced skeletal muscle hypertrophy. In this review, we will discuss
methods used by our laboratories and others to assess large artery size/function
and skeletal muscle capillary characteristics. Next, we will discuss data by our
groups and others examining large artery and capillary responses to a single bout
of resistance exercise and chronic RT paradigms. Finally, we will discuss RT-
induced mechanisms associated with acute and chronic vascular outcomes.
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1 Introduction

Resistance training (RT) adaptations include increases in skeletal muscle mass,
power, and endurance (Deschenes and Kraemer, 2002; Grgic et al., 2022). Neural
adaptations occurring during the first few weeks of RT include increased motor unit
recruitment and electromyographic activity during maximal contractions (Skarabot
et al., 2021). RT promotes increased myofibril protein content and myofiber cross-
sectional area in large part due to increases in myofibrillar protein synthesis rates
(Roberts et al., 2023).

Beyond increased strength/power and skeletal muscle hypertrophy, evidence
suggests RT improves large artery function and skeletal muscle angiogenesis

OPEN ACCESS

EDITED BY

Keith George,
Liverpool John Moores University,
United Kingdom

REVIEWED BY

Bradley S. Fleenor,
Lincoln Memorial University, United States

*CORRESPONDENCE

Michael D. Roberts,
mdr0024@auburn.edu

RECEIVED 14 November 2023
ACCEPTED 26 January 2024
PUBLISHED 09 February 2024

CITATION

McIntosh MC, Anglin DA, Robinson AT, Beck DT
and Roberts MD (2024), Making the case for
resistance training in improving vascular
function and skeletal muscle capillarization.
Front. Physiol. 15:1338507.
doi: 10.3389/fphys.2024.1338507

COPYRIGHT

© 2024 McIntosh, Anglin, Robinson, Beck and
Roberts. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physiology frontiersin.org01

TYPE Mini Review
PUBLISHED 09 February 2024
DOI 10.3389/fphys.2024.1338507

https://www.frontiersin.org/articles/10.3389/fphys.2024.1338507/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1338507/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1338507/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1338507/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1338507&domain=pdf&date_stamp=2024-02-09
mailto:mdr0024@auburn.edu
mailto:mdr0024@auburn.edu
https://doi.org/10.3389/fphys.2024.1338507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1338507


(Zoeller et al., 2009; Beck et al., 2013a; Beck et al., 2013b; Spence
et al., 2013; Beck et al., 2014; Verdijk et al., 2016; Holloway et al.,
2018b; Naylor et al., 2021; Bovolini et al., 2022). Briefly, the
vascular system is characterized by the arterial and venous
systems (Pugsley and Tabrizchi, 2000). During ejection of
blood from the left ventricle into elastic arteries (i.e., aorta),
blood flows from these elastic arteries to a series of large arteries
containing a layer of smooth muscle which ensures a rapid
distribution of blood to the organ systems (Pugsley and
Tabrizchi, 2000). These arteries enter the skeletal muscle
bifurcating into smaller arteriolar branches and arterioles. The
arterial system transitions to the venous system through
arterioles diverging into capillaries. The relationship between
RT and vascular adaptations is underappreciated relative to
widely examined muscular adaptations. Therefore, the purpose
of this review is to examine RT effects on vascular outcomes,
vascular assessments, mechanisms underlying RT-induced
vascular remodeling, and considerations for future research.

1.1 Methods used to assess blood flow and
muscle capillarization

This section provides overviews of laboratory methods to assess
vascular function and quantification of capillary characteristics in
biopsied muscle to familiarize the reader with techniques discussed
in subsequent sections. Figure 1 summarizes these techniques.

1.2 Common non-invasive
vascular measures

The most widely used method for assessing larger artery
blood flow dynamics is flow-mediated dilation (FMD)
(Limberg et al., 2020). Briefly, FMD consists of measuring the
end-diastolic diameter of conduit arteries and blood velocity
using high-resolution ultrasonography at rest and after
hyperemic shear stress on the endothelium. Reactive
hyperemia is produced after releasing an occlusion cuff
inflated for 5 min at ~200 mmHg below the imaging site.
Baseline and hyperemic diameters are compared and increases
in lumen diameter are generally attributed to local nitric oxide
(NO) release after increased endothelial shear stress. For detailed
FMD information, please refer to these reviews (Wray et al., 2013;
Limberg et al., 2020).

Regional pulse wave velocity (PWV) is a widely applied and
accepted ‘gold standard’ for non-invasive measurement of central
and peripheral vessel compliance. PWV is assessed noninvasively by
measuring the pulse pressure waveform generated by left ventricular
ejection via applanation tonometry and the time delay between two
sites (e.g., carotid, and femoral) gated by electrocardiogram
(Miyachi et al., 2004; Shirwany and Zou, 2010; Gurovich and
Braith, 2011; Mancia et al., 2013; Pereira et al., 2015; Chirinos
et al., 2019).

To assess limb blood flow, in the forearm or calf, venous
occlusion plethysmography (VOP) is employed (Wilkinson and

FIGURE 1
Summary of techniques used to measure arterial function, limb blood flow, and skeletal muscle capillary attributes. Legend: The upper left
schematic (A) shows techniques that utilize Doppler ultrasound to non-invasively assess large artery blood flow for the extrapolation of endothelial
function. The upper center schematic (B) illustrates venous occlusion plethysmography, which is used to assess changes in limb blood flow following a
series of upper arm and wrist occlusions. The upper right schematic (C) illustrates multi-site applanation tonometry to extapolate pulse wave
velocity (PWV) to assess arterial stiffness. Finally, the bottom schematic (D) shows how a muscle biopsy can be used to assess capillary number per
myofiber and extrapolate perfusion indices.
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Webb, 2001). Briefly, VOP involves a mercury in silastic strain-
gauge placed around a participant’s limb (e.g., forearm or calf).
Limb blood flow is measured at rest and after hyperemia. As the
volume within the limb increases, the pulsatile limb circumference is
compared against resting values. These estimations are a non-invasive
surrogate of microvascular function.

1.3 Microscopic assessments for capillary
quantification

Capillaries in skeletal muscle deliver nutrients and remove waste
products and metabolites (Poole et al., 2013; Olfert et al., 2016).
Capillaries are quantified using histology and/or
immunohistochemistry, and outcomes include capillary-to-fiber
ratio, capillary density, and capillary-to-fiber perimeter exchange
index (Olfert et al., 2016; Kissane and Egginton, 2019). The
capillary-to-fiber ratio is the ratio of capillaries to myofibers,
whereas capillary density represents the number of capillaries
within that field of view. The capillary-to-fiber perimeter
exchange index is the quotient of the individual capillary-to-fiber
ratio and the fiber perimeter (Hepple, 1997). Together, these metrics
represent alterations in the capacity for oxygen flux and alterations
in any carrier- or receptor-mediated aspect of blood-tissue exchange
between the capillaries and myofibers (i.e., nutrient perfusion).

Further, amylase-periodic acid Schiff staining, and
histochemical and immunohistochemical staining techniques are
performed to assess skeletal muscle capillary number (Qu et al.,
1997). CD31 (PECAM-1), a cell adhesion protein highly expressed
in vascular endothelial cells, is employed to quantify capillary
number in skeletal muscle (Kissane and Egginton, 2019).
Together, imaging techniques and quantification of slow and fast
twitch myofiber and/or type I and II myosin heavy chain antibodies
(Ingjer, 1979; Mitchell et al., 2018) complete typical
capillarity analysis.

2 Vascular adaptations

2.1 Acute resistance exercise effects on
conduit artery blood flow

A single RT bout transiently increases heart rate, blood pressure,
systemic total peripheral resistance, and blood flow in the large
arteries (Miles et al., 1987; Dawson et al., 2013). Blood flow is
increased to active skeletal muscle due to reductions in local
peripheral resistance termed functional sympatholysis (Rowell,
1997; Thomas and Segal, 2004). Vasoconstrictor responses are
reduced in exercising muscle while, as a contradictory reflex,
vasoconstriction is increased in resting muscle (Thomas and
Segal, 2004). Doppler ultrasonography studies illustrate that
femoral artery blood flow transiently increases (i.e., active
hyperemia) ~2-3-fold immediately following an acute bout of RT
(Shoemaker et al., 1994; Radegran, 1997). Several lines of
independent evidence support loaded muscular contractions
transiently increase large artery blood flow and diameter. In our
laboratory, immediate post-exercise femoral artery blood flow
increases similarly (~2-fold) in response to lower-load/higher-

repetition and higher-load/lower-repetition bouts of leg extensor
exercise, and coincides with increases in post-exercise femoral artery
diameter (Martin et al., 2017). In a separate study, we observed arm
curl RT increases immediate post-exercise brachial artery blood flow
3-fold and brachial artery diameter (~15%), both subsiding after
15 min of recovery (Fox et al., 2020).While evidence from our group
suggests changes rapidly return to pre-exercise levels, recent data
suggests increased femoral artery blood flow (~20%), conductance
(~24%), and diameter (~5%) can persist up to an hour following
knee extensor exercise (Lin et al., 2022).

FMD is considered a primary marker of vascular health and
impairment, reduced function, or dysfunction of the endothelium,
as measured by FMD, is associated with increased risk of
cardiovascular disease and future cardiovascular events (Elliott
et al., 1987). Currently, data are mixed, as research groups report
brachial FMD (bFMD) is augmented (Gonzales et al., 2011; Franklin
et al., 2014; Buchanan et al., 2017; de Oliveira et al., 2020), impaired
(Franklin et al., 2014; Choi et al., 2016; Morishima et al., 2018; de
Oliveira et al., 2020; Morishima et al., 2020), or unaffected (Jurva
et al., 2006; Casey et al., 2007a; Phillips et al., 2011; Buchanan et al.,
2017). Discordant reports can be attributed to participant
differences in baseline diameter and training status (trained
participants being less likely to exhibit a transient reduction
sometimes referred to ‘athlete’s artery’ (Green et al., 2012; Zhong
et al., 2018). Chronically, RT improves exercise capacity, attenuates
the blood pressure response to the increasing workloads, and
improves cardiovascular function during graded exercise testing
(Lovell et al., 2009). Further, RT reduces central blood pressure and
improves microvascular function (Heffernan et al., 2009). Indeed,
arterial adaptation to high-pressure loads associated with RT are
different and distinctly affect endothelial function when compared
with endurance training (Green et al., 2004; Rakobowchuk et al.,
2005). It is widely accepted that exercise training augments NO
dependent vasodilation of large and small vessels, at least in part,
through an upregulation of eNOS protein expression and
phosphorylation with the greatest effect occurring during
prolonged repetitive endurance exercise (Green et al., 2004).
Despite the disparate findings observed in healthy habitual
resistance trainers, benefits of RT are widely accepted in
prehypertensives, hypertensives, and those at risk for CVD (Beck
et al., 2013a; MacDonald et al., 2016; Ogbutor et al., 2019; Pedralli
et al., 2020). Further research is imperative to define proper
application of exercise modality, length, volume, and intensity
targeting populations likely to benefit most while considering
baseline FMD status of participants which influence investigation
outcomes (Zhong et al., 2018).

2.2 Chronic resistance training effects on
large artery function

Chronic RT can decrease blood pressure and improve basal
blood flow through large arteries (Kelley and Kelley, 2000; Anton
et al., 2006; Fragala et al., 2019). Numerous reviews conclude that
chronic RT reduces systolic and diastolic blood pressure in healthy
and hypertensive younger and older populations (Kelley and Kelley,
2000; Pescatello et al., 2004; Fragala et al., 2019). Indeed, 13 weeks of
RT has been reported to increase basal femoral blood flow (~60%)
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and vascular conductance in healthy, middle-aged men and women
despite no change in the diameter of the lumen (Anton et al., 2006).
A study in which over 100 normotensive younger (20–34 years) and
middle-aged (36–65 years) men categorized as sedentary or
resistance-trained indicate that resistance-trained younger men
possess ~30% higher basal whole leg blood flow compared to
untrained counterparts (Miyachi et al., 2005). When comparing
inactive controls to highly competitive runners, powerlifters, and
weightlifters, weightlifters possessed larger resting brachial arterial
diameters (Naylor et al., 2021). Thus, while weeks of RT may not
affect large vessel remodeling as indicated above, months-to-years of
RTmay promote remodeling to increase the diameter of the brachial
arteries (and presumably other arteries in trained lower limbs).

Some longitudinal studies suggest RT improves endothelial
function in large arteries. In a meta-analysis, which included
51 studies and 2,260 total participants, RT improved endothelial
function, and reported a positive correlation with the number of RT
sessions and FMD responsiveness (Ashor et al., 2015). Hence, the
collective evidence suggests chronic RT can favorably affect blood
pressure and vascular function, potentially promoting large artery
remodeling which increases vessel diameter.

Arterial Compliance (C) is the change in arterial blood volume
(ΔV) due to a change in arterial blood pressure (ΔP) or (C = ΔV/ΔP)
(SPENCER and DENISON, 1963). Arterial stiffness is the inverse of
arterial compliance. In a compliant vascular system, left ventricle
ejection gives rise to lower systolic pressure for a given stroke
volume, decreased ventricular wall stress, and reduced myocardial
oxygen demand. Arterial stiffness is a major contributing factor for
development of cardiovascular diseases with aging, including
myocardial infarction and heart failure (Laurent et al., 2001).
However, these age-related increases in arterial stiffness are
absent or attenuated in regularly exercising adults (Nosaka
et al., 2003).

Currently, the beneficial effects of endurance training on arterial
compliance in normotensives and hypertensives across all age
groups is widely accepted. However, the effects of RT appear to
be differential and dependent on training intensity, volume,
hypertension status, presence of arterial stiffness, lower limb
versus upper limb resistance training, age, and health. Specifically,
although moderate and low-intensity RT report no unfavorable
effects, high-intensity RT has been demonstrated to increase large
artery stiffening (Arroyo et al., 1992; Lin et al., 2017). In contrast,
others suggest that low and high-intensity RT improve compliance
(Casey et al., 2007b; Miura et al., 2008; Okamoto et al., 2011; Beck
et al., 2013b; Greenwood et al., 2015; Au et al., 2017).

A 2013 meta-analysis examining RT and arterial stiffness
identified 5 studies including 115 young adults and an original
article reporting increases in arterial stiffness suggesting potentially
unfavorable effects of RT on cardiovascular function (Miyachi,
2013). A 2020 systematic review of 16 studies from 1999 to
2019 and a 2020 meta-analysis and systematic review of
10 studies with 310 total participants reported RT does not alter
arterial stiffness in healthy participants (Ceciliato et al., 2020;
Garcia-Mateo et al., 2020). Additional studies have reported RT
reduces arterial stiffness in young adults (Casey et al., 2007b; Miura
et al., 2008; Okamoto et al., 2011; Beck et al., 2013b; Greenwood
et al., 2015; Au et al., 2017; Figueroa et al., 2019). Comparisons of
outcomes are difficult due to the low number of clinical trials

employing RT, differences in age, sex, and current health status
of participants and type of RT and measures of compliance. Hence,
further investigation is required to resolve these contradictions.

2.3 Chronic resistance training effects on
skeletal muscle capillarization

Skeletal muscle capillaries are critical for tissue perfusion and
delivery of oxygen, nutrients, and removal of waste products (Betz
et al., 2021). RT can increase skeletal muscle capillarization, albeit early
research in this area in the 1980s did not provide supporting evidence in
this regard. For instance, a 1988 review (Tesch, 1988) summarizing
studies examining non-exercised controls to weightlifters concluded
that “. . .capillary density decreases consequent to heavy resistance
training”, and “. . .when pronounced hypertrophy of individual
muscle fibers occurs, capillary density decreases”. A seminal 8-week
longitudinal study by Campos et al. (2002) similarly indicated that
neither lower volume, moderate volume, nor higher volume RT affects
skeletalmuscle capillarization. In contrast, several studies have indicated
that 7–12 weeks of RT promotes increases in skeletal muscle
capillarization in younger and older participants (McCall et al., 1996;
Green et al., 1999; Hostler et al., 2001; Jensen et al., 2004; Verdijk et al.,
2016; Nederveen et al., 2017; Holloway et al., 2018a; Holloway et al.,
2018b). Interestingly, individuals with less capillaries may display
impairments in RT adaptations. For instance, older men with a
higher skeletal muscle fiber capillarization prior to 24 weeks of RT
experience greater increases in type II skeletal muscle fiber hypertrophy
after RT compared to those with lower capillarization (Snijders et al.,
2017). Further, increases in type II myofiber satellite cell content
following an acute RT bout in the trained state correlate with the
degree of type IImyofiber capillarization following 12weeks of prior RT
in older participants (Snijders et al., 2019). Hence, the current evidence
seemingly suggests that chronic RT increases skeletal muscle
capillarization, and this adaptation may optimize skeletal muscle
hypertrophy.

3 Mechanisms

In consideration of support for RT promoting positive larger
artery adaptations and angiogenesis in skeletal muscle, the intent of
the subsequent section is to consider potential mechanisms
underlying these effects.

3.1 Vasodilation mediation

Vasodilation is the widening of the lumen within blood vessels,
largely resulting from the relaxation of smoothmuscle cells surrounding
arterial walls (Kelm, 2002; Egginton and Gerritsen, 2003; Clifford and
Hellsten, 2004). Peripheral vessel vasodilation transiently occurs in
response to skeletal muscle contractions (Credeur et al., 2015; Hurley
et al., 2019), and modulators of this process include NO, prostacyclins,
hypoxia, potassium, adenosine, and ATP (Clifford and Hellsten, 2004;
Olfert et al., 2016). Further, NO formation is catalyzed by nitric oxide
synthase (NOS), derived from L-arginine (Moncada and Higgs, 1993;
Clifford and Hellsten, 2004). During skeletal muscle contractions, the
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increase in shear stress stimulatesNO release into circulation and transit
to smooth muscle cells from the endothelium and myofibers (Joyner
and Dietz, 1997; Clifford and Hellsten, 2004). Moreover, a positive and
linear relationship exists between NO production and bFMD in young
healthy adults (Casey et al., 2007b). DespiteNObeing appreciated for its
vasodilatory actions, vasodilation is a redundant and complex process
with many substances contributing to the balance between
vasoconstriction and vasodilation which is outside the scope of this
review. The authors direct the reader to an informative thorough review
(Clifford and Hellsten, 2004). Continued research is required to parse
out how a single bout of RT affects these processes.

3.2 Angiogenesis in skeletal muscle in
response to resistance training

Vascular endothelial growth factor (VEGF) signaling is an
extensively studied mechanism for skeletal muscle angiogenesis.
Independent mechanisms induced by RT (e.g., extracellular matrix
remodeling through matrix metalloproteases, cytokine signaling, and
increases in metabolites) are discussed further herein. Advanced
details of VEGF signaling are beyond the scope of the current
review, therefore we offer the following for interested readers
(Prior et al., 2004; Hoier and Hellsten, 2014; Olfert et al., 2016;
Ross et al., 2023). Briefly, VEGF-induced angiogenesis involves VEGF
binding to VEGFR2 receptors on endothelial cells which increase
proliferation andmigration (Ross et al., 2023). Several studies indicate
that a bout of RT increases skeletal muscle VEGFmRNA, protein, and
plasma protein (Croley et al., 2005; Gavin et al., 2007; Trenerry et al.,
2007; Della Gatta et al., 2014). Moreover, current evidence points to
myofibers as a prominent site of VEGF production and secretion into
the interstitial space and circulation (Hoier and Hellsten, 2014).
Multiple factors likely lead to enhanced skeletal muscle VEGF
expression in response to a single bout of RT. For instance,
transcription factors and transcriptional co-activators including
hypoxia inducible factor (HIF)-1α, estrogen-related receptor α
(ERRα), peroxisome proliferator-activated receptor gamma
coactivator (PGC)-1β and PGC-1α regulate VEGF transcription
(Ross et al., 2023). A transcriptomics meta-analysis (Pillon et al.,
2020) highlights that each of these genes are upregulated following a
bout of RT. Shear stress, induced by RT, has been shown to upregulate
myofiber VEGF expression in rodents through NO-mediated
mechanisms (Milkiewicz et al., 2001; Baum et al., 2004). Mouse
models whereby angiogenesis-related genes are knocked out,
knocked down, or deleted (e.g., neuronal NOS or VEGF),
demonstrate significant reduction in capillarity and/or skeletal
muscle mass (Breen et al., 2008; Baum et al., 2013; Huey et al.,
2016; Olfert et al., 2016). Interestingly, RT-induced muscle VEGF
expression is lower in older individuals (Croley et al., 2005), and could
partially explain age-related impairments in muscle capillarization in
response to exercise with aging (Olsen et al., 2020).

Several other notable mediators of angiogenesis exist. For
instance, extracellular matrix remodeling through MMPs has
been implicated in skeletal muscle capillarization (Ross et al.,
2023), and a single bout of RT and chronic RT increase MMP
protein expression and/or activity (Wessner et al., 2019; Angleri
et al., 2022; Long et al., 2022; Godwin et al., 2023). Tumor necrosis
factor-alpha, is a proinflammatory cytokine predominantly

produced by monocytes, macrophages, lymphoid progenitor cells,
mast cells, endothelial cells, fibroblasts, and neural cells. RT has been
shown to acutely increase mRNA expression of TNFα in skeletal
muscle (Louis et al., 2007), and may serve a role in angiogenesis by
inducing mRNA expression of angiogenic factors, cytokines,
proteases, and adhesion molecules (Zubkova et al., 2016).
Transforming growth factor-beta signaling, a pathway shown to
be induced in skeletal muscle according to transcriptome and DNA
methylome analyses in response to RT (Sexton et al., 2023), is also
believed to promote endothelial cell differentiation (Lefaucheur
et al., 1996). Hence, research will continue to unveil the
relevance of these signaling mediators in skeletal muscle
capillarization induced by RT.

4 Conclusion

While it is well known RT promotes increases in skeletal muscle
hypertrophy, strength and power, vascular adaptations and their
role in skeletal muscle adaptations to RT is less understood. Perhaps
this is due to earlier studies suggesting RT decreases skeletal muscle
capillary density and transiently reduces endothelial function.
However, emerging evidence suggests RT promotes beneficial
vascular adaptations and improves vascular function. Moving
forward, it is important to establish whether the vascular
adaptations discussed herein are required for optimal RT
responses in skeletal muscle and if these relationships hold true
across age, sex, and health differences. Nevertheless, this continues
to be a fruitful area of discovery.
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