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deep-learning techniques
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Cardiac arrhythmias cause depolarization waves to conduct unevenly on the
myocardial surface, potentially delaying local components with respect to a
previous beat when stimulated at faster frequencies. Despite the diagnostic
value of localizing the distinct local electrocardiogram (EGM) components for
identifying regions with decrement-evoked potentials (DEEPs), current software
solutions do not perform automatic signal quantification. Electrophysiologists
must manually measure distances on the EGM signals to assess the existence
of DEEPs during pacing or extra-stimuli protocols. In this work, we present a
deep learning (DL)-based algorithm to identify decrement in atrial components
(measured in the coronary sinus) with respect to their ventricular counterparts
from EGM signals, for disambiguating between accessory pathways (APs) and
atrioventricular re-entrant tachycardias (AVRTs). Several U-Net andW-Net neural
networks with different configurations were trained on a private dataset of
signals from the coronary sinus (312 EGM recordings from 77 patients who
underwent AP or AVRT ablation). A second, separate dataset was annotated for
clinical validation, with clinical labels associated to EGM fragments in which
decremental conduction was elucidated. To alleviate data scarcity, a synthetic
data augmentation method was developed for generating EGM recordings.
Moreover, two novel loss functions were developed to minimize false negatives
and delineation errors. Finally, the addition of self-attention mechanisms and
their effect on model performance was explored. The best performing model
was a W-Net model with 6 levels, optimized solely with the Dice loss. The model
obtained precisions of 91.28%, 77.78% and of 100.0%, and recalls of 94.86%,
95.25% and 100.0% for localizing local field, far field activations, and extra-
stimuli, respectively. The clinical validation model demonstrated good overall
agreement with respect to the evaluation of decremental properties. When
compared to the criteria of electrophysiologists, the automatic exclusion step
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reached a sensitivity of 87.06% and a specificity of 97.03%. Out of the non-
excluded signals, a sensitivity of 96.77% and a specificity of 95.24% was obtained
for classifying them into decremental and non-decremental potentials. Current
results show great promise while being, to the best of our knowledge, the first
tool in the literature allowing the delineation of all local components present
in an EGM recording. This is of capital importance at advancing processing
for cardiac electrophysiological procedures and reducing intervention times,
as many diagnosis procedures are performed by comparing segments or late
potentials in subsequent cardiac cycles.

KEYWORDS

intracavitary electrograms, decrement-evoked potentials, deep-learning, automatic
signal delineation, coronary sinus, local field components, synthetic data

1 Introduction

Understanding deviations in electrical conduction patterns
is a key task when diagnosing cardiac arrhythmias (CAs) in
electrophysiology (EP) procedures Porta-Sánchez et al. (2018).
During EP interventions, a series of local activation patterns
or electrograms (EGM) are recorded, which correspond to
depolarization waves captured by special catheters. While these
EGMs are represented as isolated electrical deflections in normal
cardiac tissue, CAs cause depolarization waves to conduct unevenly
on the myocardial surface, which alter the morphology of an EGM,
induce decremental response of the tissue, generate fractionations
in the local components (local fields, LF) or produce the appearance
of late potentials (LP) Zeppenfeld and Porta-Sánchez (2020).

Decremental response is especially important as a diagnostic
marker. Decrement occurs when local components are delayed with
respect to a previous beat when stimulated at faster frequencies.
This decrement may be naturally caused (e.g., the AV node
delays conduction at faster firing frequencies) or induced by
lesions in the myocardium. Current clinical guidelines hint at
the diagnostic value of decrement-evoked potentials (DEEPs),
which are portions of tissue presenting decremental conduction.
Those DEEPs are diagnosed by producing extrastimuli in specific
myocardial positions Acosta et al. (2016), Acosta et al. (2020).
In this work, the presence or absence of decrement in atrial
components (measured in the coronary sinus, CS) with respect to
their ventricular counterparts will be explored for disambiguating
between accessory pathways (APs) and atrioventricular reentrant
tachycardias (AVRTs).

Despite the importance of localizing the distinct local EGM
components for assessing the existence of DEEPs, current software
solutions donot performautomatic signal quantificationZeppenfeld
and Porta-Sánchez (2020). Electrophysiologists must manually
measure distances on the EGM signals to assess the existence of
DEEPs during pacing or extrastimuli protocols. Even state-of-the-
art 3D electroanatomical mapping systems (EAMs) only locate
the local field signal with the largest deflection within a cardiac
cycle Zeppenfeld and Porta-Sánchez (2020) with relatively simple
and error-prone algorithms, which often forces EAM operators to
reassign fiducials Zeppenfeld and Porta-Sánchez (2020).

Some computational solutions for EGM signal analysis exist.
These algorithms are based on calculating digital signal processing

(DSP)-based transformations on the data, such as filtering or
Fourier/wavelet transforms (FT and WT, respectively), which aid
in reducing data complexity for producing robust signal detection.
Osorio et al. (2017) produced an algorithm based on filtering out
high-frequency components for locating local components in AF
recordings. Similarly, Felix et al. (2015) used a threshold-based
WT pipeline for estimating LFs. In Faes et al. (2002), the authors
proposed to estimate the local activation time (LAT) from the
barycenter of LFs in bipolar EGMs, after filtering and adaptive
thresholding. On the other hand, Hajimolahoseini et al. (2018) used
a Gaussian mixture model for the analysis of the natural logarithm
of the signal. To the best of our knowledge, only Alcaine et al.
(2013), Alcaine et al. (2014) directly attempted EGM delineation.
The authors firstly delineated onsets and offsets of the surface QRS
complex, which was used for windowing the EGM. Then, the WT
was used on the signal’s envelope alongside a rule-based algorithm to
determine the onset/offset pair of the LFs, reaching good delineation
performance. This approach, however, cannot be used to delineate
isolated LPs or extra LFs in patients with AF, preventing its
usage as a general purpose tool. Neither of the aforementioned
works in the literature produce detections of individual waves
outside the most salient component, with only Alcaine et al. (2013),
Alcaine et al. (2014) computing the onsets and offsets of the
predicted wave.

In recent times, deep learning (DL) algorithms have gained
popularity for automated data analysis, given their minimal pre-
processing requirements and high performance. In the specific
case of cardiac signals, some solutions exist for automatic
electrocardiogram (ECG) quantification Jimenez-Perez et al. (2019),
Jimenez-Perez et al. (2021a), Jimenez-Perez et al. (2021b). However,
not many algorithms have been developed for analyzing EGMs,
and they revolve around classification Rodrigo et al. (2021). In
this work, several fully-convolutional network (FCN), the U-Net
Ronneberger et al. (2015) and the W-Net Xia and Kulis (2017)
with different configurations, were trained on a private dataset
of signals from the CS. To alleviate data scarcity, a synthetic
data augmentation method was developed for generating EGM
recordings. Moreover, two novel loss functions were developed to
minimize false negatives and delineation errors. Finally, the addition
of self-attentionmechanisms and their effect onmodel performance
was explored Wang et al. (2020). To the best of our knowledge,
this is the first developed approach for delineation of intracavitary
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FIGURE 1
Generated ground truth for an intracavitary electrocardiographic recording at the coronary sinus. The green and magenta overlays represent,
respectively, local field activations from the coronary sinus and the ventricular far field. The recording presents ventricular pacing and decremental
properties.

electrocardiograms (iECG), bridging the gap between the ECG and
iECG communities.

2 Materials and methods

This section firstly describes the employed datasets in
Section 2.1. Secondly, the EGM analysis pipeline is defined,
consisting the generation of synthetic tracings (Section 2.2), the
DL architecture (Section 2.3) and the list of performed experiments
(Section 2.5).

2.1 Materials

A proprietary EGM delineation dataset was developed in the
Hospital Universitario Virgen del Rocío (Sevilla, Spain).This dataset
comprises 312 EGM recordings of variable size taken from 77
patients who underwent AP or AVRT ablation, following the
ablation protocol recommended in the standard-of-care. The LF
and FF activations were manually annotated using a Python tool
to mark their onsets and offsets, and these fiducials were then
validated by a panel of certified cardiologists. A LF activation was
considered when the catheter was placed into a specific anatomical
structure (e.g., the left ventricle) and the EGM depicted a high-
frequency activation, whereas the FF activation was considered a
low-frequency activation occurring elsewhere but propagated to
the local tissue (e.g., atrial activation in the left ventricule). In
total, 20,671 LF, 13,354 FF and 318 stimulation artifacts annotations
were generated. All interventions recorded 5 bipolar EGMs from
decapolar catheter (CS-1 or proximal through CS-5 or distal) during
pacing or application of extrastimuli while testing for decremental
conduction. A Bard Labsystem Pro EP Recording System ⓒ was
used (1,000 Hz sampling frequency, 16 bits resolution, 2.5 μV/bit,
bandpass-filtered in [30, 500] Hz).

The annotations were represented as binary masks for their
usage as optimization targets in the segmentation architectures,
where amask of shape {0,1}3×N was True-valued whenever a specific
sample n ∈ [0,N] was contained within a stimulation, LF or FF
activation (indices 0, 1 and 2, respectively) Jimenez-Perez et al.
(2021b). The dataset was split 75%–25% so that all bipolar EGMs
from the same patient would either be in the training or the testing
sets, producing a training set and a held-out testing set (49 and 28
patients, respectively). Figure 1 shows an annotated EGM signal.

A second, completely separate dataset was annotated for clinical
validation and was not used for model training or validation.
This dataset did not contain delineation annotations (onsets/offsets
of LF and FF activations), but clinical labels associated to EGM
fragments in which decremental conduction was elucidated. The
study protocol consisted in the application of a simple pacing (S
= [400, 600] ms) followed by an extra-stimulus (S2 = effective
refractory period (ERP) + [20, 60] ms), measuring the delay in
response caused by the AV node. The recordings were annotated
by expert electrophysiologists, where three possible labels were
assigned to each recording: decremental (if the time delay after
S2 exceeded 10 ms), non-decremental or non-interpretable (loss of
capture in S2 or no conduction through AV node). In total, 321
recordings from 50 patients were annotated and analysed.

2.2 Synthetic data augmentation

EGM recordings have segments of electrical silence (or rest),
in which one or several LF or FF activations may be contained.
Taking advantage of this modular structure, an algorithm for
generating synthetic data was developed in this work. The
algorithm has two major steps: data pre-processing and trace
generation. Figure 2 schematically represents the synthetic data
augmentation pipeline.

2.2.1 Data pre-processing
The data pre-processing step consisted in two phases. In the first

phase, the annotated ground truth was cropped in its fundamental
segments, separating into independent “sets of segments” the LF,
FF, LP, stimulation and rest segments. The FF and rest segments
were low-pass filtered (100 Hz, 2nd order Butterworth filter) to
suppress any unannotated LP in its trace. Moreover, each segment
was onset/offset corrected so its voltage started and ended in zero
for easier synthetic composition. Finally, the LF morphologies were
subdivided into LF and LP morphologies according to whether
the segment displayed a length shorter than 25 samples as a
rule of thumb.

In the second phase, the segment’s morphology was separated
from its voltage by modelling its amplitude. Given that the
amplitude profile of each segment (amplitudesegment) has a
strong dependence with the amplitude of the LF component
(amplitudeLF; see Figure 3B), the segment amplitudes could
not be fit in a single distribution. For this purpose, firstly, the
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FIGURE 2
Synthetic data generation pipeline. The data pre-processing step [(A); blue shading] consists of: (1) cropping the ground truth segments into different
data “pools” (local field [LF] in green, far field [FF] in magenta, and rest); and (2) fitting the original segment amplitudes to log-normal distributions with
respect to the amplitude of the local field (amplitudesegment/amplitudeLF). The cycle orchestration step [(B); orange shading] involves: (1) generating a
set of registry-wide rules for all cardiac cycles; and (2), generating a set of per-cycle rules (e.g., merging the FF component with the LF), retrieving the
specific segment croppings and computing the segment amplitudes for the left, central and right cardiac cycles. Finally, in the synthetic composition
step [(C); green shading], the three cardiac cycles are independently generated by firstly generating a baseline of rest segments of sufficient size and
adding over it the drawn segments. Then, they are concatenated into a synthetic trace and cropped into a single (central) cardiac cycle, discarding the
grayed area.

FIGURE 3
Histogram (A) and conditional distribution (B) of amplitudes (amp) of the cropped far field (FF) and rest segments with respect to the amplitude of the
local field (LF). The histograms represent, in blue, the amplitudes of the segments and, overlaid in orange, the samples drawn from a log-normal
distribution, demonstrating a good fit. The conditional distribution represents the kernel density estimates of the relative segment amplitude ( y-axis)
with respect to the LF amplitude of the cardiac cycle (x-axis), demonstrating larger segment amplitude at smaller local field amplitudes.

amplitude of the LF was split into 10 bins (dividing the [0,100]%
amplitude interval in increments of 10%). Secondly, for each LF
amplitude bin, a log-normal distribution was fitted to model the
amplitude distributions of the sub-set of FF and rest segments
that accompanied each specific LF fragment, totalling 10 log-
normal distributions per segment type. Finally, the amplitude
of the LF and LP segments were fitted independently of the
amplitude of any other fiducial, with log-normal distributions as
well. Once the amplitudes had been fitted, all segments in the
“segment pools” were normalized to their maximum absolute value
(“max abs” scaling).

2.2.2 Synthetic trace generation
The synthetic trace generation step aimed at producing bipolar

EGM signals corresponding to a single cardiac cycle at a time.
The resulting synthetic traces were intentionally crafted to deviate
from strict physiological replication, in accordance with our clinical
collaborators. This design decision was made because of the
constraints posed by the size of the development dataset, which
was comprised of few samples with manual annotations, which
severely hindered the model’s coverage of the real data distribution
when used “as-is” for model training. In consequence, the generated
synthetic traces intentionally cover iECG morphologies much
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beyond the ones found in the development set, by composing traces
with pseudo-randomly located far field, local field, extrastimuli and
DEEP activations.

Synthetic generation consisted of two steps. The first step
revolved around probabilistically generating per-registry and per-
cycle rules (see Figure 2B). Per-registry rules governed conditions
that affect all cardiac cycles within a registry, altering how the
per-cycle rules were generated. To produce signals that are robust
to QRS segmentation errors or to any physiological differences
in LF/FF locations, three cardiac cycles were generated for each
patient, which were then cropped to preserve the context of the
central cardiac cycle (see Figure 2C). Some examples of per-registry
rules are the percentage of the left- and right-most cycles that is
preserved, whether all cardiac cycles in a registry have the same
morphology, or whether the registry contains stimulation artifacts.
Per-cycle rules, on their behalf, governed conditions that affect
a single cardiac cycle. For this purpose, different segments (LFs,
FFs, LPs and rest segments) and their respective amplitudes were
drawn from the sets of segments and amplitude distributions for
each cardiac cycle. Given a pre-defined probability, some segments
might not be drawn for a specific cardiac cycle (e.g., in the case
of AV block, no ventricular activation might take place). If the
“same morphology” boolean was toggled, the same segments were
drawn for all cardiac cycles, although the amplitudes might vary.
Finally, each segment positioned in some location ([0,100]%) of its
corresponding cardiac cycle. A full description of the per-registry
and per-cycle rules is reported in the Supplementary Materials.

After generating the per-registry and per-cycle rules, the final
synthetic trace was composed. Firstly, the rest segments were
multiplied by their respective amplitudes and concatenated to form
a baseline upon which to place the rest of the segments. Then, each
drawn segment (LFs, FFs and LPs) was multiplied by its amplitude
and placed in the trace by adding it to the baseline, starting at
a specific index, placing them spatially into the registry. These
indices were kept in memory to generate the ground truth of the
delineation, indicating the precise onset and offset of each segment.
To maximize variability, each segment was given a chance to be
interpolated to 75%–125% its original length and a chance to be
merged with another waveform using Mixup Zhang et al. (2018), a
data augmentation strategy that produces a linear combination of
different segments. Finally, once all segments were added into the
baseline, the noise and baseline wander were added to the trace and
the final segment was cropped according to the “RR’ percentage”
generated in the global conditions. Figure 4 in the Supplementary
Material provides some examples of real and synthetic electrogram
signals and traces, respectively. Differences can be observed in
the figure between real and synthetic iECG data. However, the
synthetically generated traces were not designed to serve as
physiological replicas of real data, but to extend the limited original
dataset to cover the large variability of iECG signals due to the
characteristics of the acquisition and the underlying arrhyhthmia
required to improve the training of segmentation models.

2.3 Architecture

The U-Net Ronneberger et al. (2015) is a state-of-the-
art convolutional neural network (CNN) that is organized

as an encoder-decoder structure and is usually employed in
medical imaging segmentation tasks. The encoder-decoder
is a type of artificial neural network (ANN) topology
revolving around the usage of an encoder for obtaining
highly abstract data representations (usually tied to reducing
input complexity), and a decoder to leverage the abstracted
information into a specific output LeCun et al. (2015). In
the case of the U-Net, the encoder and the decoder are
conformed of convolutional operations, which act similarly
to trainable digital filters and emphasize local relationships
in data (either spatial or temporal, depending on the data
to be analyzed), and pooling/upsampling operations, which
allow models to train filters over more distant elements of the
input image by reducing/increasing tensor size. Finally, the
encoder and the decoder are connected by “skip connections”,
which recover the input information at different levels of
abstraction for: a) defining segmentation borders in a more
precise manner, which could be lost with the pooling layers;
and b) preventing problems arising from vanishing gradients
when optimizing the model’s weights Ronneberger et al. (2015).
The number of trainable convolutional filters is usually
doubled after every pooling operation and halved after every
upsampling operation.

ManyU-Net-based alternatives exist due to its high performance
for a variety of tasks Litjens et al. (2017). Most works explore
altering the model’s original design decisions, such as the number of
convolutional operations before any pooling operation (hereinafter,
model “width”), the number of times the model reduces the
input size (model “depth”), number of convolutional filters,
employed non-linearity or choice of regularization Jimenez-
Perez et al. (2021b). Some authors have even developed heuristics
for automatically adjusting the model’s training parameters
and reducing the developer’s workload Isensee et al. (2021).
Other authors have attempted at incorporating state-of-the-
art additions such as self-attention mechanisms Vaswani et al.
(2017), which allow the weights of an operation to be controlled
by a secondary set of weights, effectively controlling feature
importance Prabhakararao and Dandapat (2020). While some
adaptations of attention mechanisms exist for convolutional
operations, this work explores the application of efficient
channel attention (ECA) due to its low computational overhead
Wang et al. (2020).

Other works explore topological changes, either by embedding
the U-Net into another structure Xia and Kulis (2017); Chen et al.
(2018) or by increasing its connectivity (number of times the
output tensors from each convolutional operation are used)
Zeng et al. (2019). In this work, the W-Net architecture Xia
and Kulis (2017) was employed given its good performance
in other segmentation domains, such as the segmentation
of echocardiographic images Xu et al. (2020). The W-Net
involves using two U-Nets, where the second network takes
as input the output of the first network, and employ “skip
connections” not only between each encoder/decoder pair but
also between the decoder of the first U-Net and the encoder of
the second. This second U-Net increases the model’s capacity,
which is usually tied to better performing models. A visual
representation of the U-Net and the W-Net are presented
in Figure 5.

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2024.1331852
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Jimenez-Perez et al. 10.3389/fphys.2024.1331852

FIGURE 4
Examples of real (A–D) and synthetic (E–H) electrogram signals and traces, respectively. The green and magenta overlays represent the local and far
field activations, respectively. Substantial differences can be observed between real signals and synthetic traces, the latest providing a larger variability
in signal characteristics, making them more suitable for training segmentation models than a limited dataset of clinically-obtained electrogram data.

FIGURE 5
Representation of the U-Net (encircled in yellow) and W-Net architectures (encircled in red, containing the U-Net). Both networks are instantiated with
3 levels and 2 convolutional blocks per level. Arrows represent operations, while blocks are indicative of output tensors. Convolutional filters are
doubled at each level, so that level Li has 2

iN channels per level (with N being the starting number of channels), whereas pooling and upsampling have
a kernel size of 2. Color code: convolutions (yellow), pooling operations (red), upsampling operations (blue), concatenation operations (black).

2.4 Model evaluation

The model’s performance was calculated in two ways: by
evaluating the performance using typical delineation metrics;
and by addressing the precision in a clinical validation dataset.
Firstly, detection and delineation metrics were computed with
respect to the ground truth. Detection metrics measured

localized matches with the ground truth (i.e., segments occurring
at the same time in the prediction and the ground truth).
Delineation metrics, on their behalf, measured error at the
localization of the segment’s onset and offset with respect
to the reference. The detection and delineation metrics were
computed before and after filtering: given the large number
of LPs detected within the confines of FF activations (see
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FIGURE 6
Representative examples of model predictions depicting good examples (A), prediction errors caused by higher sensitivity than ground truth [(B);
high-frequency component within the far field], true prediction errors (C) and errors attributable to wrongly annotated ground truth (D). The figures
show the ECG reference (top), predicted fiducials (middle) and ground truth (bottom). Green and magenta regions represent local and far field
components, respectively.

Section 3 and Figure 6B), a secondary set of metrics was
computed, consisting in measuring the aforementioned detection
and delineation metrics, but avoiding counting these as
false positives.

With respect to the clinical validation metrics, sensitivity
and specificity figures are reported for the accurate detection of
decremental response in the annotated registries. For producing
a prediction, five stages were followed. Firstly, the QRS complex
was firstly detected using the delineator proposed in Jimenez-
Perez et al. (2021a). Secondly, the EGMs of each cardiac cycle
were independently predicted, obtaining the onsets and offsets
of each segment for each lead. Thirdly, a single onset-offset
pair was selected across all leads by majority voting. This was
useful for this specific clinical problem, given that the spatial
configuration of the employed catheter allowed for certain
synchronicity across leads (see Section 2.1). In fourth place,
a matching algorithm was employed to tie each stimuli to
its response. For this purpose, the origin of the stimulation
was firstly located (stim; auricular or ventricular origin) for,
then, determining the delay to the response (resp; ventricular
or auricular response, respectively). In this step, a series of
exceptions were defined (e.g., uncoordinated stimulation-
response, too distant response, absence of response or too
different response morphology, among others), which lead to
the exclusion of the excerpt for its posterior analysis. In fifth
and final place, the distances between the stimulus and the
response (Δti = respi − stimi) were computed. Given the stimulation
protocol (single pacing followed by extrastimulus S2), the delay
Δt between the two last stimuli (ΔtN−1 and ΔtN , respectively)
was measured and decremental response was considered if
(ΔtN−1 −ΔtN−1) > 10ms. The final value was corrected with the lag
of the highest cross-correlation between the last two responses.
Figure 7 depicts the decrement computation algorithm on
a sample EGM.

2.5 Experiments

Model performance was assessed by training several model
topologies, isolating specific changes to test the contribution of each
element in the model. Firstly, the best architectural configuration
was assessed by comparing the performance of the U-Net and W-
Net (for depths 5 and 6, independently), both with and without
ECA. Secondly, the effect of using a pre-trained model for the
task of ECG delineation was tested, taking the weights from a
model for ECG delineation Jimenez-Perez et al. (2019), Jimenez-
Perez et al. (2021a), Jimenez-Perez et al. (2021b). Finally, the effect
of applying a loss function that forces higher sensitivity was explored
by doubling the executions, comprising training models with and
without the loss function. The loss function employed the edge
detector described in Jimenez-Perez et al. (2021a) for computing the
true positives (TP), false positives (FP) and false negatives (FN),
which were in turn employed for computing the classic sensitivity
score: Se(%) = TP/(TP+ FN).

Some aspects were kept constant throughout all experiments.
On the one hand, the application of some regularization strategies
such as SDr or certain types of DA was associated with better
performance, so these were always applied. A random seed
(123456) was employed for reproducibility, the Adam optimizer
was used Kingma and Ba (2014), leaky ReLUs Xu et al. (2015)
were selected as the non-linearities of choice, and the number
of base channels was kept the same (32, doubled/halved on
the pooling/upsampling operations). Due to limitations in the
completeness of the annotated ground truth (see Figure 6D),
training was solely performed using synthetic data. However, as
reported in Jimenez-Perez et al. (2021a), this was associated with
only a slight decrease in performance as compared to using synthetic
and real data, and outperformed training the model only with real
data. All executions were performed with a NVIDIA Titan Xp GPU
using PyTorch.
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FIGURE 7
Decrement computation algorithm on a non-decremental trace. In (A), the surface ECG is delineated (red dotted line) and the stimulation onset is
located (gray dotted line). In (B), the detected QRS’ are employed to locate the onsets and offsets of the local field (green) and far field (magenta)
activations for each bipolar electrode. In (C), majority voting is performed to obtain a single set of onsets/offsets for all electrodes, the predictions are
cleaned (e.g., spikes related to pacing) and the measurements are produced.

TABLE 1 Precision (%), recall (%), Dice score (%), onset error (mean [M] ± standard deviation [SD], in miliseconds) and offset errors (M ± SD, in
miliseconds) of our best performing model.

Precision (%) Recall (%) Dice (%) Onset error (M ± SD) Offset error (M ± SD)

Local Field 76.44 94.84 77.37 4.20 ± 13.89 −6.45 ± 19.86

Far Field 74.73 95.23 73.22 3.74 ± 19.26 −5.71 ± 21.91

Local + Far Field 90.02 97.53 83.52 9.04 ± 26.09 −10.65 ± 29.32

Stimulation 100.0 100.0 94.78 −0.68 ± 1.27 -

Local Field (≤25 ms) 75.04 67.98 45.41 1.51 ± 1.41 −5.69 ± 2.91

Local Field ( > 25 ms) 80.77 96.18 78.68 4.04 ± 13.42 −3.65 ± 16.67

3 Results

The best performing model was a W-Net model with 6 levels,
optimized solely with the Dice loss. The model obtained precisions
of 76.44%, 74.73% and of 100.0%, and recalls of 94.84%, 95.23% and
100.0% for localizing LF activations, FF activations and extrastimuli,
respectively. The model also attained an average delineation error
of 4.20 ± 13.89 and −6.45 ± 19.86 ms when localizing the LF’s
onsets and offsets, respectively; and of 3.74 ± 19.26 and −5.71 ±
21.91 ms when estimating the onsets and offsets of the FF. The
localization of stimulations was very precise, with onset errors of
−0.68 ± 1.27 ms. Given the ambiguity between some segments and
the errors in the dataset annotations (as it will be discussed in
Section 4), a metric was obtained by merging the binary masks of
LF and FF components, which obtained a precision, recall, onset and
offset errors of 90.02, 97.53, 83.52, 9.04 ± 26.09 and −10.65 ± 29.32,
respectively. A detailed description of the per-wave metrics of the
model (precision, recall, Dice score, onset error and offset error) is
reported in Table 1.

A secondary set of measurements was computed by discarding
as false positives any LF that occurred within the confines of
a FF, as described in Section 2.5. With this secondary metric,

the model obtained precisions of 91.28%, 77.78% and of 100.0%,
and recalls of 94.86%, 95.25% and 100.0% for localizing LF
activations, FF activations and extrastimuli, respectively. The
model had an average delineation error of 3.89 ± 14.56 and
−6.16 ± 20.25 ms when localizing the LF’s onsets and offsets,
respectively; and of 3.47 ± 20.03 and −5.44 ± 22.82 ms in the
FF. A more in-depth report of the per-wave metrics of the
model is reported in Table 2. Furthermore, some representative
examples of the best performing model’s performance have been
plotted in Figure 6. To aid in the discussion, the samples were
grouped according to the different types of errors produced
by the network (or absence of). These can be divided into
four main categories: good samples (Figure 6A), errors due to
increased model sensitivity with respect to the ground truth
(Figure 6B), true network errors (Figure 6C), and annotation
errors in the database (Figure 6D). Together with the real and
synthetic examples depicted in Figure 4 in the Supplementary
Material, these results demonstrate the appropriateness of training
a segmentation model with a synthetic dataset including a large
variability of characteristics, despite the obvious differences in signal
morphology with real data, which can only be available in a limited
number of settings.
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TABLE 2 Precision (%), recall (%), Dice score (%), onset error (mean [M] ± standard deviation [SD], in miliseconds) and offset errors (M ± SD, in
miliseconds) of our best performing model after discarding small local field activations contained within far field activations.

Precision (%) Recall (%) Dice (%) Onset error (M ± SD) Offset error (M ± SD)

Local Field 91.28 94.86 77.37 3.89 ± 14.56 −6.16 ± 20.25

Far Field 77.78 95.25 73.22 3.47 ± 20.03 −5.44 ± 22.82

Local Field + Far Field 91.39 97.57 83.52 7.85 ± 28.52 −9.67 ± 31.77

Stimulation 100.0 100.0 94.78 −0.68 ± 1.27 -

Local Field (≤25 ms) 94.53 67.98 45.41 1.51 ± 1.41 −5.69 ± 2.91

Local Field ( > 25 ms) 94.06 96.19 78.68 4.0 ± 13.51 −3.6 ± 16.76

FIGURE 8
Boxplots of the contributions of the different model additions to the overall model performance, divided into the local field (left) and far field (right).
Y-axis corresponds to the F1 score.

3.1 Model additions

The only model addition that showed consistently better results
with respect to the baseline was the application of increased model
capacity (either with W-Net or with more model depth) and
pre-training the model with weights from an ECG delineation
model Jimenez-Perez et al. (2021a). Other effects, such as the
addition of custom data losses, were generally detrimental for
model performance. Figure 8 summarizes the effect of the different
model additions.

3.2 Clinical validation

The clinical validation model demonstrated good overall
agreement with respect to the evaluation of decremental properties.
Out of the 321 recordings employed for evaluation of decremental
response, 81 (25.23%) were automatically excluded by the rule-
based algorithm.When compared to the exclusion criteria proposed
by electrophysiologists, the exclusion step reached a sensitivity of
87.06% and a specificity of 97.03%. Out of the 240 remaining, 180
(75%) were evaluated to be decremental and 60 as non-decremental
(94.42% accuracy, 96.77% sensitivity, 95.24% specificity). The
selected model is not computationally expensive, producing a
prediction in 18.9± 0.22ms onGPU (NVidiaGeForceGTX1050Ti),
which is bound to be faster with more modern hardware.

4 Discussion

Electrogram segmentation is a crucial task for advancing
in the automatization of EP procedures. Currently, physicians
must manually produce basic measurements when performing
interventions such as AVRT or AP ablation for determining
decremental properties or to measure basic intervals. Despite
its importance, even state-of-the-art EAM systems only
perform basic detection of the most salient wave within a
cardiac cycle for computing derived clinical indicators. The
inability of performing full signal delineation is limiting,
as recent developments in diagnostic markers for catheter
ablation such as decrement-evoked potentials are detected
through the analysis of portions of myocardial tissue that
produce LFs or LPs that are delayed with respect to previous
cardiac cycles.

The work presented here builds upon the existing detection
and delineation literature by advancing towards an all-purpose
iECG analysis system. Similarly to the approach proposed in
Jimenez-Perez et al. (2021a), a DL model was trained for automatic
data quantification; focusing on quantification counterbalances
the drawbacks of DL algorithms with an application that is
immediately interpretable by the operator. Given the lack of
large-scale iECG datasets annotated for delineation, two main
design decisions were made. Firstly, the model was trained
solely with synthetic data from a modest dataset of 312 iECG
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recordings from 77 distinct patients, with ground truth generated
for localizing independent LF and FF activations. This synthetic
dataset greatly improves model performance in scenarios where
data is scarce, and has been proven to be more performant
than training on real samples if the data is scarce Jimenez-
Perez et al. (2021a). Secondly, the prediction pipeline was designed
to analyse excerpts of individual cardiac cycles, whose window
of interest was localized with the QRS complex’s barycenter in
the surface ECG using a DL model Jimenez-Perez et al. (2021a).
Cropping the iECG recordings into individual cardiac cycles
allowed the model to adjust the prediction of a specific waveform
according to whether the LFs (high frequency components)
occurred before or during ventricular depolarization. The
combination of these design decisions allowed to alleviate the
main limitations found in initial approaches, producing more
versatile networks.

Although many models and model additions were explored
for pushing performance, model performance seemed to respond
similarly to the explored changes (Figure 8). Moreover, the trained
models swored a high variance overall in F1 score, and neither
changing model capacity (5 or 6 U-Net/W-Net levels), changing
the loss functions (Dice score or new losses) or changing the base
architecture (U-Net or W-Net) seemed to significantly improve
performance. The only clear improvement in both LF and FF F1
scores seemed to be starting the training from a model pretrained
with an ECG delineation task Jimenez-Perez et al. (2021a), which is
consistent to the recent advancements in Self-Supervised pretraining
ofComputerVisionmodels (Caron et al., 2021).Wehypothesize that
one of the factors that cause this variance is the need to add more
training data, which is also hinted by the high amount of runs that
did not produce a model that consistently converged (i.e., F1 scores
neighbouring 60%).

The best performing model demonstrated high sensitivity
but moderate precision (around 95% and 75%, respectively, for
both LF and FF activations in a held-out test set). With respect
to the onset/offset localization, the models provided a good
fit with respect to the reference (errors of 3.89 ± 14.56 and
−6.16 ± 20.25 ms when estimating the LF’s onsets and offsets,
respectively; and of 3.47 ± 20.03 and −5.44 ± 22.82 ms at the FF
components). Comparing the proposed approach to the existing
literature gives the impression of a reduced algorithm performance:
some methods reach precision and recall figures nearing 100%
Osorio et al. (2017); Felix et al. (2015) and half the SD in onset/offset
localization Alcaine et al. (2014). This, however, is misleading for
several reasons. Firstly, existing algorithms are only concerned
with locating a single LF activation for each cardiac cycle and
disregard any other type of activation (e.g., LP or FF), which
prevents direct comparison between methodologies. Secondly, all
development datasets are private, preventing a fair comparison
of methods; the dataset collected for this work consists of real
clinical data, making no compromises with respect to signal
quality or difficulty. Thirdly, models that are more sensible than
specific were sought for, and distinguishing subtle LPs from
noise is a challenging task. Finally, the larger delineation errors
are to be expected given smoothness at signal initiation and
termination (see Figure 9) and the lack of an unified criterion
for their definition. Despite the comparatively reduced detection
and delineation metrics, the overall performance at locating

specific components has proved excellent for a downstream
clinical application for the detection of decremental response in
AP or AVRT procedures. The model, with a relatively simple
post-processing, allowed for the identification of decremental
response (Δt > 10ms) with high precision and accuracy, reaching
sensitivity and specificity figures of 96.77% and 95.24% specificity,
respectively.

The proposed approach has two main advantages. Most
importantly, a full delineation of all important iECG fiducials
in the registry is performed, as opposed to the localization
of the most salient component Osorio et al. (2017); Felix et al.
(2015); Alcaine et al. (2014). This is of capital importance at
advancing processing for EP procedures and reducing intervention
times, as many diagnosis procedures are performed by comparing
segments or LP in subsequent cardiac cycles. Additionally, using
a synthetic data generation algorithm allows to better control
the conditions for predicting a local component, which is highly
beneficial: the low specificity reported in Table 1 results from
lowering the threshold at which a perturbation can be recognized
as a local component (see Figure 6B). Thus, the system is
able to propose low intensity, high frequency deflections as
candidate local components, which would be too costly and time-
consuming to annotated while not necessarily erroneous. The
difference between the ground truth and the predictions might
represent a limitation of the ground truth rather than of the
developed model.

The primary objective of the synthetic data generation was
not to be used as realistic data for clinical practice, but to
force the model to identify specific iEGM components such
as local field, far field, and DEEP signals, including possible
changes in signal acquisition (e.g., different type of catheters).
The resulting intentional deviation from strict physiological
replication proved beneficial, even at a slight loss of realism.
This tradeoff between variability and realism in the generated
signals is not significantly different from usual data augmentation
strategies found in the deep learning literature, in which extreme
transformations over the base image are performed but not
necessarily evaluated for realism (e.g., the recent GIN-IPA data
augmentation technique (Ouyang et al., 2023)). In consequence,
it is not straightforward to make a direct comparison between
real and synthetic data using similarity-based metrics (e.g.,
cross-correlation). However, the developed segmentation and
classification models were trained exclusively on synthetic data,
their accuracy on held-out datasets of real data being a very
strong indirect evaluation of the usefulness of the synthetic
generation pipeline.

The proposed approach has, however, some limitations that are
unique to EGMs as opposed to other cardiac signals such as the ECG.
Firstly, expressing the ground truth as a binarymask delimiting each
local component, as is performed in this work, might clash with
some scenarioswhere the individual local components should not be
merged, giving rise to difficulties when analyzing highly fractionated
potentials, where predicting a continuous True-valued binary mask
spanning the whole fractionation might not be useful for posterior
analyses. Secondly, a compromise with respect to the architectural
choice might be of need, as the model prediction time is larger
than the sampling frequency (7.88 ms per cardiac cycle and lead).
This, however, might be circumvented by good implementation
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FIGURE 9
The smoothness of the wave complicates the definition of the local field’s offset (red dashed line) and the far field’s onset and offset (cyan and magenta
dashed lines, respectively). Multiple possible onsets/offsets are marked.

in an EAM platform, by multi-threading, processing the iECG
while the catheter changes position or the system waits for
respiration cues or by providing the outputs with a slight delay.
Thirdly, the model could not be trained leveraging real data,
partially due to the necessity to improve the quality of the ground
truth annotations: many waves were not correctly delineated and
accounted for false positives (Figure 6D), requiring re-annotation,
and more prevalence of fractionated potentials is needed to
assess the generalizability of our approach. Finally, the developed
rules for the synthetic DA algorithm allow for much higher
complexity, requiring the inclusion of more real-world casuistry to
enhance performance.

5 Conclusion

The proposed methodology for the analysis of iECG recordings
has proven to be useful in other signal analysis tasks such as ECG
delineation Jimenez-Perez et al. (2021a), hinting at the feasibility
of a good-performing, all-purpose EGM annotation tool. Current
results show great promise while being, to the best of our knowledge,
the first tool in the literature allowing the delineation of all
local components present in a recording. The algorithm, based
on an encoder-decoder DL architecture, was trained solely with
synthetic data according to a rule-based algorithm that allows for
controlling the generation process. The algorithm is, however, faced
with several limitations in the dataset, data generation and data
representation. Nevertheless, the development of an all-purpose
EGM delineation model is a key tool for unlocking a wide array
of downstream tasks, ranging from the automatic identification of
myocardial portions of scar presenting DEEPs to the exploration
of morphological indicators that might aid in diagnosis or risk
stratification.
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