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This study investigated whether exercise could improve the reduced HRV in an
environment of high altitude. A total of 97 young, healthymale lowlanders living at
3,680 m for >1 year were recruited. They were randomized into four groups, of
which three performed—low-, moderate-, and high-intensity (LI, MI, HI) aerobic
exercise for 4 weeks, respectively. The remaining was the control group (CG)
receiving no intervention. For HI, compared to other groups, heart rate (p =
0.002) was significantly decreased, while standard deviation of RR intervals (p <
0.001), SD2 of Poincaré plot (p = 0.046) and the number of successive RR interval
pairs that differ by > 50 ms divided by total number of RR (p = 0.032), were
significantly increased after intervention. For MI, significantly increase of
trigonometric interpolation in NN interval (p = 0.016) was observed after
exercise. Further, a decrease in systolic blood pressure (SBP) after high-
intensity exercise was found significantly associated with an increase in SD2
(r = – 0.428, p = 0.042). These results indicated that there was a dose effect of
different intensities of aerobic exercise on the HRV of acclimatized lowlanders.
Moderate and high-intensity aerobic exercise would change the status of the
autonomic nervous system (ANS) and decrease the blood pressure of
acclimatized lowlanders exposed to high altitude.

KEYWORDS

aerobic exercise, exercise intensity, high altitude, heart rate variability, lowlanders

1 Introduction

When traveling to high altitude, the decrease in the barometric pressure leads to a lower
ambient partial pressure of oxygen (PO2), which results in various physiological changes in
the body (de Aquino Lemos et al., 2012; Allwood et al., 2018). The basal autonomic tone
compensatory changes by the reduced partial pressure of atmospheric oxygen at high
altitude, as indicated by an increased heart rate (HR) and hyperventilation (Bärtsch and
Gibbs, 2007; Favret and Richalet, 2007). Hypoxia and low pressure at high altitude stimulate
chemoreceptors and baroreceptors, resulting in the activation of the sympathetic nervous
system and renin-angiotensin system (Hou et al., 2023). This activation affects the
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sympathetic and vagus nerves innervating the heart, disrupting the
balance of cardiac autonomic nervous system (ANS) regulation
(Shen et al., 2017; Ando, 2018), which could be reflected by heart
rate variability (HRV) (Oliveira et al., 2017). HRV represents the
oscillations between successive heartbeats and is considered a non-
invasive marker of the autonomic nervous control of the
cardiovascular system (Akselrod et al., 1981).

Prolonged exposure to high-altitude environments can lead to
an intensified respiration, a compromised circulation and a
profound sympathetic-parasympathetic imbalance in individuals,
which is manifested by decreased HRV (Malhotra et al., 1976; Dhar
et al., 2014; Yang et al., 2022). Studies have shown that reduced HRV
variability is a marker of inadequate acclimatization and
physiological dysfunction (Zupet et al., 2009; Heathers, 2014;
Dhar et al., 2018). Meanwhile, studies have found that reduced
HRV at high altitude exposure is associated with altitude illnesses
such as chronic high-altitude pulmonary hypertension (Karinen
et al., 2012; Qian et al., 2020). Specifically, HRV is a predictor of
altitude sickness incidence (Karinen et al., 2012). The sympathetic
activation was associated with increased blood pressure in
individuals at high altitude (Han et al., 2019) This result has also
been confirmed in other populations, such as hypertensive patients
and healthy individuals (Liao et al., 1996; Singh et al., 1998; Mussalo
et al., 2001; Lutfi and Sukkar, 2012). Therefore, methods to help
lowlanders cope with reduced HRV and better adaptive must
be explored.

Physical exercise is currently considered a promising strategy to
increase HRV (i.e., increase vagal-related HRV parameters during
rest) (Navarro-Lomas et al., 2022). Exercise is recommended as an
important strategy to improve HRV (Tseng et al., 2020). Normoxic
exercise significantly improves post-exercise parasympathetic tone,
enhances autonomic regulation of heart rate, reduces sympathetic
tone, and increases HRV (Michael et al., 2017; Dias et al., 2021;
Villafaina et al., 2021). Moreover, hypoxic exercise might promote
greater physiological and health-related acclimatization compared
to normoxic exercise (Görgens et al., 2017; Li et al., 2020). However,
the effect of exercise intensity on HRV at high altitude may be
completely different from that at sea level, given that the reduce
exercise capacity of individuals at high altitude has been proven
(Davis et al., 2015).

HRV data on intensities of aerobic exercise at high altitude are
scarce and the available data are incongruent. One study found that
12 weeks of moderate exercise at 3,000 m was more effective in
improving HRV in older men than sea-level (Park et al., 2019).
However, another study found moderate heart rate-matched
hypoxic exercise did not appear to cause additional cardiac
autonomic and physiological responses (Fornasiero et al., 2019).
As such, the comparison of different exercise intensities in hypoxic
environments would better guide exercise in lowlanders. Besides,
most studies were performed in an artificial environment (hypobaric
or normobaric chambers, tents, or face masks with reduced inspired
oxygen), ignoring other features of the high altitude and thus
suffering from poor ecological validity. Therefore, the HRV data
from a real high altitude is important for investigating the effects of
different exercise intensities on individuals.

The aim of this study was to investigate the effect of aerobic
exercise intervention on HRV (including time domain, frequency
domain, and non-linear indicators) in acclimatized lowlanders.

Gender and age significantly influence the changes in exercise-
induced dependent variables (HRV indicators) (Grant and Janse
van Rensburg, 2013). To avoid confounding the effects of hypoxic
exercise by gender and age factors, only young males were
considered in this study. HRV was measured from young males
acclimatized to high altitude of 3,680 m after low, moderate, and
high-intensity exercise interventions. In the present study, we
hypothesized that HRV increases in lowlanders after moderate-
intensity exercise intervention. The results would bridge a significant
gap in the literature by revealing the response of different intensities
of exercise to HRV.

2 Methods

2.1 Participants

A total of 160 male university students who had lived in Lhasa
(3,680 m, PO2 = 103mmHg, PB = 642.2 hPa) for >1 year (1.67 ±
0.41 years) were randomly divided into four groups: low-intensity
exercise (LI) group; medium-intensity exercise (MI) group; high-
intensity exercise (HI) group; and control group (CG; no exercise)
(Figure 1). Participants were born at low altitude (<1,000 m) and
had not visited highlands before entering college (defined as
lowlanders). According to the findings of the Zubieta-Calleja
study, the participants in this research have already acclimatized
to high altitude (Zubieta-Calleja et al., 2007). On recruitment,
questionnaires obtained information on participant disease
history and contraindications. Participants with conditions that
contraindicated exercise were excluded. Before the experiment,
33 participants dropped out of the experiment due to planning
conflicts. During the experiment, 18 participants prematurely
terminated exercise because of knee pain and panic attack. Data
from 12 participants were excluded because of Electrocardiography
(ECG) abnormalities or discontinuities. The number of participants
in the final data analysis was 97 (mean age: 21.1 ± 1 year; height:
174.1 ± 5.9 cm; weight: 64.5 ± 9.2 kg). The research was conducted in
compliance with ethical standards as verified by the ethics
committee of Tibet University (XZTU2021ZRG-06) except for
registration in a database. All study participants provided
informed consent. All the procedures performed adhered to the
tenets of the Declaration of Helsinki.

2.2 Study design

Participants were initially familiarized with the experimental
procedures and equipment on 1 week, prior to the experiment.
Participants were instructed to refrain from drinking tea, coffee,
alcohol, or drugs that might excite the nervous system, and vigorous
exercise 24 h before the experiment. All procedures were performed
in Lhasa at a temperature of 22°C ± 1°C and humidity of 20% ± 5%.

During the baseline, participants underwent a basic
physiological test, ECG, and cardiopulmonary exercise testing
(CPET). Basic physiological tests included blood pressure (BP,
mmHg) and oxygen saturation (SpO2). The CPET equipment
was cycle ergometer (EC3000e, Ergoline GmbH, Bitz, Germany).
The CPET procedure is consistent with previous study (Su et al.,
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2022). The post-intervention was conducted 24 h after the end of the
exercise intervention period, and the test procedure was the same as
that of the baseline.

Upon arrival at the laboratory, participants first rested for
2 minutes and then began the physiological measurements. SpO2

was measured with a pulse oximeter (YX303, Yuwell, Jiangsu,
China) on the finger. BP was measured using an electronic
sphygmomanometer (HEM-7136, Omron, Healthcare Inc.®,
Kyoto, Japan).

After basic physiological measures, we measured the resting
ECG of the participants to obtain HRV-related data. The
participants were instructed to maintain a relaxed posture and
breathe regularly and quietly during the experiment.
Subsequently, the MP150 (BIOPAC® Systems, Inc., Goleta,
California, United States) analysis system, with a sampling
frequency of 1,000 Hz, recorded ECG signals for 10 min. To
avoid circadian influences, experiments were conducted at similar
stages of the human physiological cycle: 8–9 a.m. and 4–5 p.m. For
baseline, all participants were randomly assigned to these two
periods. The test time and ECG for the post-intervention was the
same as the baseline.

After baseline components, the participants were intervened
with aerobic exercise for 20 min a day, 5 days a week, across 4 weeks
(20 times in total, during autumn, September 2021). Exercise
intensity levels in three groups were defined using HR reserve
(HRR) according to formal guidelines. HRR was calculated by
subtracting the resting HR (HRrest) from the maximum HR
(HRmax), where HRmax is measured by CPET in baseline. HRrest

is the average heart rate recorded during the ECG test. The
participant’s HRmax was measured when they reach exhaustion
and cannot continue anymore. The target HRs for three
intensities of exercise were calculated based on the HRR: the
target HR for low-intensity exercise was an HRR of 30%–39%,
40%–59% for moderate-intensity, and 60%–89% for high-intensity
(Garber et al., 2011; Su et al., 2022). Daily exercise from 9 a.m. to
9 p.m. was conducted on a treadmill (GF9333, GFAMILY,
Shenzhen, Guangdong, China). During the exercise, the
participant’s HR was detected in real-time using a HR detector

(Polar OH1, Polar ElectroOy, Kempele, Finland), which controls the
HR indicated in the target HR range for the specific
exercise intensity.

2.3 HRV data analysis

A standard collection of 5 min period was used to assess HRV
(Malik, 1996). Then, a Butterworth filter was applied to the ECG
signals, each QRS complex was identified using the P&T method
(Pan–Tompkins algorithm), and the RR interval was calculated
(Salsekar and Wadhwani, 2012). Finally, the time and frequency
domains and non-linear indicators of HRV were calculated using
MATLAB’s (Mathworks, Natick, MA, ver. 2016b) code-related
programs (Vollmer, 2019).

HRV was analyzed with time domain, frequency domain, and
nonlinearity indicators (Xhyheri et al., 2012; Shaffer and
Ginsberg, 2017; Chen et al., 2020; He and Jiang, 2023). The
specific physiological effects of the relevant indicators are shown
in Table 1.

2.4 Statistical analysis

A linearmixedmodel (LMM)was used to test the significance of the
effect of group (LI vsMI vsHI vs CG), time (Baseline vs After), and their
interaction over the course of the study. In all models, the participants
were considered random effects to account for within-subject
correlations over time. Group was used as a fixed factor, and time
was used as a repeated measure. The model specifilication was as
follows: Conc ~ Time + Group +Group * Time + (1| Participants). Post
hoc comparisons were performed using Tukey test. The threshold for
statistical significance was set at 5%, and the Satterthwaite
approximation was used to compute the degrees of freedom in the
denominator of the LMM. Correlation analysis was used to examine the
relationship between HRV and basic physiological measurements. All
statistical tests were conducted with R software (R Statistical Software, R
Foundation for Statistical Computing, Vienna, Austria).

FIGURE 1
Study profile: Flow chart of the participants depicting recruitment, assessment, and retention in the study.
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3 Results

3.1 Baseline characteristics

The baseline demographic, physiological and CPET data of the
groups included in the study are shown in Table 2. There were no
differences in basic demographic information between the four
groups except for age, which was higher in the MI group than
the HI and CG. In basic physiological data, the systolic blood
pressure (SBP) was significantly higher in the MI as well as HI
groups than in the CG group.

3.2 Basic physiological

In the basic physiological analysis, we found a main effect for
“Time” for both SBP and DBP (p < 0.001; p = 0.012). At the same
time, a main effect was observed for “Group” in SBP (p = 0.025). In
the HI andMI groups, SBP was significantly lower (p = 0.007 and p =
0.002) when compared with the baseline value. This is described in
more detail in Table 3.

3.3 HRV indicators

Table 4 summarizes the HRV outcome data at baseline and after
exercise for each group.

3.3.1 Time domain analysis
In the time domain analysis, we found a significant “Group *

Time” interaction (p = 0.003; p = 0.005) and a main effect for “Time”

(p = 0.029; p = 0.027) for both mean RR interval (MeanRR) and
mean heart rate (MeanHR). This is described in more detail in
Table 4. In the HI group, MeanHR was significantly lower (p =
0.002) and MeanRR was significantly higher (p < 0.001) when
compared with the baseline value. MeanHR was significantly
lower and MeanRR was significantly higher in the HI group than
in the CG group (p = 0.044; p = 0.026) following exercise. This
suggests that high intensity exercise significantly increased the RR
interval and reduced individual heart rate.

To further probe the effect of different exercise intensities,
we next analyzed the standard deviation of RR intervals
(SDNN), the baseline width of the RR interval histogram
(TINN) and the number of successive RR interval pairs that
differ by > 50 ms divided by total number of RR (pNN50). In
Table 4, the interaction effect was observed for “Group * Time”
(p = 0.047; p = 0.012; p = 0.029) for results including the
domains (SDNN, TINN, pNN50). In the HI group, the
pNN50 significant increases relative to baseline (p = 0.032)
were observed. Significant increases in TINN in the MI
groups (p = 0.016) were found, while the other groups were
not significantly different from baseline after exercise. There
was no difference between groups after exercise except for
SDNN. We found that SDNN was significantly higher in the
HI group than CG (p = 0.02).

3.3.2 Frequency domain analysis
In Table 4, main effect was observed for “Time” (p = 0.037) and

“Group” (p = 0.029) for results including the high frequency (HF).
We found that HF was significantly higher in both HI and MI than
in the CG group following exercise (p = 0.019; p = 0.048). There were
no main effect observed either for “Time,” “Group,” or for the

TABLE 1 Summary of the HRV indicators used in this study.

Indicators Units Description Physiological significance

MeanRR ms The mean RR interval The length of two adjacent sinus cardiac cycles

MeanHR beats/
min

The mean heart rate The mean number of heartbeats per minute

SDNN ms Standard deviation of RR intervals The SDNN represents total alteration

TINN ms Trigonometric interpolation in NN interval The TINN indicates functional state of autonomic nerves

pNN50 % The number of successive RR interval pairs that differ by > 50 ms divided by
total number of RR

The pNN50 is indicative of vagal action

LF ms2 Low frequency (0.04–0.15 Hz) LF possibly correlated to sympathetic tone or to autonomic
balance

HF ms2 High frequency (0.15–0.40 Hz) HF is considered to the activity of the parasympathetic system
(vagus nerve)

LF/HF - Ratio LF [ms2]/HF [ms2] LF/HF ratio is considered to show sympathovagal balance

TP ms2 Total power spectral area (00.50 Hz) TP is a broad measure of autonomic activity

SD1 ms Standard deviation of the Poincaré plot perpendicular to the identity line SD1 reflect the short-term dynamics of HRV

SD2 ms Standard deviation of the Poincaré plot along to the identiy line SD2 reflect the long-term dynamics of HRV

SampEn - Sample entropy It quantifies the complexity in signals

ApEn - Approximate entropy It measures the regularity and complexity of a time series
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“Group * Time” interaction for results including the domains (Low
frequency, Low frequency/High frequency, Totalpower).

3.3.3 Nonlinear analysis
The SD2 results show significant “Group * Time” interaction (p =

0.013) and “Time” (p = 0.007) effects (Table 4). In the HI group,
SD2 increased significantly (p = 0.046) and was significantly higher than
CG group after the exercise (p = 0.032). The results show a main effect
for “Time” (p = 0.008), and there was no difference between the
“Groups” or for the “Group * Time” interaction for the SD1. As for
sample entropy (SampEn) and approximate entropy (ApEn), no main
effect was observed either for “Time,” “Group,” or for the “Group *
Time” interaction. The comparison of HRV indicators, including
MeanHR, MeanRR, SDNN, TINN, pNN50 and SD2 among groups
is shown in Figure 2.

3.4 Correlation analyses

The possible relationship between basic physiological changes
and HRV indicators between different groups was explored.
Correlation analysis showed a significant negative correlation
between SBP and changes (After - Baseline) in SDNN, TINN,
pNN50, SD1, SD2, and HF in the HI group as shown in the
table, while no significant correlation was found in the other
groups (Table 5).

4 Discussion

To the best of our knowledge, this is the first study to explore the
effects of exercise intensity on the HRV of acclimatized male

TABLE 2 Baseline characteristics of groups included in the study.

LI MI HI CG p-values

Age (years) 21.29 (1.09) 21.72 (1.00)a,d 20.73 (1.09) 20.88 (1.02) 0.008

Bodyweight (kg) 64.52 (7.44) 68.625 (9.41) 61.96 (8.11) 63.22 (10.67) 0.067

Body height (m) 1.73 (0.046) 1.76 (0.059) 1.74 (0.047) 1.72 (0.074) 0.117

BMI (kg/m2) 21.41 (2.48) 22.02 (2.47) 20.38 (2.73) 21.27 (3.21) 0.242

Body temperature (°C) 36.43 (0.40) 36.29 (0.48) 36.52 (0.34) 36.34 (0.44) 0.258

CPET index

HRmax (bpm) 174.44 (15.94) 175.67 (12.36) 179.57 (9.26) 177.40 (10.95) 0.405

_VO2max (mL/min) 35.25 (6.78) 34.88 (5.92) 38.04 (7.74) 36.48 (5.08) 0.252

_VEmax (L/min) 106.79 (30.59) 116.42 (28.68) 114.39 (17.95) 115.6 (22.23) 0.531

BFmax (cpm) 53.36 (11.07) 51.92 (11.19) 53.26 (10.81) 48.25 (8.09) 0.288

Data are presented as mean (standard deviation).

BMI: body mass index; HRmax: maximum heart rate; _VO2max: maximal oxygen uptake; _VEmax: maximum ventilation; BFmax: maximum breathing frequency.

P-value refers to results of comparison of different groups. Differences for effects of exercise intensities:
aDifference from CG group
bDifference from LI group
cDifference from MI group
dDifference from HI group.

TABLE 3 Physiological measures of different exercise intensity groups.

Groups p-values

Outcome Time period LI MI HI CG “Group * time” “Time” “Group”

Basic physiological index

SBP Baseline 118.56 (17.98) 123.18 (11.90) 123.60 (13.4) 112.62 (11.93) 0.542 <.001 0.025

After 112.97 (11.96) 114.56 (10.55) 113.56 (9.60) 108.01 (14.03)

DBP Baseline 77.68 (12.27) 82.54 (11.64) 79.30 (7.84) 77.00 (6.37) 0.253 0.012 0.433

After 74.74 (8.54) 74.42 (10.51) 77.72 (7.58) 75.58 (9.19)

SpO2 Baseline 89.28 (4.37) 90.08 (4.86) 90.91 (2.50) 91.62 (2.51) 0.080 0.113 0.256

After 88.78 (3.41) 91.25 (3.13) 89.45 (4.75) 88.75 (5.20)

Basic physiological index at baseline as well as at post-intervention time in the low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) exercise groups.

SBP: systolic blood pressure; DBP: diastolic blood pressure; SpO2, pulse oximeter oxygen saturation.

Data are presented as mean (standard deviation). p-values from the main effects linear mixed models.
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lowlanders in a real high-altitude environment. The dose effect of
high-altitude exercise on HRV was revealed. The specific findings
could be summarized as follows: 1) Low-intensity exercise did not
improve HRV in lowlanders; 2) Moderate-intensity and high-
intensity exercise were effective in improving the degree of HRV
in terms of TINN and SD2 in lowlanders; 3) High-intensity exercise
significantly increased HRV, which was associated with a decrease in
SBP. The present study demonstrates that moderate-to high-
intensity exercise improves HRV in individuals, which is

significant in reducing the incidence of cardiovascular disease at
high altitude as well as in promoting individual acclimatization to
high altitude.

As altitude increases, arterial oxygen saturation decreases
further and heart rate increases to compensate for the decrease in
arterial oxygen, leading to a further dysregulation of sympathetic
control of the individual’s heart rate, which may be alleviated by
exercise (Aebi et al., 2020). High altitude has been shown to increase
circulating levels of pro-inflammatory cytokines such as c-reactive

TABLE 4 Comparison of HRV in different exercise intensity groups.

Groups p-values

Outcome Time period LI MI HI CG “Group * time” “Time” “Group”

Time-domain analysis

MeanRR Baseline 0.73 (0.1) 0.74 (0.12) 0.68 (0.06) 0.73 (0.08) 0.003 0.029 0.679

After 0.73 (0.09) 0.76 (0.09) 0.77 (0.11) 0.71 (0.09)

MeanHR Baseline 83.55 (12.4) 83.41 (14.93) 88.39 (8.43) 82.63 (9.31) 0.005 0.027 0.814

After 83.16 (10.11) 79.65 (10.81) 78.77 (11.80) 85.41 (11.6)

SDNN Baseline 59.0 (19.06) 53.07 (21.06) 53.42 (24.24) 59.21 (21.84) 0.047 0.006 0.708

After 66.09 (33.94) 67.54 (24.59) 70.56 (24.52) 54.27 (20.4)

TINN Baseline 19.2 (7.3) 15.7 (6.1) 16.2 (5.4) 18.4 (6.1) 0.012 0.025 0.879

After 18.8 ((6.9) 20.4 (8.1) 19.6 (7.8) 17.3 (5.6)

pNN50 Baseline 12.4 (12.7) 10.3 (9.7) 7.2 (5.9) 14.3 (13.9) 0.029 0.112 0.94

After 14 (15.5) 14.7 (15.2) 15.5 (16.5) 9.8 (9.2)

Frequency-domain analysis

LF Baseline 1,337 (504) 1,343 (443) 1,207 (393) 1,295 (317) 0.435 0.84 0.796

After 1,342 (511) 1,191 (278) 1,301 (293) 1,306 (487)

HF Baseline 636 (435) 764 (368) 792 (394) 574 (291) 0.773 0.037 0.029

After 841 (466) 854 (415) 900 (444) 627 (370)

LF/HF Baseline 3.47 (2.69) 2.35 (1.87) 2.29 (2.88) 3.1 (2.08) 0.556 0.985 0.121

After 2.89 (3.22) 2.10 (1.9) 1.98 (1.44) 4.35 (8.5)

TP Baseline 1973.74 (541.18) 2,106.89 (441.72) 1999.43 (602.38) 1869.60 (360.4) 0.461 0.879 0.899

After 2,182.11 (431.98) 2045.48 (372.88) 2,201.79 (459.65) 1932,38 (560.05)

Nonlinear analysis

SD1 Baseline 32.72 (16.9) 33.42 (19.67) 34.8 (27.44) 33.86 (20.93) 0.239 0.008 0.388

After 45.43 (38.57) 43.7 (19.3) 48.54 (27.24) 31.21 (18.96)

SD2 Baseline 75.7 (25.22) 66.77 (24.49) 65.9 (24.57) 75.86 (25.72) 0.013 0.007 0.858

After 80.08 (33.47) 84 (30.43) 86.08 (26.48) 69.18 (24.35)

SampEn Baseline 1.24 (0.27) 1.24 (0.38) 1.25 (0.4) 1.35 (0.37) 0.874 0.577 0.808

After 1.25 (0.38) 1.25 (0.34) 1.21 (0.35) 1.26 (0.33)

ApEn Baseline 1.07 (0.1) 1.04 (0.19) 1.07 (0.23) 1.1 (0.18) 0.948 0.612 0.633

After 1.05 (0.17) 1.06 (0.16) 1.04 (0.16) 1.08 (0.16)

HRV, at baseline as well as at post-intervention time in the low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) exercise groups.

Data are presented as mean (standard deviation). p-values from the main effects linear mixed models.
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protein and IL-6 (Hartmann et al., 2000). And exercise can exhibit
anti-inflammatory effects by inducing anti-inflammatory cytokines
and down-regulating toll-like receptor (TLR) signaling pathways,
whereas a reduction in the inflammatory response can increase HRV
(Li et al., 2020). Meanwhile, increased ANS function was highly
correlated with endurance exercise performance. Hypoxia exercise
under showed acclimatization such as enhanced oxygen delivery and
utilization capacity, cardiopulmonary function, mitochondrial
capacity, oxidative enzyme capacity, angiogenesis, and muscle
buffering capacity (Park et al., 2022).

The findings of the present study suggest that there was a dose
effect of exercise intensity on the improvement of HRV. The
magnitude of individual HRV changes may be linked to the

exercise-intervention intensity (Laoutaris et al., 2008). Here,
moderate, and high-intensity aerobic exercise had a significant
enhancement on HRV, while there was no significant
improvement in the LI group. Farah et al. found a theoretical
‘threshold effect’ for the intensity of aerobic exercise training in
eliciting improvements in HRV and cardiovascular fitness in a 6-
month exercise intervention study (Farah et al., 2014). Additionally,
low-intensity exercise may not reach the threshold to modify the
ANS. During exercise, factors such as the exercise intensity and
physiological environment interact to produce the overall
homeostatic stress or “training load” of the session (Mann et al.,
2014). In contrast, the relative disturbance of resting physiological
and metabolic processes by stressors created by low-intensity

FIGURE 2
Comparison of HRV indicators, including mean heart rate (MeanHR), mean RR interval (MeanRR), standard deviation of RR intervals (SDNN), the
baselinewidth of the RR interval histogram (TINN), the number of successive RR interval pairs that differ by > 50 ms divided by total number of RR (pNN50)
and SD2 between groups. *p < 0.05, **p < 0.01, ***p < 0.001 for difference with Baseline vs. After and difference between groups in After.
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exercise and high-altitude environments may not have been
significant enough to cause changes in individual homeostasis.
Thus, low-intensity exercise has no improving effects on HRV in
lowlanders.

There was no change in RR interval in lowland individuals after
moderate-intensity exercise, but the degree of HRV in terms of
TINN was found to increase in this study. The TINN index is an
indicator of overall ANS activity (de Rezende Barbosa et al., 2016).
Moderate-intensity exercise has some beneficial effect on HRV in
young healthy lowlanders in the highlands. A relatively short period
of exercise (2 months) at moderate intensity is reportedly sufficient
to induce significant changes in HRV in older adults (Ferreira et al.,
2017). Moderate exercise under hypoxic can improve ANS function
by promoting microcirculation and facilitating the function of
oxygen and carbon dioxide exchange in tissues (Millet et al.,
2016; Park et al., 2022). In addition, there is evidence that
exercise training leads to normalization of other components of
neurohumoral excitation (Gademan et al., 2007). Jurca et al. showed
that moderate-intensity exercise can maintain ANS balance by
remodeling central glutamatergic and gamma-aminobutyric acid
nerves (Jurca et al., 2004). However, James et al. found no effect of
moderate-intensity exercise on the sympathetic and
parasympathetic nerves of the heart (James et al., 2012). This
may be a difference caused by the high-altitude environment.
Under hypoxic conditions, the pronounced autonomic response
may be attributable to the hypobaric pressure (Aebi et al., 2020). At
high altitude, the combination of hypobaric hypoxia with moderate
exercise intensity creates a distinct intensity exercise stressor,
creating a tendency for individuals to adapt to high-
intensity stressors.

In the present study, only high-intensity exercise reduced
MeanHR and increased MeanRR in lowlanders. We observed a
significant increase in the time domain and non-linear indicators
after high-intensity exercise. The increase in SD2 and
pNN50 reflects the increased activation of the parasympathetic
nerve activity (PNA) (Xhyheri et al., 2012). After intervention,
HF in the moderate-intensity and high-intensity groups was

significantly higher than that in the control group. HF also
indicates the activity of the parasympathetic system. We have
demonstrated increased parasympathetic regulation of the heart
after high-intensity exercise in correlation analysis results. Kim
et al. found an increase in ANS function in amateur male
swimmers after 6 weeks of hypoxic high-intensity exercise (Kim
et al., 2021). High-intensity exercise may effectively alter cardiac
function by activating beta-adrenergic receptors in the myocardium,
improving the viability of the PNS and increasing venous return in a
hypoxia environment (Park et al., 2018). Moreover, high-intensity
or prolonged exercise under demanding conditions may lead to an
acute decline in cardiac function, which may affect HRV
(Kleinnibbelink et al., 2021). However, in this study, aerobic
exercise was performed at a relative intensity, i.e., as a percentage
of an individual’s reserve heart rate, and not at an absolute intensity
(Fornasiero et al., 2019). At the same absolute exercise intensity as
the plains, such as walking exercise at 100W, hypoxia increases
individual physiological and perceptual responses (Li et al., 2022).
Therefore, the high intensities in this study were not stronger
compared to the lower altitude.

One effect of increased sympathetic adrenal activity in response to
hypoxia exposure is an increase in mean arterial pressure, which may
lead to systemic hypertension (Wu et al., 2007). Therefore, BP
monitoring is necessary for young lowlanders exposed to high
altitude (Siqués et al., 2009). This study found a positive correlation
between the increase in HRV and the decrease in SBP after high-
intensity exercise. Indeed, nearly half of the participants in the high-
intensity training group had systolic blood pressure reductions
of >10 mmHg, which can have significant clinical benefits. Beneficial
effects of regular hypoxic training on blood pressure regulation have
been observed in some studies. Kong et al. and Morishima et al.
reported a 10 mmHg and 7 mmHg decrease in systolic blood
pressure after 4 weeks exercise training at 16.4%–14.5% FiO2 (Kong
et al., 2014; Morishima et al., 2015). It is possible that the vagus nerve
induces vasodilation by increasing vasoactive intestinal peptides,
thereby elevating coronary blood flow (Feliciano and Henning,
1998). This reveals that a rise in HRV after exercise may be an

TABLE 5 Correlation analysis between changes (After - Baseline) in basic physiological data and HRV of HI group.

1 2 3 4 5 6 7 8 9 10 11

1.SpO2 1

2.SBP −.2 1

3.DBP .15 .38 1

4.MeanHR .06 .25 −.31 1

5.MeanRR −.01 −.25 .33 −.98*** 1

6.SDNN .11 −.5* −.3 −.13 .13 1

7.TINN .02 −.47* .09 −.55* .56** .59** 1

8.pNN50 .05 −.42* .24 −.76*** .79*** .5* .79*** 1

9.HF .19 −.46* −.31 −.13 .12 .6** .18 .4 1

10.SD1 .01 −.44* −.29 −.13 .11 .93*** .44* .5* .79*** 1

11.SD2 .12 −.42* −.14 −.28 .28 .94*** .65** .6** .55** .91*** 1

*Stands for p < 0.05, ** stands for p < 0.01, *** stands for p < 0.001.
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important target for ameliorating elevated BP in a high-altitude
environment. However, this requires further confirmation.

There were several limitations in this study. First, the data
were all from young males, ignoring the effect of gender on HRV
at high altitude. Females have been found to have relatively
higher SpO2 and estrogen than males, which was reported to
provide greater resistance to hypoxia. To avoid confounding the
effects of hypoxic exercise by gender factors, only males were
considered in this study (Heyer et al., 2005; Jung et al., 2020).
However, female data was important and would be definitely
investigated in future studies. Secondly, there were differences in
age in the baseline data. Considering the mean age difference
between groups was <1 year, the effect was little. Thirdly, the
breathing patterns of the participants were not well controlled.
However, considering that these participants had regular
breathing and no deep breathing, the effect of breathing on
HRV was minimal. We will incorporate electrocardiogram-
derived respiration (EDR) to better explore the relationship
between HRV and respiration (Sakai et al., 2019). Finally, the
intervention period of this study was only 4 weeks, with each
exercise session lasting only 20 min, both of which could impact
the effectiveness of aerobic training on HRV. Future studies can
use varying intervention durations and exercise durations to
further explore the optimal conditions for enhancing HRV
through aerobic exercise. Meanwhile, we will expand the study
population to further explore the physiological mechanisms of
HRV following exercise and the optimal combination between
physical activity (e.g., intensity of exercise, type of activity) and
hypoxic (e.g., altitude level) components.

5 Conclusion

The findings of this study point to a dose effect on HRV in
acclimatized lowlanders after 4-week aerobic exercise of different
intensities. HRV increased and BP decreased at moderate intensity
compared to low intensity. The 4 weeks of high intensity exercise
significantly changes the activation status of parasympathetic
nerves, which in turn increases HRV, but is accompanied by a
decrease in BP, which requires further investigation into the
underlying mechanisms. Caution is needed at very high altitude
for high-intensity exercise and to assess the applicability of our
findings to other populations or exercises.
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