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Background: Manual bone age assessment (BAA) is associated with longer
interpretation time and higher cost and variability, thus posing challenges in
areas with restricted medical facilities, such as the high-altitude Tibetan Plateau.
The application of artificial intelligence (AI) for automating BAA could facilitate
resolving this issue. This study aimed to develop an AI-based BAA model for Han
and Tibetan children.

Methods: A model named “EVG-BANet” was trained using three datasets,
including the Radiology Society of North America (RSNA) dataset (training set
n = 12611, validation set n = 1425, and test set n = 200), the Radiological Hand
Pose Estimation (RHPE) dataset (training set n = 5491, validation set n = 713, and
test set n = 79), and a self-established local dataset [training set n = 825 and test
set n = 351 (Han n = 216 and Tibetan n = 135)]. An open-access state-of-the-art
model BoNet was used for comparison. The accuracy and generalizability of the
two models were evaluated using the abovementioned three test sets and an
external test set (n = 256, all were Tibetan). Mean absolute difference (MAD) and
accuracy within 1 year were used as indicators. Bias was evaluated by comparing
the MAD between the demographic groups.

Results: EVG-BANet outperformed BoNet in the MAD on the RHPE test set
(0.52 vs. 0.63 years, p < 0.001), the local test set (0.47 vs. 0.62 years, p < 0.001),
and the external test set (0.53 vs. 0.66 years, p < 0.001) and exhibited a
comparable MAD on the RSNA test set (0.34 vs. 0.35 years, p = 0.934). EVG-
BANet achieved accuracy within 1 year of 97.7% on the local test set (BoNet 90%,
p < 0.001) and 89.5% on the external test set (BoNet 85.5%, p = 0.066). EVG-
BANet showed no bias in the local test set but exhibited a bias related to
chronological age in the external test set.

Conclusion: EVG-BANet can accurately predict the bone age (BA) for both Han
children and Tibetan children living in the Tibetan Plateau with limited healthcare
facilities.
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1 Introduction

Bone age (BA), an indicator of skeletal development, objectively
reflects the growth and bone maturity of children as compared to
chronological age (CA) (Creo and Schwenk, 2017). BA is mainly
determined from the radiographs of the left hand and wrist using the
Greulich–Pyle (GP) (Greulich and Idell Pyle, 1959) or
Tanner–Whitehouse method (Tanner, 1962; Tanner, 1983;
Tanner et al., 2001). The GP method is generally favored for its
simplicity and practicality and is, therefore, widely applied in clinical
settings. The manual evaluation of BA, however, heavily relies on the
reviewer’s experience, resulting in notable intra- and inter-observer
variations. The considerable time invested in training clinical
reviewers poses difficulties in implementing BA assessment
(BAA) in areas with limited medical resources (Wang et al.,
2020). In recent years, artificial intelligence (AI) and deep
learning have emerged as new possibilities of automating BAA
(Prokop-Piotrkowska et al., 2021), leading to the development of
various autonomous approaches (Kim et al., 2017; Lee et al., 2017;
Spampinato et al., 2017; Larson et al., 2018; Mutasa et al., 2018;
Escobar et al., 2019; Ren et al., 2019; Zhou et al., 2020; Nguyen et al.,
2022; Yang et al., 2023) that effectively address the drawbacks of
traditional manual methods, thereby achieving a reduction in
interpretation time and variability while concurrently enhancing
accuracy (Tajmir et al., 2019; Eng et al., 2021; Lee et al., 2021).

However, concerns have been raised regarding the
generalizability and bias of AI BAA systems (Beheshtian et al.,
2023; Larson, 2023). The AI BAAmodels were primarily developed
using certain population groups, such as the North American (Lee
et al., 2017; Larson et al., 2018; Mutasa et al., 2018), Korean (Kim
et al., 2017), and Chinese population of Han ethnicity (Ren et al.,
2019; Zhou et al., 2020; Yang et al., 2023). China is a culturally
diverse nation encompassing various ethnic groups; these include
the Tibetan people who mainly reside in the Tibetan Plateau,
which is located at 4000 m above sea level (asl) and has limited
medical resources (Harris et al., 2001; Wang et al., 2021). To the
best of our knowledge, there is currently no AI BAA model
developed for Tibetan children. The constraints of training the
population make the existing models potentially unsuitable for
application beyond specific populations on which they were
trained. Moreover, because of the limitation of models that may
focus more on populations of specific groups, there is a possibility
of introducing bias based on variables such as age, gender, and
ethnicity. Systematic bias, unlike random errors, can be resolved
through compensatory techniques such as sampling adjustments,
augmentation, calibration, weighting adjustments, and the
inclusion of additional input variables into the algorithm
(Larson, 2023).

To address these concerns, we developed a fully automated AI
BAA system termed “EVG-BANet” using data from three distinct
datasets, one of which was our self-established dataset that includes
both Han and Tibetan populations. Our model incorporates both
gender and ethnicity information as independent variables into
global and local visual features extracted by deep learning. To the
best of our knowledge, EVG-BANet is the first model to achieve this.
Based on evaluation using four different datasets, EVG-BANet
outperformed BoNet, the current state-of-the-art model, in terms
of accuracy and generalizability.

2 Methods

2.1 Dataset description

This multicenter study was approved by the Institutional Review
Board of Peking Union Medical College Hospital (I-22PJ458), and
the informed consent requirement was waived because of the
retrospective nature of the study.

The EVG-BANet model was trained using data from three
different datasets of radiographs acquired from the left hand and
wrist of children: the Radiology Society of North America (RSNA)
dataset (Halabi et al., 2019), the Radiological Hand Pose Estimation
(RHPE) dataset (Escobar et al., 2019), and our self-established local
dataset (Table 1). The RSNA dataset included 14236 images from
Lucile Packard Children’s Hospital at Stanford University and
Children’s Hospital Colorado; of these images, 12611 radiographs
were randomly selected as the training set and 1425 radiographs
were used as the validation set, with an additional test set (n = 200).
The RHPE dataset comprised 6283 images that were divided into
three sets: a training set (n = 5491), validation set (n = 713), and test
set (n = 79). The local dataset included BA radiographs from two
medical centers at different altitudes: Peking Union Medical College
Hospital in Beijing at 43.5 m asl (n = 745, all were Han) (Wang et al.,
2020) and Tibet Autonomous Region People’s Hospital in Lhasa at
3650 m asl (n = 431, including 114 Han children and 317 Tibetan
children) (Wang et al., 2021). In total, 1176 cases were included in
the local dataset and were randomly divided into the training set (n =
825) and test set (n = 351).

Additionally, an external dataset comprising BA radiographs
from Tibetan children at Nyima County People’s Hospital in Nagqu
at 4500 m asl was included as a test set (n = 256, all were Tibetan).
The detailed inclusion and exclusion criteria are provided in
Supplementary Table S1.

2.2 Reference BA standard

The reference BA standards provided with the RSNA and RHPE
datasets were used as the ground truth for training. The ground truth
BA standards for the local dataset and the external test set were
determined by two experienced doctors (a radiologist with 10 years of
experience and an endocrinologist with 15 years of experience in BA
reading) (Beheshtian et al., 2023) through mutual consensus using the
GPmethod (Greulich and Idell Pyle, 1959). The readers were aware of
only the age and gender of the patient and were blinded to ethnicity
and clinical details. For any disagreement, a third reviewer, an
endocrinologist specialized in child growth and development with
over 20 years of experience in BA reading, was consulted. The atlas
used for the assessment was “Skeletal Development of the Hand and
Wrist—A Radiographic Atlas and Digital Bone Age Companion,”
published by Oxford University Press in 2011.

2.3 Model implementation

Our method is inspired by the clinical practice of radiologists,
who consider various factors when assessing BA, including both
global and local visual features extracted from hand radiographs,
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CA, gender, and ethnicity. In this work, we introduce EVG-BANet, a
novel deep learning model that integrates all these factors to
accurately and unbiasedly assess BA. The global visual features
are extracted from hand radiographs, while the local visual
features are extracted from anatomical regions of interest (ROIs)
and wrist parts. The schematic diagram of EVG-BANet is shown
in Figure 1.

EVG-BANet is a deep learning model that requires radiographs
of the hand and wrist and information regarding the CA, gender,
and ethnicity of children as inputs. It comprises three modules: CoT-
YOLO for hand and wrist detection, X-Pose for hand keypoint
detection, and BANet for BA prediction. The model was
implemented using PyTorch 1.7.0, and the training was
completed on NVIDIA GeForce RTX 2080 Ti GPUs. Here, we
provide a detailed overview of the individual components of EVG-
BANet. The table illustrating the dataset utilization by each module
is shown in Supplementary Table S2.

CoT-YOLO: CoT-YOLO was constructed by integrating the
YOLOv5 and Contextual Transformer (CoT) networks (Li et al.,
2023). The schematic diagram of CoT-YOLO is shown in
Supplementary Figure S1. Darknet-53 was used as the backbone
network (Redmon and Farhadi, 2018). CoT can leverage contextual
information to enhance visual representation (Li et al., 2023).
Therefore, we used CoT before the convolutional layers and the
BottleneckCSP module. During training, we used the pretrained
model from the COCO dataset (Lin et al., 2014) and iteratively
trained it for 5,000 epochs with an initial learning rate of 0.001. CoT-
YOLO was trained on the training set from the local dataset and
validated using the local test set.

X-Pose: To meet the challenge of radiograph-based hand pose
estimation, we leveraged the recent state-of-the-art
encoder–decoder architecture proposed by Eng et al. (2021) for
human pose estimation. The schematic diagram of X-Pose is shown
in Supplementary Figure S2. Specifically, X-Pose uses keypoints
including the center of the wrist joint, finger tips, and
interphalangeal joints. This model consists of a ResNet-50

backbone network followed by a series of deconvolutional layers.
We trained the model initialized on ImageNet using the suggested
training parameters for 20 epochs and the Adam optimizer, with a
learning rate of 0.001. X-Pose was trained solely on the training set
from the RHPE dataset, validated on the validation set from the
RHPE dataset, and then, applied to the other datasets.

BANet: BANet uses the Inception v3model (Szegedy et al., 2015)
to extract features from three independent pathways: the hand bones
identified using the CoT-YOLO model, the wrist bones identified
using the CoT-YOLO model, and the Gaussian distribution
attention map of hand keypoints. The three types of features
extracted from the three pathways are combined using a mixed
inception module, which is a neural network architecture that
combines features from different layers of the network. Instead of
simply concatenating the features, we introduce multipliers wg and
we to balance the relative importance of the inputs that are relevant
to the final prediction. This allows our model to learn weighted
representations of gender information G and ethnicity information
E, according to their relevance to BAA. Information G and E can be
represented as follows:

G � wg × g,

E � we × e,

where g and e are the gender and ethnicity, respectively. Male gender is
represented by g = 1, and female gender is represented by g = 0.
Similarly, e = 1 denotes “Han” ethnicity, and e = 0 represents “Tibetan.”
E and G are then concatenated with the visual feature V to form the
feature J [J = (V; E; G)]. Finally, feature J is fed into two dense layers with
ReLU activation functions to regress to the BA using an L1 loss. The
Adam optimizer is used for training. The model is trained for
150 epochs using a batch size of 16. The initial learning rate is
0.001, and it is reduced by 20% every four epochs. The training of
BANet relies on the training sets from the RSNA dataset, the RHPE
dataset, and the local dataset. The validation of BANet is conducted
using the validation sets from both the RSNA and RHPE datasets, as
well as the test set from the local dataset.

TABLE 1 Summary information for the training, validation, and test datasets.

Variable Number of males Number of females Total Chronologic age (years) Bone age (years)

Training set

RSNA 6833 5778 12611 / 10.61 ± 3.43

RHPE 2372 3119 5491 10.35 ± 3.24 10.25 ± 3.46

Local 473 352 825 11.79 ± 3.91 11.20 ± 3.70

Validation set

RSNA 773 652 1425 / 10.60 ± 3.48

RHPE 306 407 713 10.30 ± 3.24 10.24 ± 3.46

Test set

RSNA 100 100 200 / 11.01 ± 3.36

RHPE 38 41 79 10.26 ± 3.28 10.34 ± 3.20

Local 201 150 351 11.71 ± 3.98 11.30 ± 3.97

External 153 103 256 11.30 ± 5.30 9.79 ± 5.29

The RSNA dataset does not include information about the chronological age.
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EVG-BANet is the first BAA model to integrate visual features,
gender, and ethnicity. This model has the potential to improve
accuracy and reduce bias of BAA, particularly for children from
diverse ethnicities.

2.4 Statistical analysis

Descriptive statistics were used to summarize the data as
appropriate. Continuous variables were expressed as mean ±
standard deviation (SD). Categorical variables were expressed as
frequency and proportion. The children were categorized into three
CA groups: group 1 (0–6 years old), group 2 (7–12 years old), and
group 3 (13–18 years old).

To evaluate the accuracy and generalizability of EVG-BANet, an
open-source state-of-the art model BoNet (Escobar et al., 2019) was
used as a reference for comparison, and the overall performance of
the two models was assessed by comparing the mean absolute
difference (MAD) between the model estimates and the ground

truth BA on the four datasets. BA accuracy, defined as the
percentage of MAD within 1 year, was also compared. To
determine agreement between models’ estimates and the ground
truth BA, Bland–Altman plots were generated to show the difference
between the estimates and the ground truth BA over the range of the
mean of the two BA values. A paired t-test was used to compare the
MAD between the twomodels. McNemar’s test was used to compare
the accuracy of the two models. An ablation analysis was conducted
to assess the impact of each module on the model performance. To
evaluate the bias of EVG-BANet, the MADs between various
demographic groups were compared using the t-test or analysis
of variance. Scatterplots with the ground truth BA and model
estimates on the horizontal and vertical axes, respectively, with
superimposed identity lines (slope = 1 and intercept = 0) were
generated to visualize differences between EVG-BANet predictions
and the ground truth.

All analyses were performed using R version 4.2.2 (R Core Team,
2014). Statistical significance was defined as a two-tailed
p-value of <0.05.

FIGURE 1
Schematic diagram of the EVG-BANet model. EVG-BANet comprises three modules: (A) CoT-YOLO for hand and wrist detection, (B) X-Pose for
hand keypoint detection, and (C) BANet for BA prediction.
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3 Results

3.1 Demographic characteristics

The summary information for the four datasets is shown in
Table 1. A total of 21951 radiographs were evaluated in this study,
including 18927 training, 2138 validation, and 886 test images.
Table 2 shows the demographic characteristics of the local and
external test sets. In the local test set, the CA and the ground truth
BA of the children were 11.71 ± 3.98 and 11.30 ± 3.97 years,
respectively. The male-to-female ratio was 1.34:1 (57%:43%). The
test set included two ethnic groups: Han and Tibetan, with a ratio
of 1.6:1 (67%:33%). In the external test set, the CA and the ground
truth BA were 11.30 ± 5.30 and 9.79 ± 5.29 years, respectively.

The male-to-female ratio was 1.49:1 (60%:40%). All the children
were Tibetan. Figure 2 shows the distribution of the ground truth
BA and ethnicity composition for both the local and
external test sets.

3.2 Comparison of accuracy and
generalizability between EVG-BANet
and BoNet

RSNA and RHPE test sets: In the RSNA test set, EVG-BANet
and BoNet exhibited comparable performance with an MAD of
0.34 ± 0.16 and 0.35 ± 0.18 years, respectively (p = 0.934). In the
RHPE test set, EVG-BANet achieved an MAD of 0.52 ± 0.21 years,

TABLE 2 Demographic characteristics of the local and external test sets.

Characteristic Local test set External test set

Total (n = 351) Han (n = 216) Tibetan (n = 135) Tibetan (n = 256)

Gender

Male 201 (57.3%) 110 (50.9%) 91 (67.4%) 153 (59.8%)

Female 150 (42.7%) 106 (49.1%) 44 (32.6%) 103 (40.2%)

Chronological age groupa

Group 1 44 (12.5%) 12 (5.6%) 32 (23.7%) 64 (25.0%)

Group 2 161 (45.9%) 110 (50.9%) 51 (37.8%) 75 (29.3%)

Group 3 146 (41.6%) 94 (43.5%) 52 (38.5%) 117 (45.7%)

Chronological age (years) 11.71 ± 3.98 12.22 ± 3.54 10.90 ± 4.49 11.30 ± 5.30

Bone age (years) 11.30 ± 3.97 11.88 ± 3.09 10.37 ± 4.95 9.79 ± 5.29

aThe children were categorized into three chronological age groups: group 1 (0–6 years old), group 2 (7–12 years old), and group 3 (13–18 years old).

FIGURE 2
Distribution of ground truth BA and ethnicity composition of (A) the local test set and (B) the external test set.
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which was significantly more accurate than that of BoNet (0.63 ±
0.23 years, p < 0.001).

Local test set: In the local test set, EVG-BANet exhibited superior
performance compared to BoNet, both in the overall assessment and
within the subgroups stratified by CA, gender, and ethnicity (Table 3).
Overall, EVG-BANet achieved an MAD of 0.47 ± 0.28 years,
significantly outperforming BoNet with an MAD of 0.62 ±
0.40 years (p < 0.001); moreover, the accuracy within 1 year of
EVG-BANet was 97.7%, while that of BoNet was 90% (p < 0.001)
(Supplementary Table S3). The 95% limits of agreement for EVG-
BANet and the ground truth BAwere −1.13 to 0.97 years, according to
the Bland–Altman plot (Figure 3A), while the limits of agreement for
BoNet and the ground truth BA were −1.51 to 1.37 years (Figure 3B).

To assess the individual impact of each module on the
performance of EVG-BANet, an ablation analysis was conducted
on the local test set (Supplementary Table S4). The omission of
visual features from wrist and keypoints resulted in a decrease in
accuracy within 1 year by 6% and 8.2%, respectively. The exclusion
of ethnicity information led to a reduction in accuracy by 3.2%.

External test set: In the external test set, EVG-BANet demonstrated
a significantly lower MAD than BoNet, both in total (0.53 ± 0.39 vs.
0.66 ± 0.40 years, p < 0.001) and within the demographic subgroups
(Table 3). The accuracy within 1 year of EVG-BANet was higher than
that of BoNet in total (89.5% vs. 85.5%, p = 0.066) and within the
subgroups, although the difference was not statistically significant
(Supplementary Table S3). According to the Bland–Altman plot, the
95% limits of agreement for EVG-BANet and the ground truth BA
were −1.04–1.43 years (Figure 3C), while those for BoNet and the ground
truth BA were −1.11–1.68 years (Figure 3D).

3.3 Bias of EVG-BANet

Local test set: EVG-BANet showed no significant bias in the
local test set. Regarding gender, CA group, and ethnicity, no

significant differences were observed in the MAD of EVG-BANet
across the subgroups [male, 0.47 ± 0.29 years vs. female, 0.46 ±
0.26 years (p = 0.794); group 1, 0.48 ± 0.27 years vs. group 2, 0.45 ±
0.28 years vs. group 3, 0.48 ± 0.28 years (p = 0.764); Han, 0.47 ±
0.26 years vs. Tibetan, 0.46 ± 0.30 years (p = 0.848)]. The MAD of
EVG-BANet between the Han and Tibetan populations was further
compared across the different subgroups, and no bias was detected
(Table 4). The scatterplot illustrating the differences between the
ground truth BA and EVG-BANet predictions in the Han and
Tibetan populations did not show a clear tendency of bias
(Figure 4A). No bias based on CA (Supplementary Figure S3) or
gender (Supplementary Figure S4A) was found.

External test set: In the external test set, the MAD of EVG-
BANet showed no significant difference between male and female
subgroups (0.57 ± 0.43 vs. 0.48 ± 0.31 years, p = 0.068); however, a
significant difference was noted among the different CA groups
[group 1, 0.42 ± 0.29 years vs. group 2, 0.69 ± 0.48 years vs. group 3,
0.49 ± 0.34 years (p < 0.001)]. The scatterplot indicated a tendency
where the BA assessed by EVG-BANet was overestimated in
children aged 0–6 years and 7–12 years, while it was
underestimated in children aged 13–18 years (Figure 4B). No bias
based on gender was observed (Supplementary Figure S4B).

4 Discussion

We developed a fully automated deep learning model named
EVG-BANet for BAA based on the GP method. EVG-BANet was
trained using radiographs from three distinct populations, one of
which included both Han and Tibetan ethnic groups. This model
incorporates ethnicity and gender as independent variables and
integrates them with the global and local features extracted from
radiographs for the final BA prediction. In all four test sets, including
an external test set, EVG-BANet exhibited superior performance
compared to BoNet.

TABLE 3 Comparison of the MAD of EVG-BANet and BoNet for the local and external test sets.

Characteristic MAD (years) of the local test set MAD (years) of the external test set

EVG-BANet BoNet p-value EVG-BANet BoNet p-value

Total 0.47 ± 0.28 0.62 ± 0.40 <0.001 0.53 ± 0.39 0.66 ± 0.40 <0.001

Gender

Male 0.47 ± 0.29 0.61 ± 0.38 <0.001 0.57 ± 0.43 0.68 ± 0.41 <0.001

Female 0.46 ± 0.26 0.64 ± 0.41 <0.001 0.48 ± 0.31 0.63 ± 0.37 <0.001

Chronological age groupa

Group 1 0.48 ± 0.27 0.68 ± 0.40 <0.001 0.42 ± 0.29 0.60 ± 0.38 <0.001

Group 2 0.45 ± 0.28 0.59 ± 0.41 <0.001 0.69 ± 0.48 0.76 ± 0.47 0.011

Group 3 0.48 ± 0.28 0.64 ± 0.39 <0.001 0.49 ± 0.34 0.62 ± 0.34 <0.001

Ethnicity

Han 0.47 ± 0.26 0.60 ± 0.36 <0.001 / / /

Tibetan 0.46 ± 0.30 0.66 ± 0.44 <0.001 0.53 ± 0.39 0.66 ± 0.40 <0.001
aThe children were categorized into three chronological age groups: group 1 (0–6 years old), group 2 (7–12 years old), and group 3 (13–18 years old).
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TABLE 4 The MAD of EVG-BANet stratified by demographic groups and ethnicity in the local test set.

Characteristic MAD (years) of the local test set

Han Tibetan p-value

Total 0.47 ± 0.26 0.46 ± 0.30 0.848

Gender

Male 0.48 ± 0.29 0.46 ± 0.28 0.695

Female 0.46 ± 0.23 0.47 ± 0.34 0.892

Chronological age groupa

Group 1 0.45 ± 0.22 0.48 ± 0.28 0.706

Group 2 0.47 ± 0.28 0.41 ± 0.27 0.186

Group 3 0.46 ± 0.26 0.50 ± 0.33 0.484

aThe children were categorized into three chronological age groups: group 1 (0–6 years old), group 2 (7–12 years old), and group 3 (13–18 years old).

FIGURE 3
Bland–Altman plots showing the differences between the estimated BA by EVG-BANet/BoNet and the ground truth BA. In the local test set, the
Bland–Atman plots for (A) EVG-BANet and (B) BoNet are shown; in the external test set, the Bland–Atman plots for (C) EVG-BANet and (D) BoNet are
illustrated.
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Overall, EVG-BANet demonstrated good accuracy and
generalizability. EVG-BANet was trained using 18927 images
(12611 from the RSNA dataset, 5491 from the RHPE dataset,
and 825 from the local dataset) and validated using 2138 images
(1425 from the RSNA dataset and 713 from the RHPE dataset).
EVG-BANet showed MAD values of 0.34, 0.52, and 0.47 years for
the RSNA test set, RHPE test set, and local test set (including
216 Han children and 135 Tibetan children), respectively, and
0.53 years for the external test set (including 256 Tibetan
children). The model achieved an accuracy within 1 year of
97.7% and 89.5% in the local and external test sets, respectively.
In both the overall evaluation and evaluation within the various
demographic groups (including gender, CA, and ethnicity), EVG-
BANet consistently outperformed BoNet, with lower MAD and
higher accuracy within 1 year.

We conducted ablation studies to assess the individual
contributions of key modules within EVG-BANet on the local
test set. Visual features from both wrist and keypoints
significantly contribute to accuracy. The ethnicity information
serves a complementary role in tailoring predictions to diverse
populations. Recently, Nguyen et al. (2022) developed a BAA
approach that integrates keypoint detection and gender
information; however, our model integrates a more
comprehensive array of visual and demographic features. To the
best of our knowledge, EVG-BANet is the first BAA approach that
combines both global and local visual features with crucial
demographic factors such as gender and ethnicity. Global
features are derived from the entire hand radiograph using a
convolutional neural network, while local features are extracted
from specific anatomical ROIs and wrist segments using a hand
keypoint detection model. The coexistence of both global and local
features in an assessment model is essential for accurate BAA, as

global features provide insights into the overall development of the
hand and wrist, while local features capture the fine-grained details
of individual bones. EVG-BANet also considers ethnic information
along with visual features. Previous studies have shown that
conventional BAA methods can lead to substantial disparities in
outcomes across different ethnic groups (Ontell et al., 1996; Zhang
et al., 2009). EVG-BANet addresses this inherent bias by
incorporating ethnicity into its model, which enables it to better
account for these differences and improve the accuracy of BAA. The
model exhibited good generalization in the external test set, which
has markedly different demographic characteristics (e.g., CA
distribution, gender ratio, altitude, and ethnic composition)
compared to the training dataset.

Prior to this study, none of the models included the Tibetan
population as part of the training set. The initial AI BAA models
were primarily developed using North American and Korean
populations (Kim et al., 2017; Lee et al., 2017; Larson et al., 2018;
Mutasa et al., 2018), followed by studies based on the Chinese
population (Ren et al., 2019; Zhou et al., 2020; Yang et al., 2023).
However, the Chinese population-based models predominantly
focused on the Han ethnic group and did not include the
Tibetan ethnic group. Tibetan people mainly reside in the
Tibetan Plateau of western China, where the average altitude is
as high as 4000 m; consequently, this region has limited healthcare
facilities because of its unique geographical location (Harris et al.,
2001; Wang et al., 2021). Our model could assess BA accurately in
Tibetan children, thus demonstrating its great potential in assisting
radiologists, pediatricians, and endocrinologists to conduct accurate
BAA with less labor cost and shorter time in Tibet.

Biases of EVG-BANet against specific demographic groups were
also evaluated. EVG-BANet showed no bias based on gender, CA, or
ethnicity in the local test set. However, in the external test set, EVG-

FIGURE 4
Scatterplots showing the differences between the ground truth BA and EVG-BANet prediction based on ethnicity and chronological age. (A)
Scatterplot based on ethnicity in the local test set. (B) Scatterplot based on CA groups in the external test set. The identity line (black) has a slope and
intercept of 1 and 0, respectively.
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BANet tended to overestimate BA in children aged 0–12 years and
underestimate BA in children aged 13–18 years. BoNet also
exhibited a similar tendency (data not shown). This is possibly
due to the following two reasons: first, the appearance and
development of ossification centers show considerable variation
in younger children, while the wrist bones are matured in
adolescents; the determination of BA mainly relies on the fusion
stage of the epiphysis of the phalanges and metacarpals. AI models
might focus on different maps as compared to human readers
(Spampinato et al., 2017). Second, the external test set included a
population that resides at an ultrahigh altitude of 4500 m asl; the
development of BA in children residing at this altitude might be
different from that in children residing in an area at 3600 m asl
altitude and in plain areas (Cidanwangjiu et al., 2023). Therefore,
this bias should be carefully monitored and corrected in the future
application of the AI BA systems.

Our study has some limitations. First, similar to previous studies
on BAA, there is no gold standard for BA evaluation. The ground
truth BA used for training is determined by reviewers, which is
inevitably influenced by inter- and intra-reviewer variations.
Second, the ethnic composition of the external test set was
exclusively Tibetan; therefore, we were unable to externally
evaluate ethnic bias between the Han and Tibetan populations.
Third, our model may not be able to identify certain disorders that a
human reviewer could potentially detect from radiographic images,
such as hypochondroplasia, rickets, and congenital syndromes (van
Rijn and Thodberg, 2013). Fourth, our model could not handle
missing values. We plan to investigate suitable strategies for the
future versions of EVG-BANet.

5 Conclusion

In conclusion, we developed an AI BAA model termed EVG-
BANet that estimates BA with high accuracy in both Han and
Tibetan children. The EVG-BANet model could potentially enhance
the efficiency and accuracy of BAA and can be applied in areas with
limited medical resources, such as rural regions and the
Tibetan plateau.
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