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Introduction: The availability of proactive techniques for health monitoring
is essential to reducing fetal mortality and avoiding complications in fetal
wellbeing. In harsh circumstances such as pandemics, earthquakes, and low-
resource settings, the incompetence of many healthcare systems worldwide in
providing essential services, especially for pregnant women, is critical. Being able
to continuously monitor the fetus in hospitals and homes in a direct and fast
manner is very important in such conditions.

Methods: Monitoring the health of the baby can potentially be accomplished
through the computation of vital bio-signal measures using a clear fetal
electrocardiogram (ECG) signal. The aim of this study is to develop a
framework to detect and identify the R-peaks of the fetal ECG directly
from a 12 channel abdominal composite signal. Thus, signals were recorded
noninvasively from 70 pregnant (healthy and with health conditions)
women with no records of fetal abnormalities. The proposed model
employs a recurrent neural network architecture to robustly detect the fetal
ECG R-peaks.

Results: To test the proposed framework, we performed both subject-
dependent (5-fold cross-validation) and independent (leave-one-subject-
out) tests. The proposed framework achieved average accuracy values of
94.2% and 88.8%, respectively. More specifically, the leave-one-subject-out
test accuracy was 86.7% during the challenging period of vernix caseosa
layer formation. Furthermore, we computed the fetal heart rate from the
detected R-peaks, and the demonstrated results highlight the robustness of the
proposed framework.

Discussion: This work has the potential to cater to the critical industry of
maternal and fetal healthcare as well as advance related applications.

KEYWORDS

biomedical signal processing algorithms, deep learning, fetal heart rate, long short-term
memory, noninvasive fetal electrocardiogram
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1 Introduction

The ever-increasing interest in artificial intelligence,
machine learning, and Internet of Things (IoT) has yielded
significant advancements in various domains and applications
(Dhombres et al., 2022). More specifically, the remarkable benefits
of employing intelligent machines in the healthcare sector have
attracted the attention of healthcare providers and decision-makers
to invest in such applications (Signorini et al., 2020; Liu et al.,
2020). This resulted in numerous studies that focused on providing
techniques to better understand the current health status of patients
(Odendaal et al., 2019; Diab et al., 2021). Such studies that focus on
providing techniques for monitoring the health status of the heart
include, but are not limited to, support vector machines to aid the
auscultation procedure using computed tomography scan images ()
machine learning model based on activity tracker data to classify
patient health status (Meng et al., 2020), a bidirectional long short-
term memory (bi-LSTM) regression network for noninvasive heart
rate (HR) estimation from ballistocardiogram signals (Jiao et al.,
2021), a binary classification model for assessing the neonatal heart
and lung sound quality for the heart, and breathing rate estimation
for telehealth applications (Grooby et al., 2021).

The process of recording the electrical activity of the heart
is accomplished noninvasively through electrocardiography. The
produced signal, called the electrocardiogram (ECG), graphs the
voltage versus time of the heart’s electrical activity, showing
heartbeats as impulses. Any change in the ECG signal can flag a
potential issue with the health of the heart (Melillo et al., 2013).

Fetal ECGmonitoring in the early stages of pregnancy is vital for
detecting potential health issues related to the fetus (Wahbah et al.,
2021; Vo et al., 2020).This will eventually lead to loweringmorbidity
rates and saving costs Deng et al., (2023). This research is proposed
in conjunction with the situation imposed by harsh circumstances
such as earthquakes, pandemics (Wu et al., 2020), war conditions,
and low-resource settings. In such situations, many cities suffer
from a lack of feasibility in accessing hospitals and health clinics
worldwide. In addition, a lot of healthcare facilities experienced a
huge demand for immediate healthcare attention for people affected
by the harsh situation. This resulted in reduced attention to other
types of patients, such as pregnant women. Regular and important
health checkups on fetal health and development, which are needed
more frequently in the last month of pregnancy, could not have been
feasible unless the pregnantmother visited the clinics in person.This
calls for immediate technological advancements that enable more
convenient monitoring of fetal and maternal health.

Monitoring fetal wellbeing has long been performed using
Doppler ultrasound technology (Marzbanrad et al., 2018). This
method, however, requires good clinical practice administered
by highly skilled technicians, which might not be feasible in
low- and middle-income settings. In addition, the accuracy of
assessing fetal development using this method, which measures
the crown–rump length of the fetus, decreases beyond the first
trimester of pregnancy (The American College of Obstetricians and
Gynecologists, 2017). Another monitoring technique for fetal
health involves measuring the ECG signal from the fetal scalp
(Bakker et al., 2004). Nevertheless, this invasive approach is risky,
as it can lead to infection (Leeuwen et al., 2014). On the contrary,
fetal ECG monitoring through the noninvasive recording of

the maternal abdominal signal is a promising technique that
mitigates the aforementioned limitations (Wahbah et al., 2021;
Khandoker et al., 2020).

In this article, we investigate how fetal development can
be monitored through noninvasive ECG technology, as accurate
assessment is imperative for optimal maternal and neonatal
outcomes. To achieve this, a deep learning architecture based on
long short-termmemory (LSTM) is utilized. Such networks showed
promising results in works focusing on fetal health, including
predicting estimated fetal weight (Naimi et al., 2018), identifying
predictors of fetal growth abnormalities (Kuhle et al., 2018), and
predicting fetal gestational age and neurodevelopmental maturation
based on 3D ultrasound brain images (Namburete et al., 2015).

On the other hand, the state-of-the-art lacks research works
that focus on analyzing the fetal HR, which can be estimated using
automatically extracted R-peaks of the fetal ECG signal through
a deep learning model. Therefore, we took one further vital step
by computing the fetal HR from the detected fetal R-peaks and
enhancing it by introducing the fetal heart rate enhancement
(FHRE) technique. This is vital for assessing the development of the
fetus and fundamental to neurological screening, which is essential
for reducing fetal deaths.

In this article, a novel approach is developed to extract and
identify the R-peaks of the fetal ECG signal using noninvasively
recorded signals from the abdominal area of the mother, known
as the abdominal signal. This signal combines both the maternal
and fetal ECGs, in addition to noise. The dataset used in this
study includes ECG signals collected from 70 pregnant women
with no records of fetal abnormalities. Patients’ data have been
obtained from the Children’s National Hospital in the United
States of America as well as from Tohoku University Hospital
and Kanagawa Children’s Medical Center in Japan. The proposed
methodology is based on a deep learning architecture, which has
efficient capabilities for applications related to fetal cardiovascular
signals (Garcia-Canadilla et al., 2020). After extracting the fetal
ECG, we implement a post-processing technique that we refer to
as fetal ECG post-processing (FECGPP). The presented framework
is fully automated and can be easily utilized by non-experts with
little training and limited resources, which is ideal for low- and
middle-income settings.

The major contributions of the work presented in this article
include the following:

1) Introducing the fetal R-peaks labeling (FRPL) method
to robustly label the R-peaks from the acquired
abdominal signals.

2) Efficiently detecting the fetal ECG signal and extracting it from
the abdominal composite signal by employing the introduced
deep learning model.

3) Improving the extracted fetal ECG by applying the
FECGPP technique.

4) Estimating the fetal HR from the detected R-peaks of the
ECG and implementing a post-process technique (FHRE) to
enhance the estimated fetal HR.

The remainder of the article is organized as follows: Section 2
discusses the FRPL method and the deep learning architecture
that are proposed in this article for efficiently extracting the fetal
ECG signal from the abdominal composite signal, along with the
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FIGURE 1
Configuration of data acquisition for the raw (i.e., original) abdominal signal. (A) Experimental setup illustrating the scheme describing the position of
the 12 electrodes on the maternal abdomen. (B) The real-time display while performing data acquisition. (C) Representative signal-averaged fetal ECG
tracing with measured intervals. Details regarding the experimental setup could be found in our previous study (Doshi et al., 2019). Adapted from Doshi
et al., 2019, with permission from SNCSC.

implemented algorithm to post-process the fetal HR. The results of
this study, including the leave-one-out cross-validation, correlation
and agreement analyses, and fetal HR computation, are shown
in Section 3 and discussed in Section 4. Lastly, we present the
conclusion in Section 5.

2 Materials and methods

In this section, the dataset used in this study to train and test
the network is discussed and explained. Additionally, the proposed
FRPL method is illustrated, along with the deep learning model
utilized for fetal R-peak detection from the composite abdominal
signal. The cutoff for significance used while conducting the
statistical analysis in this article is set at P < 0.05.

2.1 Dataset

The dataset of abdominal ECG signals from 70 pregnant
women with healthy fetal conditions was obtained from Children’s
National Hospital in the United States of America (12 samples,
17%), in addition to Kanagawa Children’s Medical Center (13
samples, 19%) and Tohoku University Hospital (45 samples, 64%)
in Japan. The study protocols were approved by the Tohoku
University Institutional Review Board (IRB: 2020-1–951 and 2015-
2–80–1) and the Children’s National Hospital IRB with appropriate
institutional agreements. Written informed consent was obtained
from all subjects. All experiments were performed in accordance
with relevant guidelines and regulations.

Abdominal signals were recorded bipolarly from the 12
electrodes placed on the maternal abdomen. The sampling
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FIGURE 2
Example of the process for obtaining the ground truth for the proposed deep learning framework for identifying the fetal R-peaks in the
electrocardiogram signal. (A) 12-channel raw (i.e., original) abdominal time-series signal that is a composite of the maternal ECG, fetal ECG, and noise.
The red and green boxes identify the maternal and fetal ECGs, respectively, within the abdominal signal. (B) The maternal ECG time-series signal is
solely recorded by one of the electrodes (i.e., channels). (C) The fetal ECG time-series signal was extracted using the BSSR method (Sato et al., 2007)
and is considered the ground truth in this study. The blue-filled circle markers (i.e., ) illustrate the exact location of the fetal R-peak in the ECG signal.
The proposed FRPL method is depicted in this panel by labeling each of the displayed time segments using a cross marker (i.e., ×) to annotate Class 0
and a hollow circle marker (i.e., O) to annotate Class 1. The time period at which each R-peak of the fetal ECG appears is assigned by the proposed
method as 65 ms and is demonstrated as dashed magenta vertical lines. μ, micro; ECG, electrocardiography; s, seconds.

frequency was 1 kHz, and the resolution was 16 bits. ECG signals
were recorded with the participant in the supine position, and only
part (1-min length) of the recorded period was used in this work.
Moreover, the data were subjected to filtration using a bandpass
filer with a bandwidth of 0.05–100 Hz, and a notch filter afterward
was used to remove 50 Hz or 60 Hz noise due to the ECG data
acquisition device.

2.2 Fetal R-peak labeling method

Initially, the fetal ECG signal was separated from the abdominal
composite signal by employing the method reported by Sato et al.
(2007), which combines cancellation of thematernal ECG signal and
blind source separation with a reference (BSSR). The experimental
setup is described in detail in our previous study by Doshi et al.

(2019), and Figure 1 shows the experimental setup by illustrating a
scheme describing the position of the 12 electrodes on the maternal
abdomen, in addition to real-time display while performing data
acquisition, along with representative signal-averaged fetal ECG
tracing with measured intervals.

Moreover, the location of the R-peaks of the fetal ECG
signal was detected by a custom-made MATLAB (version
R2022b) routine program similar to our previous work by
Wahbah et al. (2021).

Second, we measured the time duration for the fetal QRS—to
be considered a true positive for a sampling frequency of 1 kHz—as
approximately 70 ms . For the same sampling frequency, the work
introduced by Vo et al. (2020) reported this duration to be 50 m.
In this study, we set the segment duration as 65 ms (i.e., within
the range of the two previous values) to identify the fetal QRS.
Therefore, input window frames (65 m duration each) are labeled
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FIGURE 3
A block diagram of the proposed fetal ECG detection framework incorporating the FRPL method.

as Class 1 if the fetal R-peak annotation exists within. To depict
this, an example of the process for obtaining the ground truth for
the proposed deep learning framework for extracting the fetal ECG
signal is demonstrated in Figure 2.The raw (i.e., original) abdominal
time-series signal that was recorded using the 12-channel electrodes
along with thematernal ECG signal are plotted in Panels (a) and (b),
respectively. Moreover, the figure also displays the fetal ECG from
the BSSRmethod (Sato et al., 2007), which is considered the ground
truth in this study in Panel (c). This signal is used to demonstrate
the proposed FRPL method in operation by overlaying the original
labels that we assigned in reference to the ground truth signal and
that indicate the period at which the R-peaks of the fetal ECG appear
(i.e. 65 m). The different elements in the figure are displayed using
multiple colors, line styles, and markers. Three types of annotations
are used in the scatterplot, including a blue-filled circle marker
(i.e., ), which illustrates the exact location of the fetal R-peak in the
ECG signal; a cross marker (i.e., ×), which refers to Class 0 (i.e., the
location of the fetal R-peak does not exist within the 65 ms); and a
hollow circle marker (i.e., O), which indicates Class 1 (i.e., the fetal
R-peak appears within the determined time segment). Furthermore,
the assigned time period of 65 ms at which each R-peak of the
fetal ECG appears is demonstrated as dashed magenta vertical lines.
To summarize, the fetal ECG signal was divided into segments of
65 ms, which are marked with Class 1 label if the R-peak reference
annotation appears within; otherwise, Class 0 label is used.

2.3 Training and testing scheme

The generated labels (i.e., Classes 0 and 1) on the previous
segments (duration of 65 ms each) of the 1-min fetal ECG are
used in training the proposed deep learning model. Initially, the
original 12-channel abdominal signal (1 min duration) is divided
into segments based on the fetal input frames (65 ms duration).
The generated labels are used afterward in the proposed model to
make the algorithmdetect the fetal ECG signal.Therefore, themodel
identifies the fetal ECG among the other composite signals (i.e.,
among the remaining inputs from 11 channels).

Data standardization is applied to training and testing datasets
using the training set mean and standard deviation (SD). It is
worthwhile noting that the training dataset comprises 75% of the
overall dataset and the testing set accounts for the remaining 25%.
Demographics for the dataset are listed in Table 3.

Data standardization has been applied to the signals as follows:

z =
X− μ
σ
, (1)

where z is the standardized value (i.e., a z-score), X is the observed
value, μ is the mean, and σ is the standard deviation. Model
cross-validation has been accomplished through two standard tests:
subject-dependent (5 folds) and subject-independent (leave-one-
subject-out).

2.4 Fetal ECG detection network

In this section, the implemented deep learning network that
is based on the LSTM architecture is introduced and illustrated.
Figure 3 displays a block diagram of the proposed fetal ECG R-peak
detection framework to enhance the reader’s understanding while
depicting the extraction strategy adopted in this work. Furthermore,
the configuration of the proposed architecture, including the layers’
types, number of activations, and parameters, is shown in Table 1.
The used network mainly consists of three bidirectional LSTM
(BiLSTM) layers, with 100, 50, and 20 hidden units, respectively.
We chose to use an LSTM-based network since it has been proven
in the literature to be efficient for the classification of ECG data
(Zhou et al. (2021); Zitouni and Khandoker, 2022). Additionally,
two dropout layers were used between the BiLSTM layers, as well
as a fully connected and a softmax classification layer. The selected
number of hidden units in the BiLSTM layers was based on the
number of samples in the used dataset, and the use of dropout layers
helps prevent over-fitting. The abdominal ECG data are first pre-
processed, standardized, and then segmented into 65 m segments,
as described previously. Each segment is inputted into a sequential
input layerwith 12 feature inputs corresponding to the 12 abdominal
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TABLE 1 Parameter settings of the proposed detection architecture.

Layer Activation Parameter

Sequence input 12 –

BiLSTM 400 Input: 1600 × 12; recurrent: 1600 × 200

Dropout (0.5) 400 –

BiLSTM 200 Input: 800 × 400; recurrent: 800 × 100

Dropout (0.5) 200 –

BiLSTM 100 Input: 400 × 200; recurrent: 400 × 50

Fully connected 2 Input: 2 × 100

Softmax 2 –

Classification 2 –

ECG channels. Additionally, the proposed FRPL method is applied
to the data to automatically annotate the segments of data to R-
peaks or others for the training and validation processes. Weighted
classification was implemented, which helps rectify the effect of the
imbalance in data since the number of data segments that contain
R-peaks is less than that of the other segments. Each class’s weight is
computed as follows:

wc =
ns
(nc× nsc)

, (2)

wherewc is theweight of each class,ns is the total number of samples,
nc is the number of unique classes, and nsC is the number of samples
in the respective class. Thus, the weight for the R-peak class was
w1 = 3.17, while the weight for the other class wasw0 = 0.59. Finally,
R-peaks are detected by distinguishing segments containing them
from others.

2.5 Fetal ECG post-processing

Figure 4 visually shows the desired output and highlights the
significance of the proposed deep learning framework in removing
the outliers so that the output signal aligns with the ground truth. To
elaborate, the figure shows an example of the fetal HR time-series
signals that correspond to different labels (original in comparison
with the deep learning framework) of the fetal R-peaks from the
ECG signal that was recorded for 1 min.The HR signal, in beats per
minute (bpm), is computed as the difference in locations between
consecutive R-peaks (i.e., R–R interval) in a specific time period and
is expressed by Li et al. (2007) as

Heart Rate = 60
R−R Interval

. (3)

In this study, different class labels were expanded for 65 ms in
order to obtain the R–R intervals. The fetal HR was computed from
consecutive R–peaks for a window length of 10 s, which is common
in clinical practice (Li et al., 2007).

Figure 5 shows the proposed procedure, starting with the fetal
R–peak labeling method, the ECG post–processing technique, the

FIGURE 4
Example of fetal HR time-series signals that were computed from the
R–R intervals based on original labels (ground truth, blue) and
estimated labels [deep learning algorithm: proposed ECG
post-processing (FECGPP, green) with fetal HR enhancement (FHRE,
yellow)]. (A) Visual representation of the desired output illustrated
using a section of the time-series signal displayed for 60 s. (B)
Zoomed-in section of the signal displayed for 10 s. Bpm, beats per
minute; s, seconds.

computation of fetal HR, and the HR enhancement technique.
FECGPP is primarily proposed as a further improvement to the
detection results. Particularly, it is aimed at reducing the amount of
false detection, which results from data imbalance due to the fact
that the number of R–peaks in the ECG signal is much smaller than
other parts of the signal.

2.6 Fetal heart rate enhancement

TheFHREmethod is applied to the predicted fetal HR to remove
any artifacts by implementing the signal-dependent rank-order
mean (SD–ROM) algorithm (Chandra et al., 1998) and adaptive
filtering (Wessel et al., 2000). As such, the role of FHRE is merely
that of a post-processing technique in which the filter type is not of
great significance.

3 Results

This section demonstrates the performance of the proposed
framework by showcasing the results associated with two
categories: the detection performance and improvedmeasures when
implementing the deep learning-based framework and the accuracy
for fetal HR estimation using the identified fetal R-peaks by the
proposed framework.
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FIGURE 5
Block diagram showing the main blocks in the proposed framework.

The first category shows the results for both subject-dependent
and -independent validation experiments. The experiments were
conducted using MATLAB (Version R2022b), where the Deep
Learning Toolbox was utilized to design the detection network.
During the training phase of the experiments, we aimed to strike a
balance between the number of epochs and the minimum sequence
length to ensure a reasonable training speed while still having
sufficient iterations for high accuracy. We conducted the tests with
the number of epochs ranging from 80 to 100. The minimum
sequence length was set to 65, matching the length of the input
sequences. We also employed a scheduled learning rate, starting at
0.0005 and dropping by a factor of 0.1 halfway through the epochs.
Additionally, the value of the gradient threshold was set to 1. These
hyper-parameters were selected after preliminary experimentation
and testing of the network, with initial parameters inspired by
recommendations and works with similar types of data in the
literature.

More importantly, the work in this study did not stop only at
the first category (which is the step of reporting the performance
of the deep learning network); it was indeed carried further to
the second category (demonstrating the robustness of the proposed
framework in a practical manner by computing the fetal HR). This
initiative is a major contribution of the presented work in this
article by itself, as it provides a practical and complete picture of
the application of the proposed framework. By computing the fetal
HR from the labels associated with the R-peaks of the fetal ECG as
well as the correlation and agreement analyses, the significance of the
proposed framework is highlighted by visual demonstrations using
the Pearson correlation coefficient and the Bland–Altman plots.

3.1 Subject-dependent experiment

To provide a reliable evaluation of the model’s performance
and reduce the likelihood of over-fitting, a k-fold cross-validation
test was performed. In this study, a 5-fold cross-validation was
conducted on the used dataset. Table 2 shows the experiment results,
where an average accuracy of 93.0% and an average F1 score of
0.96 were achieved. Furthermore, the proposed FECGPP technique
was utilized, yielding improved results, where average accuracy and
average F1 score increased to 94.2% and 0.97, respectively.

Figure 6 displays the confusion matrix corresponding to the
obtained results. The two panels show the detection performance
of the deep learning network and the improved measures when the
proposed FRPL method is applied. Moreover, the ROC curve of the
proposed framework is shown in Figure 7.

The performance of the proposed model to detect and identify
the fetal ECG from the composite abdominal signal was validated
against the method of BSSR (Sato et al., 2007). Figure 8 (Pearson
correlation plot) presents the significant (P < 0.05) correlation
between the fetal HR computed from the R–R intervals that are
based on the original labels of R-peaks and predicted values by
the proposed framework with an r value of 0.56. Additionally,
Figure 9 shows the Bland–Altman plot of the fetalHR comparing the
proposed framework with the method of BSSR (i.e., ground truth).
The plot validates that estimated HR values are within the limits
of agreement (LoA) (i.e., ±1.96×SD). The estimated bias (i.e., mean
differences) is −5.49 weeks, and the values of the LoA are 18.05 and
−29.03 weeks, respectively.

3.2 Subject-independent experiment

To further validate the generalizability and applicability of
the proposed framework on new unseen data (Zitouni et al.,

TABLE 2 Five-fold cross-validation results for subject-dependent experiment.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy (%) 92.5 93.4 93.5 93.2 92.6 93.0

F1 score 0.96 0.97 0.97 0.96 0.96 0.96
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FIGURE 6
Confusion matrix charts showing the count of true versus predicted
R-peaks of fetal electrocardiogram. The entries marked with “Other”
refer to non R-peak locations in the fetal signal. The displayed value at
the top of each panel represents the average accuracy when
performing the 5-fold test. The two panels are associated with (A) the
introduced deep learning network for fetal R-peak identification from
the raw (i.e., original) ECG abdominal signal and (B) the proposed FRPL
method when applied along with the introduced network. All
quantitative measures show an improved performance when
incorporating the proposed FRPL method in the implemented
framework. Avg, average; Acc, accuracy; NPV, negative predicted
value; PPV, positive predicted value (i.e., precision).

2023), subject-independent experiments were also performed. The
subject-wise leave-one-out cross-validation was performed using 26
subjects. In this experiment, each time training is performed using
data from all subjects except the one on whom FECG extraction is
applied. Thus, no prior knowledge of the testing subject data exists
in the network.

FIGURE 7
Receiver operating characteristic (ROC) curve of the proposed
framework incorporating the FRPL method along with the deep
learning network. The panel demonstrates the false peaks vs. true
peaks, along with that of a random classifier denoted as the baseline.
AUC, area under the curve.

FIGURE 8
Pearson correlation plot between the fetal HR computed from the
R–R intervals that are based on the original labels of R-peaks and
predicted values by the proposed algorithm for 26 healthy fetuses.
The linear polynomial fit (regression) line along with the 95%
prediction intervals are shown as solid red and blue lines, respectively.
The identity line is represented as a dotted yellow line. P < 0.05 was
considered statistically significant. Bpm, beats per minute; n, number
of R–R intervals.

The patients’ demographics along with the test result values
when performing the subject-dependent leave-one-out cross-
validation are listed in Table 3. This experiment resulted in an
average accuracy of 88.8 ± 6.4.

It may be noted that the data of the remaining 44 patients
were excluded from this test because their information could not be
disclosed under the IRB and thus could only be used for training.

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2024.1329313
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wahbah et al. 10.3389/fphys.2024.1329313

FIGURE 9
Bland–Altman plot for the predicted and BSSR-based fetal heart rate
signal (sample size = 26 subjects). Bias is shown as dashed black line,
limits of agreement (±1.96×SD) are shown as solid black lines, and
regression fit of the differences on the means is represented as solid
red lines. Bpm, beats per minute; n, number of R–R intervals.

4 Discussion

This study successfully demonstrated that the proposed
framework could be adopted as an accurate tool to identify and
separate the fetal ECG signal from the composite abdominal signal
by detecting the fetal QRS peak locations.The recorded ECG signals
were considered for a recording length of 1 min per subject. To
prepare the dataset, the method of BSSR (Sato et al., 2007) was
employed to separate the fetal ECG from the composite abdominal
signal. Fetal QRS peak locations were detected afterward by a
custom-made MATLAB (version R2022b) routine program and
labeled for every segment in the training dataset. This is considered
one of the key highlights of this study. The abdominal ECG signals
were segmented based on the data labels and inputted into the
LSTM-based detection model.

The assessment metrics for evaluating the proposed approach
for detecting the fetal R-peaks from the composite abdominal signal
revealed robust performance. A 5-fold cross-validation scheme was
used to validate the proposed approach, which resulted in an average
accuracy of 93.0% when performing the test. Additionally, the
computed F1 score is 0.96. The FECGPP technique focuses on
improving the detection of the peaks by reducing the false positives
and, more importantly, reducing the false negatives and increasing
the true positives (detected peaks).Thus, after applying the FECGPP,
the accuracy improved to 94.2% and the F1 score to 0.97. More
importantly, the sensitivity (i.e., true-positive rates) has increased
from 81% to 85.8%. This leads to better overall performance and,
hence, a more robust estimation of the fetal HR.

After estimating the fetal HR, it can be depicted from the
zoomed section on the lower panel of Figure 4 that the HR signals
generated from the ground truth and proposed framework via
the FHRE technique are perfectly aligned. When validating the
performance of the proposed algorithm, the Bland–Altman plot
shows that the higher the R–R intervals, the larger the difference
between the evaluated approach and the ground truth. It can thus
be speculated that the proposed model seems to work better for
shorter R–R intervals. This shows that the method can provide a

dependable estimation of the HR value, allowing it to be applicable
in the continuous monitoring of fetal health.

When performing the leave-one-subject-out cross-validation
(subject-independent test), the proposed framework achieved an
average accuracy of 88.8%. The 16 subjects that have healthy
maternal conditions and normal BMI values have a prediction
accuracy of 90% on average.

Observing the health information of the subject with the lowest
accuracy (i.e., Subject#5), the BMI value is outside the normal range,
highlighting that it has a unique physique compared to the rest of the
dataset. Moreover, this subject has maternal complications, which
affect the fetal HR rhythm. In this study, five subjects had a BMI
value greater than 26 kg/m2.This resulted in a drop in the algorithm’s
accuracy to 85% on average. A similar condition can be observed
for the three subjects with the lowest accuracy values, making these
subjects unique from the overall sample. The results show that the
accuracy of patients with a BMI outside the normal range is 84%
on average.

The patients who had maternal complications produced an
average accuracy of 87%, while those without any maternal
conditions had an average accuracy of 91%.These patients are more
consistent with each other, resulting in higher accuracy. Considering
the subjects without obstetric complications, the average accuracy is
87.5%. This can be speculated to be due to obstetric complications
being dependent on the history of previous pregnancies, as opposed
to the current one, which has a low effect on the accuracy of the
proposed approach.

As for the fetal weight, fetuses with gestational age (GA) younger
than 30 weeks had an average accuracy of 88%, while those with GA
greater than 34 weeks had an average accuracy of 93%.This strongly
indicates that fetal ECG becomes more feasible to extract when
the pregnancy is beyond 30 weeks of gestation. This observation
is in line with the study reported by van Laar et al. (2014), which
mentions that the fetal ECG measurements are extremely difficult
to obtain at approximately 30 weeks of gestation due to the presence
of the vernix caseosa (Oostendorp et al., 1989; Stinstra and Peters
2002), which electrically shields the fetus from its surroundings. Our
fetal ECG peak detection framework, however, achieved an average
accuracy of 86.7% even for the challenging period of vernix caseosa
layer formation (28–34 weeks of gestation) when performing the
subject-independent cross-validation test. Indeed, the results of this
study clearly show that the performance of our fetal ECG signal
extraction framework increases in proportion to the fetal weight
value as gestation progresses. Finally, some sources of errors could
be present, such as those due to equipment or humans (i.e., errors
while placing the electrodes of the ECG recording device).

This research promotes the development of new technologies
and/or enhances existing ones. The conducted research activities
addressed some of the barriers associated with noninvasive fetal
monitoring in harsh circumstances, pandemics, and low-resource
situations. Adopting the proposed approach, which is based on
state-of-the-art deep learning networks and the noninvasively
recorded abdominal signal, has the potential to cater to the critical
industry of maternal and fetal healthcare as well as advance
related applications. With this motivation, the proposed framework
helps monitor fetal development and can be easily implemented
to assist physicians in accurately assessing fetal wellbeing. The
application has numerous practical merits. It provides an assistive

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2024.1329313
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wahbah et al. 10.3389/fphys.2024.1329313

TABLE 3 Demographics of the dataset population (N = 26 subjects), along with the subject-dependent leave-one-out cross-validation test accuracy for
each patient.

No. Maternal
health status

Gestational
age (weeks)

Fetal
weight (g)

Maternal
age (years)

Body mass
index (kg/m2)

Accuracy (%)

1 Normal 20.6 393 33 32.4 93.8

2 Exists (autoimmune
disease and protein S
hypothyroidism)

39.3 2,835 35 21.0 90.2

3 Normal 20.1 355 31 23.9 88.5

4 Exists
(uterine/appendix
disease and
autoimmune disease)

26.2 937 32 15.8 88.7

5 Exists
(uterine/appendix
disease and
autoimmune disease)

33.4 1,854 28 33.0 68.5

6 Exists (History of
hepatitis B)

30.0 1,310 22 24.1 92.9

7 Exists (others [history
of hydatidiform
mole])

26.3 1,023 24 25.9 92.9

8 Normal 24.0 757 31 24.2 93.8

9 Exists
(uterine/appendix
disease)

29.2 1,239 35 21.0 89.4

10 Exists (autoimmune
disease and first birth
in old age)

38.3 2,267 35 21.3 94.4

11 None 35.1 – 36 – 97.0

12 Exists (respiratory
disease and uterine
and appendage
disease)

39.2 2,892 45 35.6 86.9

13 None 39.3 3,138 30 26.2 94.1

14 Normal 35.4 2,462 41 21.7 90.5

15 Normal 25.3 916 38 20.0 84.3

16 None 35.1 2,281 32 21.9 97.1

17 Exists (autoimmune
disease)

26.0 919 32 26.9 86.4

18 Exists
(uterine/appendix
disease and
autoimmune disease)

29.0 1,314 34 21.5 94.1

19 Exists
(uterine/appendix
disease)

24.3 809 29 24.7 77.7

20 Normal 27.2 1,019 22 23.1 86.8

(Continued on the following page)
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TABLE 3 (Continued) Demographics of the dataset population (N = 26 subjects), along with the subject-dependent leave-one-out cross-validation test
accuracy for each patient.

No. Maternal
health status

Gestational
age (weeks)

Fetal
weight (g)

Maternal
age (years)

Body mass
index (kg/m2)

Accuracy (%)

21 Normal 29.2 1,150 22 23.8 84.2

22 Exists (blood disease) 29.4 1,445 41 20.4 86.5

23 Exists
(uterine/appendix
disease and
autoimmune disease)

34.0 2,252 34 22.5 85.0

24 Exists
(uterine/appendix
disease)

28.5 1,383 29 25.6 90.4

25 Exists (autoimmune
disease)

30.6 1,481 33 20.9 95.0

26 Exists (autoimmune
disease)

31.6 – 25 20.1 81.0

30.3 ± 5.6¶ 1,518 ± 794¶ 31.9 ± 5.9¶ 23.9 ± 4.4¶ 88.8 ± 6.4¶

Standard deviation (SD).
¶: mean ±SD.

healthcare tool for physicians and pregnant mothers to monitor
the health of the fetus when the ECG signal is recorded. The
implementation targets health monitoring in low-resource settings
or imposed circumstances that restrict access to the hospital (such
as disasters, COVID-19, earthquakes, or similar conditions). The
implementation is convenient, can operate anywhere and anytime,
and does not require skilled technicians. The key features of the
proposed methodology are its low cost, highly improved efficiency
value, and easy implementation when any ECGmonitoring device is
used to record the abdominal signal. In contrast, other maternal and
fetal monitoring approaches could have high costs for some patients
and could be consideredmedical devices that may be only accessible
by healthcare providers. Such systems could require clinical practice
administered by highly skilled technicians, which might not be
feasible in low- and middle-income settings.

The proposed work would provide fundamental and transitional
research outputs for fetal neurological screening, in addition to
its potential to reduce fetal deaths. Being fully automated, the
proposed approach can be utilized by non-experts with minimal
training and/or limited resources. In addition, it can be implemented
to detect health issues related to the fetus in the early stages of
pregnancy.Thiswould result in a significant cost and time reduction,
as well as mitigate the burden on healthcare providers.

5 Conclusion

This article presented a novel approach for extracting and
identifying the R-peaks of the fetal ECG signal directly from signals
obtained by using 12-channel abdominal electrodes. The proposed
framework is based on a combination of the (1) FRPL method
for labeling the fetal R-peaks, (2) LSTM-based R-peak detection
model, (3) FECGPP for extracted fetal ECG signal improvement,

and (4) fetal HR estimation and enhancement through the
FHRE technique. The performance of the model is evaluated
against the method of blind source separation with a reference,
which is used in this study to obtain the ground truth of fetal
ECG signals.

The results are presented in two categories: the detection
performance and improved measures when implementing the deep
learning-based framework and the accuracy for fetal HR estimation
using the identified fetal R-peaks by the proposed framework. The
first category of results shows that the proposed framework achieved
an average accuracy of 94.2% in the subject-dependent test. When
performing the subject-wise leave-one-out cross-validation test, the
proposed model produced an average accuracy of 88.8%. The best
results in this test were for the patients with GA of approximately
35 weeks and no maternal conditions. This revealed that it is more
feasible to extract and identify the R-peaks of the ECG signal
of fetuses from healthy mothers with advanced age throughout
pregnancy. The second category is a major contribution of this
work, where it provides a practical and complete picture of the
application.When estimating the fetal HR from the labels associated
with the identified R-peaks of the fetal ECG, the resulting Pearson
correlation coefficient was 0.56, and the Bland–Altman’s bias was
−5.49 weeks. These results clearly demonstrate the robustness of
the proposed framework for detecting fetal R-peaks from the
composite abdominal ECG signal and accurately estimating the
fetal HR.
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