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This study aimed at developing a noncontact authentication system using event-
related pupillary response (ErPR) epochs in an augmented reality (AR)
environment. Thirty participants were shown in a rapid serial visual
presentation consisting of familiar and unknown human photographs. ErPR
was compared with event-related potential (ERP). ERP and ErPR amplitudes
for familiar faces were significantly larger compared with those for stranger
faces. The ERP-based authentication system exhibited perfect accuracy using
a linear support vector machine classifier. A quadratic discriminant analysis
classifier trained using ErPR features achieved high accuracy (97%) and low
false acceptance (0.03) and false rejection (0.03) rates. The correlation
coefficients between ERP and ErPR amplitudes were 0.452–0.829, and the
corresponding Bland–Altman plots showed a fairly good agreement between
them. The ErPR-based authentication system allows noncontact authentication
of persons without the burden of sensor attachment via low-cost, noninvasive,
and easily implemented technology in an AR environment.
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1 Introduction

A biometric authentication system protects significant information from people or
organizations and plays an important role in the identification and authentication
infrastructure (Kaongoen et al., 2017). Biometric systems are used to verify the identity
of people based on their unique physiological and/or behavioral personal characteristics
(Rahman et al., 2021), such as fingerprints, palm prints, face scans, iris scans, ear shapes, and
vocal tract systems (Sabeti et al., 2020). Identification of people has been widely used to
prevent the leakage of private information and unauthorized access of security systems in
various fields such as banking, online transactions, border control, military, retail,
healthcare, law enforcement, and enterprises (Rahman et al., 2022). However, many
biometric traits are prone to stealing and forgery due to the advancement of related
scientific techniques (Galbally et al., 2014; Ashenaei et al., 2022). Thus, exploring unique
biological traits is important for biometric purposes (Rahman and Nakanishi, 2022). To

OPEN ACCESS

EDITED BY

Recep Avci,
The University of Auckland, New Zealand

REVIEWED BY

Silvestro Roatta,
University of Turin, Italy
Hongtao Wang,
Wuyi University, China

*CORRESPONDENCE

Laehyun Kim,
laehyunk@kist.re.kr

RECEIVED 22 October 2023
ACCEPTED 05 August 2024
PUBLISHED 13 August 2024

CITATION

Park S, Ha J and Kim L (2024) Event-related
pupillary response-based authentication
system using eye-tracker add-on augmented
reality glasses for individual identification.
Front. Physiol. 15:1325784.
doi: 10.3389/fphys.2024.1325784

COPYRIGHT

© 2024 Park, Ha and Kim. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 13 August 2024
DOI 10.3389/fphys.2024.1325784

https://www.frontiersin.org/articles/10.3389/fphys.2024.1325784/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1325784/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1325784/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1325784/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1325784/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1325784&domain=pdf&date_stamp=2024-08-13
mailto:laehyunk@kist.re.kr
mailto:laehyunk@kist.re.kr
https://doi.org/10.3389/fphys.2024.1325784
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1325784


enhance safety and security, many researchers have attempted to
secure alternative biometric traits, such as electroencephalography
(EEG) (Ashenaei et al., 2022).

In terms of robustness against hacking and forgery, EEG signals
are a superior biometric approach because they have unique
attributes not possessed by past biometric methods (Wang M.
et al., 2021). In terms of security, EEG-based biometrics have the
following advantages: 1) difficulty of duplication and theft because
they are uncapturable, 2) alive biometric, and 3) unlimited
replacement (Ashenaei et al., 2022). Additionally, biometric traits
from a deceased (and warm) body can be used to allow
authentication of security systems-; however, a dead brain cannot
generate the EEG oscillations required for authentication (Norton
et al., 2017). Finally, EEG signals are robust to the demand for
coercive password entry because they can be easily affected by
external pressures (Wu et al., 2018a). EEG-based biometric
systems are primarily categorized into spontaneous EEG and
evoked potentials (EPs) using signal acquisition protocols (Wang
M. et al., 2021; Ashenaei et al., 2022). Resting-state EEG is a
spontaneous signal that is naturally generated by the brain
without any stimuli. It has been utilized in previous studies as a
biometric trait (Thomas and Vinod, 2018; Kim and Kim, 2019;
Maiorana, 2021) because of its flexible acquisition of signals and
suitability for continuous monitoring compared with stimuli-based
EPs (Thomas and Vinod, 2018). However, the stability of resting-
state-based biometrics is relatively poor (Wang M. et al., 2019). In
contrast, to elicit unique signals based on strict protocols, event-
related potential (ERP)-based biometrics require users to pay
attention to repetitive sensory stimuli (i.e., visually EPs) (Wang
M. et al., 2021). ERP is a significant biometric trait that can reflect
high-level neural resources such as attention and memory, which
can perceive only people with knowledge of their intrinsic
information (Sabeti et al., 2020). Additionally, the performance of
detecting ERP components (i.e., P3) has been enhanced by
improving the feature extraction and classification algorithms
using deep learning methods (Wang H. et al., 2019; Wang H.
et al., 2021; Wang et al., 2023a). Generally, strict protocols
involving cognitive tasks are more distinctive between individuals
and reproducible compared with those without tasks, but they are
time-consuming (Wang et al., 2023a). Thus, an ERP-based
biometric system can be a high-performance and safe
authentication system, as proven in previous studies (Kaongoen
et al., 2017; Chan et al., 2018; Wu et al., 2018b; Chen et al., 2020;
Kasim and Tosun, 2021; Zhao et al., 2021). Although EEG signals
have been studied as a unique biological trait of biometric
authentication because of their advantages for safety and security
(Shams et al., 2022), the attachment of a sensor on the head to
acquire EEG signals is a major obstacle (Chang S. et al., 2020; Park
et al., 2022). Thus, EEG biometrics, having the disadvantages of
sensor attachment, inconvenience, complexity, onerous processes,
and susceptibility to muscle noise, have lower usability than other
biometrics (Rhee et al., 2022). While most ERP-based systems have
been studied based on monitor screens, virtual or augmented reality
(AR)-based smart glasses have the advantage of providing more
flexibility such as freeing both hands and allowing the use of
multiple devices (Uhlmann et al., 2019).

Pupil images can be easily measured using an eye-tracker device
as an add-on to virtual reality or AR glasses. Pupillary rhythms,

i.e., pupil size change (PSC), are reliably modulated by functional
brain processes, such as cognition (Papetti et al., 2020), perception
(Bradley et al., 2017), attention (Unsworth et al., 2018), memory
(Stolte et al., 2020), and emotion (Cherng et al., 2020) via neural
connectivity. Previous studies have demonstrated that PSC is
strongly associated with neural activity in brain regions or
networks that involve the locus coeruleus–norepinephrine system,
dorsal attention network, posterior and anterior cingulate cortex,
insular cortex, basal ganglia, and lingual gyrus (Joshi et al., 2016; Ceh
et al., 2021; Groot et al., 2021; Mäki-Marttunen, 2021). Thus, PSC
signals have a great potential for use in biometrics as an alternative
to ERP analysis. The pupil-based biometric as a biometric trait
reflecting neural activity is robust to stealing and forgery and is
simple and convenient compared with ERP in terms of usability.
Previous studies have reported a significant correlation between ERP
components and PSC (Widmann et al., 2018; Schütte et al., 2021;
Selezneva and Wetzel, 2022). Several studies have also attempted to
directly compare ERP and PSC epochs and have reported mutual
similarities and replaceability (Park et al., 2019; Dahl et al., 2020;
Park et al., 2022). The PSC epoch caused by a target stimulus is called
event-related pupillary response (ErPR).

The aim of this study is to develop an ErPR-based biometric
authentication system using a rapid serial visual presentation
(RSVP) paradigm with human photograph stimuli in AR glasses.
The RSVP paradigm, which can present a large number of stimuli in
a short time, can elicit strong EPs caused by a stimulus paradigm
consisting of targets and nontargets (Acqualagna and Blankertz,
2013), and has been utilized in many visual-based brain-computer
interface studies (Zhang H. et al., 2022; Wang et al., 2023b; Wang
et al., 2024). Additionally, numerous ERP-based studies have
reported that ERP components (i.e., N2, P3, N4, and P6) are
significant features for distinguishing familiar from stranger
human faces (Hanso et al., 2010; Huang et al., 2017; Chang W.
et al., 2020). We elicited stronger subject-specific ErPR from pupil
images and ERP from EEG signals using our RSVP paradigm, which
included familiar (target) or stranger (nontarget) human
photographs. Two biometric traits were compared using
accuracy, area under the receiver operating characteristics curve
(AUC), false rejection rate (FRR), and false acceptance rate (FAR).
Detailed information on the proposed biometric method and results
are described in the following sections.

2 Materials and methods

2.1 Subjects

Thirty healthy volunteers (15 men and 15 women), aged
between 22 and 33 years (mean age, 27.20 ± 3.34 years)
participated in this experiment. All the participants had normal
or corrected-to-normal vision (i.e., over 0.8) and were right-handed.
Each participant participated voluntarily and was paid 30,000 KRW.
None of them had any history of serious medical or psychological
illnesses. Written informed consent was obtained from all
participants, and they were notified of the restrictions and
requirements. All the experimental protocols were approved by
the Ethics Committee of the Korea Institute of Science and
Technology, Seoul, South Korea (approval number: 2021-012).
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2.2 Experimental procedure and stimuli

The participants were required to provide photographs of
familiar faces of their family or friends of the same gender. In
total, 300 photographs of familiar faces were collected from
30 participants, with 10 photographs per participant. For each
subject, ten photographs were randomly presented throughout
the entire experiment as the target stimuli. In all the trials, a
total of 900 photographs of random Korean individuals
(450 men and 450 women) were collected and used as nontarget
stimuli. Repeated exposure to a stranger’s face (i.e., familiarization)
may induce ERP patterns similar to those of a familiar face
(Campbell and Tanaka, 2021). Thus, all nontarget stimuli were
presented only once without duplication, and the order was
counterbalanced. To minimize the effects of gender and race on
ERP (Ito and Urland, 2005), all photographs used in this experiment
consisted of a Korean person, and photographs of the same gender
as the subjects were presented as both the target and nontarget

stimuli. All the photographs were set up to be the same
orientation and size.

Each participant wore a Microsoft HoloLens 2 (Microsoft Corp.,
Redmond, WA, United States) in an electrically shielded room and
sat in a comfortable armchair. An electrically shielded room was
used to minimize the risk of external interference during the
measurement of EEG signals and to increase the concentration of
the subjects. Participants were required to perform an ERP task, and
EEG signals and pupil images were measured during the task. The
overall process of the experiment was recorded using a monitoring
camera, as shown in Figure 1.

As Figure 2 shows, the participants executed the ERP task for
approximately 5 min. The ERP task began by displaying a cross on
the AR screen’s center for 2 s followed by ten face photographs, each
shown for 2 s. The ten face photographs were arranged randomly,
with only one featuring as the target familiar face selected randomly
from a database of the subject’s photographs. The other nine
photographs presented random strangers’ faces as non-targets.

FIGURE 1
Overview of the experimental setup. (A) Experimental management and monitoring. (B) Experimental environment. (C) Example of an AR stimulus.
(D) Pupil Labs’ AR binocular eye-tracker add-on AR device. (E) AR device (HoloLens 2).
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Each photographic stimulus was presented center screen for 100 ms,
and a block screen was shown for 100 ms between photographs
(i.e., the distance between two subsequent stimuli is 200 ms). One
trial comprised ten face photograph stimuli and lasted 2 seconds.
One block comprised five trials, each separated by a 2-s interval,
totaling 20 s. The entire experiment consisted of 50 trials (ten
blocks) with an inter-block interval of 5 s resulting in a total
duration of 245 s. Before and after the experiment, there were
periods of preparation and relaxation, each lasting for 30 s. The
stimuli displayed at the center of the screen and the size of the
photographs, including the black screen were 400 × 500 pixels. The
stimuli were presented on a transparent display on an AR headset
(MS Microsoft HoloLens 2™ Microsoft Corp., Redmond, WA,
United States). The event triggers for the stimuli were
synchronized with the EEG and ErPR data through User
Datagram Protocol communication. When the stimuli began on
the AR device, the recording software for EEG and ErPR on the
laptop received UDP packets from the AR device. The data was then
saved with the specific time corresponding to when the UDP packet
was received at the start of the stimuli.

2.3 Data acquisition and signal processing

A 64-channel BioSemi ActiveTwo system (BioSemi BV, WG-
Plein, Amsterdam, Netherlands) was used to acquire EEG signals
from the participants at a sampling rate of 2048 Hz with an EEG cap
of active Ag/AgCl electrodes through a conductive water-based gel
(CG04 Saline Base Signa Gel, Parker Laboratories Inc., Fairfield, NJ,
United States) arranged in an international 10–20 system (ground:
common mode sense; reference: driven right-leg electrodes). The

electrode impedance between the measurement and ground
electrodes was maintained below 10 kΩ. To avoid contaminating
meaningful patterns of ERP, muscle artifacts of oculomotor were
removed from the raw EEG signals using independent component
analysis based on visual inspection (Katus et al., 2020; Li et al., 2020).
Pupil images were taken on Pupil Labs’ AR binocular eye-tracker
(Pupil Labs, Berlin, BB, Germany) add-ons for the HoloLens 2 at a
sampling rate of 200 fps with a resolution of 192 × 192 pixels using
Pupil Core software (Pupil Labs, Berlin, BB, Germany). This
software provides data related to eye movement, including gaze
position and pupil diameter. A previous study confirmed that pupil
size increases as illumination decreases. Under five different lighting
conditions, the average pupil diameter measured 3.5 mm at 550 lx,
4.2 mm at 350 lx, 5.2 mm at 150 lx, 5.03 mm at 40 lx, and 5.4 mm at
2 lx. The pupil size significantly increased when the illumination
changed from 550 to 150 lx; however, lighting conditions of 150, 40,
and 2 lx minimally impacted the changes in pupil size (Maqsood and
Schumacher, 2017). To minimize the effect on pupil size caused by a
significant change in ambient light, ambient light in the electrically
shielded room was controlled at 150 lx or less (Park et al., 2021; Park
et al., 2022). During the experiment, the ambient light was measured
using a Visible Light SD Card Logger (Sper Scientific Meters Ltd.,
Scottsdale, AZ, United States) at a 1 Hz sampling rate in both the
experiment room (105.47 ± 2.22 lx) and AR device (30.70 ± 7.75 lx).

2.4 Data processing

The procedure for signal processing in the ERP was as follows: 1)
The EEG signals were down sampled from 2048 to 200 Hz, and then
filtered using a fourth-order Butterworth band-pass filter

FIGURE 2
Overview and temporal scheme of the ERP task.
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(0.1–50 Hz). 2) The filtered EEG data were segmented into EEG
epochs with lengths of 800 ms from 200 ms before the onset of each
stimulus to represent the stimulus. 3) All EEG epochs were corrected
at baseline by averaging EEG epochs lasting 800 ms using 200 ms of
data before target onset (Mitchell et al., 2016). 4) EEG epochs in all
trials were averaged with lengths of 800 ms. 5) The amplitude and
latency were defined by calculating difference values in amplitude
between the lowest and highest points and the time value of the
highest point in the ERP epoch, respectively, within a time window
of 200–750 ms (Kaongoen et al., 2017), as shown in Figure 3A. The
time windows were divided into P3a (200–350 ms), P3b
(400–490 ms), and LPP (530–750 ms) (Takeda et al., 2014;
Causse et al., 2016). Amplitude and latency were extracted from
three time domains and four brain regions (Fz, Cz, Pz, and Oz
electrodes) respectively. All signal processing and data analyses were
performed using EEGlab, which is a MATLAB toolbox (R2020b;
MathWorks Inc., Natick, MA, United States).

The procedure for signal processing in ErPR was as follows: 1)
The pupil diameter was obtained from data offered by the Pupil Core
software at a sampling rate 200 fps, and data of the dominant eye for
each subject were used for analysis. The dominant eye of each
individual was identified using the hole-in-the-card test (Li et al.,
2010). 2) PSCs were calculated using the difference between the
frames for each pupil diameter. 3) All PSC epochs were corrected to
a baseline by the averaged PSC epochs lasting 800 ms using 200 ms
of data before the target onset. 4) The PSC epochs in all the trials

were averaged with lengths of 800 ms, and the average PSC epoch
was defined as ErPR. 5) The amplitude and latency of the ErPR
epoch were defined by calculating the difference between the lowest
and highest PSC points and the time value of the highest PSC point,
respectively, within the time windows of P3a (200–350 ms), P3b
(400–490 ms), and the LPP (530–750 ms), consistent with the ERP
epochs, as shown in Figure 3B. All signal processing was performed
using the MATLAB signal processing toolbox (R2020b, MathWorks
Inc., Natick, MA, United States).

2.5 Statistical analysis and classification

This study has a design within subject, wherein two stimuli such
as target (i.e., familiar face) and nontarget photograph (i.e., stranger
face) are tested on each test subject. Thus, for the statistical analysis,
a paired-samples t-test was used to compare the responses of
individual participants between target and nontarget stimuli
based on the Shapiro–Wilk normality test (p > 0.05). The
recommended total sample size, calculated using G*Power
software (ver. 3.1.9.7; Heinrich-Heine-Universität Düsseldorf,
Düsseldorf, Germany), was 54 samples (α = 0.01, 1 – β = 0.95,
effect size = 0.5), and this study (i.e., 60 samples size) satisfied the
recommended sample size from G*Power (Faul et al., 2007). The
significant level to test hypotheses was controlled by the number of
individual hypotheses (i.e., α = 0.05∕n) to resolve the problem of

FIGURE 3
Overview of signal processing with definition of features in (A) ERP and (B) ErPR. (a) EEG raw signals. (b), (h) Time log of target onset. (c) Epochs of
separated EEG signals based on target onset. (d) Grand averages for all separated EEG epochs, and definition of amplitude and latency in ERP including
time windows of P3a, P3b, and LPP. (e) Procedure for detecting pupil area. (f) Signals of pupil diameter (raw data). (g) Signals of PSC calculated from frame
difference. (i) Epochs of separated PSC data based on target onset. (j) Grand averages for all separated PSC epochs, and definition of amplitude and
latency in ErPR including time windows of P3a, P3b, and LPP.
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type-I errors by multiple comparisons (Jafari and Ansari-Pour,
2019) as follows: the statistically significant level was set to
0.0017 (i.e., α = 0.05/30; 24 ERP and six ErPR features).
Moreover, this study confirmed the practical significance of using
an effect size of Cohen’s d, with the standard values of 0.20, 0.50, and
0.80 regarded as small, medium, and large, respectively (Huck et al.,
1974). All statistical analyses were conducted using IBM SPSS
Statistics for Windows (SPSS Corp., Armonk, NY, United States).

To determine the best classification algorithm for the two
conditions (ERP and ErPR features), two machine-learning
algorithms were used: 1) linear support vector machine (LSVM),
2) quadratic discriminant analysis (QDA), 3) Naïve Bayes (NB), 4)
logistic regression (LR), and 5) radial basis function support vector
machine (RBF-SVM). Optimization results for each classification
method were obtained through five-fold cross-validation using
“scikit-learn” (ver. 0.24.2) of Python (ver. 3.6.9). To assess
practical classification performance, we reduced the number of
trials while maintaining a 1:9 ratio between familiar and
unfamiliar stimuli. To extract the features, we computed the
averaged ERP and ErPR epochs over the familiar and unfamiliar
stimuli trials. From the averaged ERP epochs, we extracted
12 features, which comprised four channels (Fz, Cz, Pz, and Oz)
and three indicators (P3a, P3b, and LPP) for the ERP features. From
the averaged ErPR epochs, we also extracted three features including
three indicators (P3a, P3b, and LPP) for ErPR features. The
structures of the features for each condition were: 1) 60 samples
(30 subjects and two conditions) × 12 ERP features and 2)
60 samples (30 subjects and two conditions) × three ErPR
features. Accuracy refers to the average accuracy of the five-fold
cross-validation. Moreover, the FAR, FRR, and AUCwere evaluated.

The accuracy was calculated using the proportion of the total
number of correct predictions, as shown in Equation 1.

Accuracy %( ) � TP + TN

TP + FN + TN + FP
× 100 (1)

A true positive (TP) is a correctly classified target. A false
negative (FN) is an incorrectly classified target. A true negative
(TN) is a correctly classified nontarget. A false positive (FP) is an
incorrectly classified nontarget. FAR is the proportion of
identification instances in which unauthorized persons are
incorrectly accepted, and FRR is that in which authorized
persons are incorrectly rejected. These values were calculated
using Equation 2.

FAR � FP

FP + TN
, FRR � FN

FN + TP
(2)

3 Results

3.1 Averaged plot of ERP and ErPR epochs
from all subjects

Figure 4 shows the average ERP plot of each channel (Fz, Cz, Pz,
and Oz) and the ErRPs for the target and non-target stimuli. Each
average plot includes 50 target epochs and 450 nontarget epochs.
The solid and dotted lines indicate the ERP or ErPR epochs of the
participants after being presented with the target and nontarget

stimuli, respectively. The evoked positive potentials within P3a
(200–350 ms), P3b (400–490 ms), and LPP (530–750 ms) were
clearly observed in both the target and nontarget ERP epochs in the
Fz, Cz, Pz, and Oz regions. The increasing ERP amplitude trend was
observed for the target stimuli from P3a, P3b, and LPP compared
with the nontarget stimuli in all electrode channels. No clear
difference was observed in EEG latency. These trends of
amplitude and latency of ERP are similar to those observed in
the ErPR epoch.

3.2 Amplitude and latency of ERP epoch

Figure 5 shows the results of a paired-sample t-test between the
target and nontarget stimuli in terms of the amplitude and latency of
ERP. The amplitude of ERP of target stimuli in P3a (200–350 ms)
component was significantly larger than those of nontarget stimuli
in Fz [t (58) = 8.445, p < 0.001, Cohen’s d = 2.527], Cz [t (58) = 8.637,
p < 0.001, Cohen’s d = 2.599], Pz [t (58) = 9.595, p < 0.001, Cohen’s
d = 2.667], and Oz [t (58) = 3.789, p < 0.001, Cohen’s d = 1.036]. The
amplitude of ERP of target stimuli in P3b (400–490 ms) component
was significantly larger than those of nontarget stimuli in Fz [t (58) =
10.027, p < 0.001, Cohen’s d = 2.509], Cz [t (58) = 9.243, p < 0.001,
Cohen’s d = 2.306], Pz [t (58) = 6.497, p < 0.001, Cohen’s d = 1.925],
and Oz [t (58) = 4.786, p < 0.001, Cohen’s d = 1.353]. The amplitude
of ERP of target stimuli in LPP (530–750 ms) component was
significantly larger than those found in nontarget stimuli in Fz [t
(58) = 12.661, p < 0.001, Cohen’s d = 2.967], Cz [t (58) = 10.470, p <
0.001, Cohen’s d = 2.298], Pz [t (58) = 4.367, p < 0.001, Cohen’s d =
1.290], and Oz [t (58) = 6.830, p < 0.001, Cohen’s d = 1.809].

The latency of ERP in P3a, P3b, and LPP revealed that there was
no significant difference between target and nontarget stimuli in all
electrode sites as follows: P3a in Fz [t (58) = 1.752, p = 0.0903], Cz [t
(58) = 2.341, p = 0.0263, adjusted by the Bonferroni correction], Pz [t
(58) = 3.201, p = 0.0033, adjusted by the Bonferroni correction], and
Oz [t (58) = 6.830, p = 0.0678]; P3b in Fz [t (58) = 2.905, p = 0.0070,
adjusted by the Bonferroni correction], Cz [t (58) = 2.419, p =
0.0220, adjusted by the Bonferroni correction], Pz [t (58) = 1.990, p =
0.0561], and Oz [t (58) = 2.494, p = 0.0186, adjusted by the
Bonferroni correction]; LPP in Fz [t (58) = 2.731, p = 0.0106,
adjusted by the Bonferroni correction], Cz [t (58) = 2.819, p =
0.0086, adjusted by the Bonferroni correction], Pz [t (58) = 3.141, p =
0.0039, adjusted by the Bonferroni correction], and Oz [t (58) =
2.875, p = 0.0075, adjusted by the Bonferroni correction], as shown
in Figure 5.

3.3 Amplitude and latency of ErPR epoch

Figure 6 shows the results of a paired-sample t-test for target and
nontarget stimuli in amplitude and latency of ErPR. The amplitude
of the ErPR of the target stimuli was significantly larger than those of
the nontarget stimuli in the P3a [t (58) = 7.275, p < 0.001, Cohen’s
d = 2.242], P3b [t (58) = 8.165, p < 0.001, Cohen’s d = 2.235], and
LPP [t (58) = 5.472, p < 0.001, Cohen’s d = 1.610]. The latency of the
ErPR of target stimuli was significantly delayed compared to that of
nontarget stimuli at P3a [t (58) = 4.298, p < 0.001, Cohen’s d =
1.140]. No significant differences were found between the ErPR
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latencies for the target and nontarget stimuli in the P3b [t (58) =
1.861, p = 0.0729] and LPP [t (58) = 1.685, p = 0.1028].

3.4 Correlation and Bland–Altman plot
among ERP and ErPR

The Pearson correlation coefficient between the ERP and ErPR
amplitudes was statistically significant. (1) P3a at Fz (r = 0.685, p <
0.001), Cz (r = 0.722, p < 0.001), Pz (r = 0.733, p < 0.001), and Oz (r =
0.466, p < 0.001). (2) P3b at Fz (r = 0.829, p < 0.001), Cz (r = 0.745,
p < 0.001), Pz (r = 0.514, p < 0.001), and Oz (r = 0.452, p < 0.001). (3)
LPP at Fz (r = 0.628, p < 0.001), Cz (r = 0.643, p < 0.001), Pz (r =
0.558, p < 0.001), and Oz (r = 0.652, p < 0.001). The Pearson
correlation coefficient between the ERP and ErPR latency was found
to be statistically significant. (1) P3a at Fz (r = 0.639, p < 0.001), Cz
(r = 0.706, p < 0.001), Pz (r = 0.660, p < 0.001), and Oz (r = 0.702, p <
0.001). (2) P3b at Fz (r = 0.356, p < 0.01), Cz (r = 0.403, p < 0.01), Pz

(r = 0.338, p < 0.01), and Oz (r = 0.435, p < 0.001). (3) LPP at Fz (r =
0.469, p < 0.001), Cz (r = 0.482, p < 0.001), Pz (r = 0.533, p < 0.001),
and Oz (r = 0.476, p < 0.001), as shown in Figure 7.

Figure 8 shows the results of the Bland–Altman plot between the
ERP and ErPR features. It was used to visualize the differences in
measurements between the two different variables. The x- and
y-axes of the plot display the mean values of two variables and
difference between the two variables, respectively, and involved the
following three lines: the mean difference between two variables
(i.e., �d), the upper (i.e., �d + 1.96*SD), and lower (i.e., �d − 1.96*SD)
limit of the 95% confidence interval for the mean difference. If all
measured values from the two variables are within �d± 1.96 SD, it is
interpreted as a good agreement between the two measurements
(Martin Bland and Altman, 1986). Depending on the distribution of
measured values, the interpretation of the Bland–Altman plot is
categorized into “good agreement,” “fairly good agreement,” and
“poor agreement,” (Gardener et al., 2020). From the results of the
Bland–Atman plot, most amplitude features from ERP and ErPR

FIGURE 4
Averaged plot of ERP at Fz (A), Cz (B), Pz (C), and Oz (D) and ErPR (E) from all subjects for target and nontarget stimuli.
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were within the 95% limits, except for a few measurements,
interpreted as fairly good agreement. For latency, relatively large
measurements were located outside the 95% limits, interpreted as
poor agreement.

3.5 Classification

To distinguish between the target and nontarget stimuli, the ERP
and ErPR classification performances were compared. We used the
twelve features for the ERP condition and the three features for the

ErPR condition, which were the amplitudes of the P3a, P3b, and LPP
components based on statistical significance. LSVM and RBF-SVM
were the superior classifier with 100% accuracy (versus 98% with
QDA) when using ERP features, while QDA with 97% accuracy
outperformed LSVM (83% accuracy) on ErPR features. Overall, the
classification accuracy using the ERP features was 3% greater than
that with the ErPR features. Details of the classification results are
listed in Table 1. Additionally, a permutation test was conducted to
determine the accuracy and generalization ability of five classifiers
(repeated 10,000 times), and all classifiers for both the ERP and
ErPR datasets were significant (p < 0.0001) in the permutation test.

FIGURE 5
Comparisons of ERP amplitude and latency for target and nontarget stimuli in (A) P3a, (B) P3b, and (C) LPP with a paired-samples t-test. The error
bars show the standard error in each condition (*, p < 0.05, ***, p < 0.001).
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Figure 9 shows the FRR, FAR, and accuracy of the proposed
authentication system as functions of the number of trials based
on the QDA classifier. The accuracy declines rapidly as the
number of trials decreases. The proposed ERP- and ErPR-
based authentication systems exhibited accuracies of 95%
when the number of trials was less than 34 and 44,
respectively. Although the accuracy increases with more tasks,
the time required for authentication also increases.

3.6 Real-time system for individual
identification in AR environment

The real-time system proposed in this study consists of a
Microsoft HoloLens 2 (Microsoft Corp., Redmond, WA,
United States), Pupil Labs’ AR binocular eye-tracker (Pupil
Labs, Berlin, BB, Germany) add-ons for the HoloLens 2, and a
personal computer for analysis. As shown in Figure 10, the target
system could be accessed using two-factor individual
identification in AR environment. The procedure of individual
identification to access the target system is as follows: 1) The user
wears the Microsoft HoloLens 2 headset and operates the target
system (Figure 10A). 2) Then, the user uses the “Sign in” button
to attempt authentication to access the target system
(Figure 10B). 3) The proposed system conducts primary
authentication by analyzing the user’s iris pattern
(Figure 10C). Iris recognition is developed using publicly
available open-source code from GitHub (https://github.com/
thuyngch/Iris-Recognition). 4) The database comprises
photographs voluntarily registered by users who intend to
utilize the authentication system, alongside randomly collected
photographs of individuals. A unique identifier resulting from
iris recognition is assigned to the user, and a random sequence of
photographs is generated using target photographs stored in the
database (Figure 10D). 5) The authentication tasks are
performed, and the pupil image is measured (Figure 10E). 6)
The proposed system conducts authentication by analyzing the
user’s ErPR pattern. If the user is the real client, ErPR response
occurs in reaction to the target photographs, and the
authentication system allows access to the target system

(Figure 10F). Figure 10G shows the real-time system
architecture for individual identification using ErPR response.
The ErPR-based authentication system was developed using the
MATLAB App designer (2020b, Mathworks Inc., Natick, MA,
United States) and Unity 2018.1 (Unity Technologies, San
Francisco, CA, United States). In the two-factor-based real-
time identity recognition system, the iris recognition accuracy
was 100%, and the results of the ErPR-based authentication
system are consistent with those reported in Section 3.5
Classification.

4 Discussion

We proposed a novel ErPR-based identity authentication
system that uses familiar and stranger human faces for RSVP.
We demonstrated that the RSVP stimulus based on facial
familiarity elicited distinct ErPR and ERP traits in each user
and that the ErPR trait can be utilized as an alternative to the
ERP-based authentication system. This study assessed the
classification performance, which involves accuracy, AUC,
FAR, and FRR, between a target (i.e., familiar face) and
nontarget (i.e., stranger face) in our RSVP paradigm for two
biometric traits. Additionally, to compare the similarities
between them, correlation coefficients and Bland–Altman plots
were analyzed.

The average ERP epoch of each subject revealed EP
components such as P3a (200–350 ms), P3b (400–490 ms),
and LPP (530–750 ms) with significant differences in
amplitude, although the latency did not show significant
differences between targets and nontargets. P3 and LPP
components are well-known representative indicators of
cognitive processes. The P3 component can be elicited if the
user’s brain fully perceives the stimulus. The LPP component is
related to post-processing of consciousness, thus indicating
advanced cognition and regulation of information (Zhang R.
et al., 2022). These components are elicited by strict protocols, in
which low-probability “target stimuli” and high-probability
“nontarget stimuli” (i.e., a target rate of 10% or 20%) are
mixed (Jijomon and Vinod, 2021). Kaongoen et al. (2017)

FIGURE 6
Comparisons of ErPR amplitude and latency for target and nontarget stimuli in each P3a, P3b, and LPP with a paired-samples t-test. The error bars
show the standard error in each condition (***, p < 0.001).
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proposed a two-factor authentication system using P300 ERP
responses from photographic stimuli; furthermore, the
P300 epochs (i.e., 200–750 ms) in the target condition showed
a higher amplitude compared to the nontarget. Zeng et al. (2018)
developed an identity authentication system using the RSVP
paradigm, including the self-face and non-self-face. They
reported significant differences in P3a and P3b amplitudes
induced by familiar and unfamiliar photographs. Rathi et al.
(2021) proposed an authentication system using P300 speller,
consisting of pictures of different object pictures with a 2 ×
2 matrix. They found that P300 amplitude in the target condition
was significantly larger than that in the nontarget condition.
Other studies have demonstrated that the amplitude in P3 and
LPP components of ERP in target are significantly larger than

those in the nontarget, and our findings are consistent with these
studies (Lee et al., 2017; Kim et al., 2018; Sabeti et al., 2020; Rathi
et al., 2022). However, this study differs from previous studies in
that it uses AR glasses in the authentication systems. AR-glass-
based authentication systems can provide users with more
flexibility than monitor screens, such as freeing both hands
and enabling the use of multiple devices (Uhlmann et al.,
2019). The proposed ERP-based authentication system
achieved perfect accuracy in terms of FAR and FRR using the
LSVM and RBF-SVM classifier (5-fold cross-validation).

The pupillary rhythm (i.e., ErPR)-based authentication
system proposed in this study exhibited lower performance
than ERP, but achieved high performance in accuracy (97%),
FAR (0.03), and FRR (0.03) using the QDA classifier (5-fold

FIGURE 7
Results of correlation analysis between ERP and ErPR amplitude and latency for target and nontarget stimuli in P3a, P3b, and LPP. (A) depicts the
correlation of amplitude between ERP and ErPR, with each row representing the amplitude of P3a, P3b, and LPP as indicated by the subtitles in the boxes.
Each column shows the results for different channels: Fz, Cz, Pz, and Oz. (B) depicts the correlation for latency in ERP and ErPR, with each plot showing
the results for P3a latency, P3b latency, and LPP latency. Each column represents the results for the channels Fz, Cz, Pz, and Oz. Significant findings
were plotted as linear regression lines (p < 0.01, p < 0.001).
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cross-validation). Similar to the ERP epoch, the amplitude of the
average ErPR epoch of each subject in the target stimulus was
significantly larger than that of the nontarget stimuli. The PSC is
significantly associated with the brain regions related to cognitive
processing, involving locus coeruleus–norepinephrine, posterior
and anterior cingulate cortex, paracingulate cortex, orbitofrontal
cortex, right anterior insular cortex, dorsal anterior cingulate,
basal ganglia, lingual gyrus, and thalamus (Joshi et al., 2016;
Larsen and Waters, 2018; DiNuzzo et al., 2019; Ceh et al., 2021;
Groot et al., 2021; Mäki-Marttunen, 2021). The neural resource
caused by cognition for stimuli is reflected in pupil size via a top-
down executive control network in the following steps: 1) Alert,
an early component (Pa), 2) acceleration of Pa, and 3) executive

control by a prominent late component (Pe) (Geva et al., 2013).
Many previous studies have reported a strong correlation
between PSC and ERP components in cognitive processing.
(1) The pupil dilation response is associated with the
amplitude of the P3a component in the top-down control of
involuntary orienting of attention (Selezneva and Wetzel, 2022).
(2) Pupil dilation is related to the amplitude of LPP during
cognitive reappraisal (Strauss et al., 2016). (3) The pupil
dilation (i.e., ErPR reinstatement data) caused by arousal-
related norepinephrine release related to attention is
correlated with stronger EEG α-β desynchronization
(i.e., event-related desynchronization) and ERP signals (Dahl
et al., 2020). (4) Increasing pupil size has been correlated with the

FIGURE 8
Representative Bland–Altman plots for (A) amplitude and (B) latency from ERP and ErPR epochs. The solid central line in each plot represents the
mean difference between the two variables, and the upper and lower dotted lines represent the limit of the 95% confidence interval (�d± 1.96SD, n = 180).

TABLE 1 Results of classification using LSVM, QDA, NB, LR, and RBF-SVM (five-fold cross-validation) among target and nontarget epochs for ERP and ErPR
(N = 50).

Classifier Accuracy (%) AUC FAR FRR

ERP LSVM 100.0 1 0 0

QDA 98.0 0.99 0 0.03

NB 96.7 0.99 0.03 0.03

LR 95.0 0.99 0 0.03

RBF-SVM 100.0 1 0 0

ErPR LSVM 83.0 0.99 0 0.33

QDA 97.0 0.99 0.03 0.03

NB 93.3 0.97 0.1 0.03

LR 98.0 0.92 0.07 0.07

RBF-SVM 96.7 0.99 0.06 0

LSVM, linear support vectormachine; QDA, quadratic discriminant analysis; NB, Naïve Bayes; LR, logistic regression; RBF-SVM, radial basis function support vector machine; AUC, area under

the receiver operating characteristic curve; FAR, false acceptance rate; FRR, false rejection rate.
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amplitude of the P300 and N400 components in cognitive load
(Kuipers and Thierry, 2011; Tao et al., 2019) and cognitive
flexibility (Kuipers and Thierry, 2013). In our previous
studies, we found that the amplitude of the P3 and LPP
components in both ERP and ErPR epochs significantly
decreased with increased mental load and showed a strong
positive correlation between them (Park and Whang, 2018;
Park et al., 2019; Park et al., 2022). In this study, the
amplitudes of ERP and ErPR epochs were directly related to
each other, based on the results for correlation coefficients (i.e., in
the range of 0.452–0.829) and the Bland–Altman plot (i.e., fairly
good agreement) between them. We identified sufficient evidence
that the ErPR of the pupil rhythm could be utilized as an
alternative to ERP in authentication systems. The ErPR-based
authentication system, especially in an AR environment (i.e., eye-
tracker add-on AR glasses), can provide good usability in a
simple, economical, and contactless manner.

5 Conclusion

This study aimed to develop an infrared camera-based
noncontact authentication system using ErPR epochs obtained
from pupillary rhythms in an AR environment. The proposed
ErPR-based authentication system achieved high performance but
showed lower performance than previous EEG signal-based
authentication systems (Kaongoen et al., 2017; Chan et al., 2018;
Wu et al., 2018b; Chen et al., 2020; Kasim and Tosun, 2021; Zhao
et al., 2021). However, the approach presented in this paper allows
noncontact authentication for people without the burden of sensor
attachment via low-cost, noninvasive, and easily implemented
technologies in an AR environment. Although the time required
for authentication and effect of variations in ambient light levels
must be improved, the proposed method has considerable potential
for use in person-authentication systems. Future studies will attempt
to overcome the disadvantages of this study.

FIGURE 9
Trends of (A) false rejection rate (FRR), (B) false acceptance rate (FAR), and (C) accuracy by the number of RSVP trials in an ErPR-based authentication
system (QDA classifier).

FIGURE 10
Overview of a real-time system for individual identification in an AR environment. (A)Overview of the authentication system in AR environment. (B)
“Sign in” screen. (C) Authentication using iris recognition. (D) Database of human photographs. (E) ErPR-based authentication tasks. (F) Final decision of
the proposed authentication system for accessing the target system. (G) A real-time system architecture for ErPR-based authentication system: (a) Input
infrared image; (b) Detecting pupil area and measuring pupil size; (c) ErPR epoch; (d) Controlling trials of authentication task; (e) Setting IP
connection between the AR device and analysis PC; (f) Final decision of individual identification.
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