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Using dropout based active
learning and surrogate models in
the inverse viscoelastic
parameter identification of
human brain tissue

Jan Hinrichsen1, Carl Ferlay1,2, Nina Reiter1 and Silvia Budday1*
1Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany, 2Ecole Polytechnique, Palaiseau, France

Inverse mechanical parameter identification enables the characterization of
ultrasoft materials, for which it is difficult to achieve homogeneous deformation
states. However, this usually involves high computational costs that are
mainly determined by the complexity of the forward model. While simulation
methods like finite element models can capture nearly arbitrary geometries
and implement involved constitutive equations, they are also computationally
expensive. Machine learning models, such as neural networks, can help mitigate
this problem when they are used as surrogate models replacing the complex
high fidelity models. Thereby, they serve as a reduced order model after an initial
training phase, where they learn the relation of in- and outputs of the high fidelity
model. The generation of the required training data is computationally expensive
due to the necessary simulation runs. Here, active learning techniques enable the
selection of the “most rewarding” training points in terms of estimated gained
accuracy for the trained model. In this work, we present a recurrent neural
network that can well approximate the output of a viscoelastic finite element
simulation while significantly speeding up the evaluation times. Additionally, we
use Monte-Carlo dropout based active learning to identify highly informative
training data. Finally, we showcase the potential of the developed pipeline by
identifying viscoelastic material parameters for human brain tissue.

KEYWORDS

active learning, neural network, surrogatemodel, parameter identification, humanbrain
tissue

Introduction

Computational mechanics models are a versatile tool to predict the response of nearly
arbitrary geometries under mechanical loading. Exemplary applications from the field of
brain biomechanics are the simulation of the human head under impact (Ji et al., 2022),
cortical folding during brain development (Garcia et al., 2018; Zarzor et al., 2021), and brain
deformation during surgery (Safdar et al., 2023). All thesemodels depend on the availability
of constitutive models and corresponding parameters that accurately characterize the
material behavior. Therefore, the reliable identification of these parameters based on
experimental data is an important preliminary task. This is usually done by deforming a
specimen of a known geometry in a controlled manner while recording the force response.
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In the case of inhomogeneous deformation states during testing,
the geometry as well as the boundary conditions of the experiment
can be replicated through a simulation model. Subsequently,
the material parameters of this forward model are iteratively
updated until the simulated response is close enough to the
recorded response. This process is called inverse parameter
identification. The computational costs of this task are mainly
determined by the complexity of the used forward model. The
time needed to identify parameters for analytical models is usually
comparably low, while for high fidelity models, e.g., finite element
(FE) models, the computational costs for an inverse parameter
identification can exceed those of the application models for which
the parameters are later used. Nevertheless, some experimental
setups and the thereby induced deformation states make it
necessary to use computational models and an inverse parameter
identification scheme, e.g., due to non slipping boundary conditions
by gluing (Voyiadjis and Samadi-Dooki, 2018; Felfelian et al., 2019;
Budday et al., 2020).

Different approaches have been developed to mitigate the
problem of costly parameter identification. For gradient-based
optimizations, the adjoint method can be used to obtain gradients
directly from the simulation as opposed to using finite differences
(Chavent, 2010; Balaban et al., 2016). Other approaches, namely,
reduced order models (ROM), reduce the complexity of the models
to also reduce computational costs. A subset of these methods are
invasive in the sense that they seek to modify the approximation
of the described system, e.g., proper orthogonal decomposition
(Soldner et al., 2017), reduced basis methods, or proper generalized
decomposition (Chinesta et al., 2017).

In recent years, machine learning techniques have become
increasingly popular, as they were successfully applied to a wide
variety of problems and have also found multiple applications
in the field of solid mechanics (Kumar and Kochmann,
2022; Brodnik et al., 2023), including parameter identification.
Kakaletsis et al. (2023) tried to replace the whole identification
routinewith a neural network that was trained on pairs of simulation
output and mechanical parameters but did not obtain satisfactory
results. They achieved better results when they used a Gaussian
process regression as a surrogate model or ROM to replace the
finite element simulation in a least-square regression. This use
case highlights the ability of machine learning methods to serve
as nonlinear regression models in terms of ROMs without deeper
understanding of the underlying physical principles (Mohan and
Gaitonde, 2018; Zhuang et al., 2023). However, these methods
usually lose the basic model structure and with that also inherent
properties like stability or convexity. Still, they are a valid and
useful tool to obtain first estimates in inverse identification tasks.
A subsequent optimization with the high fidelity model can
mitigate these drawbacks and increase the accuracy of the final
identified parameters. Schulte et al. (2023) used a neural network
to obtain first estimates for a mechanical characterization task and
subsequently continued the optimization with a high fidelity finite
element model.

Depending on the modeled constitutive behavior, different
approaches have been shown to perform well. For hyperelastic
metamodels, feed forward neural networks (Hinrichsen et al.,
2023a) andGaussian process regression (Kakaletsis et al., 2023)were
successfully used as surrogate models. Recurrent neural networks

(RNN) have been shown to well capture time-dependent behavior,
such as viscoelasticity (Chen, 2021) or plasticity (Gorji et al., 2020;
Borkowski et al., 2022). This can be attributed to their ability
of storing a persistent state, comparable to internal variables in
constitutive models.

The aforementioned methods have in common that they rely
on a preliminary training step where they “learn” the relation of
inputs and outputs. Thus, the question of selecting appropriate
samples for the training arises. The straightforward approach is the
usage of random sampling or structured approaches like Poisson’s
disk (Seo et al., 2023) or latin hyper cube sampling (Iordanis et al.,
2022). In the present use case of surrogate models, the generation of
training data is linked to computational costs in terms of simulation
runs. Therefore, it is desirable to select the training points in such
a way that the accuracy of the trained model is maximized. This
is the aim of so called active learning approaches (Hasenjäger
and Ritter, 2002). Several approaches have been developed
for image classification tasks, e.g., BatchBALD (Kirsch et al.,
2019), variational adversarial active learning (Sinha et al., 2019),
and open-set recognition (Ren et al., 2021; Mandivarapu et al.,
2022) gives a good overview over deep active learning
approaches.

The so called acquisition function is used in active learning
approaches to select the next best training points from a pool
of unlabeled samples. A heuristic acquisition function that has
been used successfully and can also be applied to nonlinear
regression tasks is the estimated variance of the model (Kang et al.,
2023). Different approaches have been developed to obtain this
variance estimation. Some models like Gaussian process regression
(Azizsoltani and Sadeghi, 2018) or Bayesian neural networks
(Gal et al., 2017) directly report a confidence estimation together
with their predictions. For “classical” neural networks that do not
include these estimations in their predictions, different approaches
have been developed. In the query by committee approach,
multiple models are trained simultaneously and the variance in
their predictions is used (Burbidge et al., 2007). Neural networks
with a dropout layer enable another scheme to obtain these
estimates, as their outputs are stochastic and can be queried
multiple times via Monte-Carlo methods to also get an estimate
of the variance or uncertainty of predictions (Kang et al., 2023).
Additionally, the dropout layer can be disabled in the final
training run on the full dataset when variance estimates are no
longer needed.

In this work, we train a recurrent neural network on
time-dependent viscoelastic simulation output using Monte
Carlo dropout based active learning and show that it can
reproduce simulation results with high accuracy. Subsequently,
we integrate the trained network as a surrogate model in an
inverse parameter identification to obtain an initial guess of the
optimal set of parameters. Finally, we apply our pipeline to real
experimental data from the mechanical testing of human brain
tissue (Hinrichsen et al., 2023b). We finally assess to what extent
this versatile tool can reduce computational costs in material
characterization tasks. Due to the initial training costs, which are
mainly caused by the necessary simulation runs, the presented
approach becomes especially relevant when material parameters
are determined for multiple sets of experimental data, e.g., in the
region-specific characterization of brain tissue.
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FIGURE 1
Rheological scheme of the implemented generalized Maxwell model
with one Maxwell element. Each nonlinear spring represents a
hyperelastic one-term Ogden model characterized by the shear
modulus μ and the nonlinearity α. η denotes the viscosity of the
dashpot element.

Methods

Mechanical model

The high fidelity model that produces the ground truth solution
for the neural network is a finite element simulation that implements
a viscoelastic constitutive model. Figure 1 shows the rheological
scheme for the used generalized Maxwell model consisting
of a spring element, representing the equilibrium response,
and one generalized Maxwell element with a nonlinear spring
and dashpot.

We implement the finite vicoelastic model described in (Reese
and Govindjee, 1998; Budday et al., 2017b) that is based on a
multiplicative split of the deformation gradient F into an elastic and
a viscous contribution. The deformation gradient can be obtained as
the gradient ∇Xφ(X, t) of the deformation φ(X, t), which maps from
thematerial configurationX to the deformed configuration x at time
t. The multiplicative split is then written as

F = Fe ⋅ Fv, (1)

where the superscripts e and v denote the elastic and viscous
contributions, respectively. Furthermore, we can write the
viscoelastic strain energy as sum of an equilibrium and non
equilibrium parts, where the latter contains the contributions of
the generalized Maxwell element(s)

ψ = ψeq +ψneq (2)

Each spring is described by a compressible one-term Ogden
model (Ogden, 1972; Holzapfel, 2000; Hinrichsen et al., 2023b)
defined by the strain energy function

Ψ = Ψiso +Ψvol with (3)

Ψiso =
2μ
α2 (λ̄

α
1 + λ̄

α
2 + λ̄

α
3 − 3) and (4)

Ψvol = κ
1
4
(J2 − 1− 2lnJ) (5)

Where λ̄a = J−1/3λa are the isochoric principal stretches. J = det(F)
denotes the volume ratio. The one-term Ogden model was
shown to well capture the mechanical behavior of human brain
tissue, especially the pronounced compression-tension asymmetry
(Budday et al., 2017b; Hinrichsen et al., 2023b; Budday et al.,
2017c). Hence, each spring is characterized by the shear
modulus μ–we adapt the modified formulation in Budday et al.
(2017a)–and the nonlinearity parameter α. The bulk modulus
κ characterizes the compressibility in both springs but is not a
free parameter as we calculate it from the shear modulus μ using
the relation

κ = μ
2 (1+ ν)
3 (1− 2ν)

(6)

from the linear regime, where we use the Poisson’s ratio ν = 0.45.
In our previous work (Hinrichsen et al., 2023b), we have identified
hyperelastic parameters for Poisson’s ratio values ν = {0.45,0.49}
with no significant differences in the obtained fitting error. We
assume purely deviatoric contributions to the viscosity and therefore
set η = ηd and ηv =∞ in the formulation by Reese and Govindjee
(1998). The latter is achieved by setting 1

9ηv
= 0 in Equation (45)

of their work. We denote the parameters of the equilibrium spring
and the Maxwell element with the subscripts∞ and 1, respectively.
Subsequently, the set of parameters that needs to be determined
includes μ∞, μ1, α∞, α1, and η1. We implement the model in C++,
using the finite element library deal.ii (Arndt et al., 2021).

Experimental data

To test our developed hybrid inverse viscoelastic
characterization approach, we use experimental data from a human
brain tissue sample of the frontal cortex. Detailed information
regarding the preparation of the human brains as well as the used
testing protocol are described in (Hinrichsen et al., 2023b). The
specimen was tested under cyclic loading and stress relaxation in
compression-tension, and subsequently also under cyclic torsional
shear. In this setup, the rheometer imposes a prescribed time-strain
curve upon the tested specimen and records the response in terms
of axial force fz and torque t. To obtain a geometry-independent
measure, we calculate the nominal stress P as well as the shear
stress τ from the axial force fz and the torque t as P = fz/A and
τ = 2t/πr3, where A denotes the undeformed cross sectional area
and r the radius of the cylindrical samples. The data is subsequently
filtered using a moving average as well as a Ramer-Douglas-Peucker
Douglas and Peucker (1973) filter. Figure 2 shows the resulting
time-series curves.

Inverse parameter identification

Mechanical characterization of a material using a constitutive
model and experimental data translates to an optimization problem,
where the error between experimental data and model prediction
needs to beminimized.Here, we benchmark our presented approach
by characterizing the mechanical behavior of human brain tissue.
In the following, we use y as a placeholder for the nominal stress
P for compression/tension and the shear stress τ for torsional shear
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FIGURE 2
Experimental data of a human brain tissue specimen from the frontal cortex.

loading, respectively. We measure the error between the simulated
values ysimi obtained from the finite element or surrogate model and
the experimental values yexpi as normalized L2 norm

χ2 =
∑N

i=1
(yexpi − y

sim
i )

2

∑N
i=1
(yexpi )

2 , (7)

which is adapted from Gavrus et al. (1996). The optimization
problem of finding the optimal material parameters that minimize
χ2 is then solved using the trust region reflective algorithm in the
Python library scipy (Virtanen et al., 2020). We obtain the gradient
that is needed for the optimization via finite differences.

The optimization is initially started with the recurrent neural
network surrogate model. After an optimal set of parameters that
minimizes the L2 error between experimental data and simulation
output has been found, we use these parameters to restart the
optimiziation with the high fidelity finite element model. Thus, we
can use the fast evaluation times to get a good initial estimate
and subsequently need less computationally expensive evaluations
of the high fidelity model. A benefit of the trust region reflective
algorithm is its ability to also handle constrained optimization
problems. We utilize this to constrain the input of the finite element
model to physically valid parameters, i.e., positive shear moduli μ
and viscosities η. Additionally, we constrain the optimization on
the surrogate model to parameter values inside the range of the
training data. Thus, the model is prevented from extrapolating,
which can be problematic for neural networks (Kim et al., 2021;
Muckley et al., 2023).

Recurrent neural network surrogate model

Viscoelastic materials show a history-dependent behavior, as
their stress response is not only dependent on the currently applied
strains but also on the loading history. In computational models
this characteristic is captured by internal variables describing
the internal state of the material. Chen (2021) pointed out
the similarities between the structure of viscoleastic constitutive

models and recurrent neural networks (RNN) making the RNNs a
promising candidate to model viscoelastic behavior. Furthermore,
they trained a RNN on 3D synthetic uniaxial loading data and
showed good performance when the model was used to predict
data not used during training. The RNN consisted of two layers,
each containing 50 long short-term memory (Hochreiter and
Schmidhuber, 1997) (LSTM) cells. Figure 3A shows the signal
paths through an LSTM cell with a tanh function. Motivated by
these results, we use a RNN as surrogate model to approximate
the relation of in- and outputs of a high fidelity viscoelastic
finite element simulation and thereby speed up the viscoelastic
characterization from experimental data. Figure 3B visualizes the
network architecture. We use two hidden layers, each consisting
of 64 LSTM cells, followed by a dense output layer with two
nodes. Additionally, we use two dropout layers in between the
hidden LSTM layers to enable our Monte-Carlo dropout-based
active learning strategy. The dropout rate of the two layers is set to
0.5 during the active learning phase. After all training points have
been identified, the model is trained for one more time with the
dropout rate set to 0, effectively disabling the dropout layer. To avoid
numerical problems, we offset and scale the inputs and outputs so
that the thereby normalized quantities are obtained as

vscaled =
v− μtrain

σtrain , (8)

where μtrain and σtrain denote themean and standard deviation of the
training data, respectively.The inverse of this transformation is again
applied to the outputs of themodel. For the training of themodel, we
use the mean absolute error (MAE) as loss function during training
and ADAM as optimizer with a learning rate of 0.001. The model
is trained on the same strain-time series with a fixed time step but
varying material parameters. Thus, input data containing different
time steps than the training data should be interpolated to the
timestep size of the training data. We implemented the training and
evaluation of themodel in Python,whereweuse the recurrent neural
network and ADAM implementations provided by the tensorflow
module (Abadi et al., 2015).
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FIGURE 3
(A) Signal flow through an LSTM cell. σ denotes the sigmoid activation function. (B) Recurrent neural network architecture consisting of three layers
with long short-term memory (LSTM) cells and two dropout layers in between. The input vector x contains the constitutive parameters as well as strain
and time while the output h is the nominal stress P and shear stress τ. The internal cell state is stored in the state vector a and the subscript n denotes
the timestep.

 Require: n,m

   initialize training data T using sampling

method (e.g., Poisson Disk, random)

   while size(T) ≤ n do

     train model

     sample evaluation points E

     estimate model variance at E

     sort E by estimated variance

     initialize candidates C

     for i = 1 … m do

      select first point p from E satisfying

distance*(p,T) ≤ min (1/length(T),min_dist**(T))

    add p to candidates C

   end for

   run simulation label(C) and add output to T

   train new model on T

 end while

 train the model once more on T for the final

number of epochs with dropout rate = 0

 * distance in normalized parameter space

  ** minimum distance between points of dataset

Algorithm 1. Active learning.

Dropout-based active learning
As opposed to the uninformed generation or selection

(sampling) of training points, active learning seeks to identify the
set of training points that is expected to be most informative in
terms of the obtainedmodel accuracy (Hasenjäger and Ritter, 2002).

Here, we select training points for the current model iteratively
and “online”, during the training itself. Thus, the training is started
with a small initial set of points in the input parameter space
on which the model is trained. Subsequently, the active learning
algorithm determines the next best set of parameters, i.e., those
that will increase the model’s accuracy the most. We adopt the
heuristic that the next optimal training point is the one with the
highest prediction uncertainty of the model (Tsymbalov et al.,
2018). Furthermore, we estimate this uncertainty with repetitive
calls to our RNN that expresses stochastic behavior due to the used
dropout layers. This approach has already been used successfully
for the active training of neural networks for image segmentation
(Kang et al., 2023) and regression (Tsymbalov et al., 2018), where
it was presented as Monte-Carlo dropout-based active learning.
We note that we also investigated the alternative approach of
training multiple individual models and querying the variance
of their predictions. Preliminary investigations showed a similar
performance as the dropout layer approach, while the computational
costs for the training significantly increase with the used
number of models.

Algorithm 1 describes the implemented active learning
algorithm. We start with an initial set of training points and
iteratively evaluate the model variance on a separate evaluation set.
This set is sampled in each iteration, where we then select the points
that satisfy a distant constraint relative to all points in the current
training set. If no point is found that satisfies this constraint, the next
one in the evaluation set, sorted by the variance, will be selected
nonetheless. This is done until a preselected number of points is
found and the next iteration starts. After a preselected number of
iterations, the model is trained once more on the final set of training
data with the dropout layer turned off (dropout rate set to 0). One
would usually use a lower number of epochs in the intermediate
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FIGURE 4
Correlation between the variance obtained by Monte Carlo dropout
sampling and the mean absolute error (MAE) where both are
normalized by their standard deviation over all samples. Results are
shown for 100 points in the material parameter space and the same
time series input (shear and stretch) that were created using Poisson
Disk sampling.

training steps and subsequently train the final model for more
epochs to achieve a good compromise between accuracy and
computational effort.

Results

Dropout layer based active learning speeds
up surrogate model training

Our employed active learning approach relies on the assumption
that the variance of a neural network with dropout layers can
indicate the most rewarding locations in the input parameter space
in terms of gained prediction accuracy. To investigate the validity
of this assumption, we evaluate the variance in the predictions
of our model as well as the achieved accuracy in terms of mean
absolute error (MAE) to the finite element simulation, i.e., the
ground truth. To this end, we trained the network for 100 epochs
on 25 points obtained via Possion Disk sampling, where the
implementation of the latter is taken from the Python module
scipy (Virtanen et al., 2020). Subsequently, the model was evaluated
on a separate test set of 100 points. Figure 4 shows a clear trend
between the variance of multiple calls to the model, using the
same input parameters, and the MAE. The model was called
16 times and the MAE was calculated for the mean of these
predictions.

Next, we tested the performance of the active learning approach.
Initially, we trained our recurrent neural network on 24 training
points and subsequently retrained the model for 100 epochs after
adding 4 additional points following Algorithm 1. We repeated this
step 119 times, thus ending up with 500 training points after the
final iteration. Additionally, we used a “random learning” approach
with new training points being selected randomly. For the evaluation
of these approaches, we copy the model every five iterations, e.g.,
after adding 20 training points, and train it for 1,000 epochs, as

this would also be the procedure for the final selected training set.
Figure 5 shows the average of the determination coefficient R2 as
well as its standard deviation over the training set size. We observe
consistently better predictions from themodel thatwas trained using
active learning, indicated by the higher R2. The standard deviations
of R2 are also lower for the active learning approach, indicating
a better consistency in the prediction accuracy. Nevertheless, the
shown curves indicate that the biggest differences are found for
smaller training sets, followed by an asymptotic behavior with both
approaches yielding similar values for later iterations and therefore
higher training set sizes.

Recurrent neural networks can
approximate a viscoelastic finite element
simulation

The main requirements for our surrogate model are a reduction
of the computational costs together with a high accuracy in terms
of differences in the output from the high fidelity model. Here, we
analyze the performance of the final surrogate model that has been
trained for 1,000 epochs on 500 training points, selected via the
Monte-Carlo dropout-based active learning. A comparison of the
output of both models in Figure 6 shows that the RNN model is
able to well reproduce the qualitative behavior of the viscoelastic
finite element simulation output. The models were both run on
continuous strain input data of cyclic and stress relaxation loading
in compression-tension as well as cyclic torsional shear loading, as
introduced in Section Experimental data. Still, we observe some
deviations in the maximum amplitudes for the cyclic and stress
relaxation loading in compression, while especially the behavior
under cyclic torsional shear is well reproduced. The computational
costs in terms of cpu time for the shown predictions, measured with
the command line utility time under Ubuntu 22.04, are 13 m 49.8 s
and 8.4 s for the finite element simulation and the surrogate model,
respectively.

Subsequently, we evaluated the model on a test data
set containing 1,000 points and obtained an average R2

value of 0.9985 as well as a standard deviation of 0.0024,
indicating a robust prediction behavior with consistently
good results.

Surrogate modeling accelerates parameter
identification

Our main motivation for the presented active learning
surrogate modeling approach is the speed up of inverse parameter
identification tasks. We benchmark our trained RNN surrogate
model on the viscoelastic characterization of human brain tissue
from experimental data described in Section Experimental data.
As the response of a viscoelastic material depends on its loading
history, we pass the whole strain-time-series (axial stretch and
amount of shear) prescribed by the rheometer as input to the
models. Subsequently, we obtain also the output as time-series data
of nominal stress P and shear stress τ.

Figure 7 shows that the inverse parameter identification is able
to find a reasonably well fitting set of material parameters for
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FIGURE 5
Comparison between the value as well as the standard deviation of the determination coefficient R2 for adding new points to the training data set
when they are selected randomly or via active learning, e.g., those with the highest estimated variance.

FIGURE 6
Comparison of metamodel and finite element simulation output in terms of nominal and shear stress for the same time series input (stretch and shear
stress) as well as identical material parameters.

experimental data of human brain tissue. The model shows a
slight underestimation in compression during cyclic compression-
tension in terms of the predicted nominal stress, while we observe
an underestimation of the shear stresses during cyclic torsional
shear loading. Still, the predicted stresses during stress relaxation
in compression and tension show good agreement with the
experimental data.

Figure 8 shows the optimization history in terms of parameter
values found by the optimization that reduce the error of the
previous iteration. Thus, we can compare the hybrid approach,
where the optimization problem is initially solved for the surrogate
and then the finite element model, as opposed to using only the
finite element model from the start. The optimization is constrained
by the boundaries in Table 1 that are defined for the two models
separately. Here, the boundaries for the finite element simulation
are also used in the second phase of the hybrid approach. We

switch from the surrogate to the finite element model when the
optimization of the surrogate model output has fully converged.
We observe that the nonlinearities α as well as the viscosity η
continuously approach the final values and show reasonable first
estimates. The shear moduli μ show initial oscillations for μ1, while
μ∞ rises in the first iterations until it reaches a noticeable peak
and continuously decreases to the final value that underestimates
the later found optimal value. We note that the values obtained
from the optimization of the surrogate model for α∞, α1, and η1
assume the values of their prescribed upper boundaries in Table 1,
while μ∞ is close to its lower boundary. Nevertheless, the number
of function evaluations and the used CPU times in Figure 8, with
∼4h15 m and ∼4h44 m for the finite element and hybrid approach,
respectively, show how the low computational costs of the surrogate
model can help to accelerate parameter identification tasks. The
break-even point, where the accumulated saved computational effort
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FIGURE 7
Parameter identification results for experimental data of human brain tissue from the frontal cortex. The finite element simulation output is shown for
the final identified parameter set with α∞ = −16, μ∞ = 162 Pa, η1 = 13,949 Pa⋅s, α1 = −18, μ1 = 398 Pa.

due to the surrogate-based approach is higher than those for
the initial training is difficult to calculate, as it depends on the
computational setup and the differences will certainly vary between
different fitted datasets. But as an approximation based on the shown
example with 14 saved simulation runs, one would have to fit 36
experimental curves to overcome the initial effort needed to train
the 500 points used for training, neglecting the effort for the network
training itself.

Discussion

In this work, we show how a recurrent neural network
(RNN) surrogate model can speed up viscoelastic inverse material
parameter identification based on finite element simulations.
In a first step, we have quantified the accuracy of the RNN
surrogate model in comparison to our ground truth finite element
simulation. Additionally, we have demonstrated how Monte-Carlo
dropout based active learning can accelerate the training process
by selecting the training points with highest uncertainty from a
sampled set of candidates. Finally, we have employed our trained
model for the viscoelastic characterization of a human brain
tissue sample based on experimental data from cyclic loading
and stress relaxation in compression and tension as well as cyclic
torsional shear. A comparison of our proposed hybrid approach,
initially starting with the surrogate model and then switching to
the finite element simulation, to the inverse identification using
only the finite element model shows the capability to reduce the
computational effort.

The advantage of using recurrent neural
networks as surrogate models

We have trained the recurrent neural network in Figure 3 on
in- and output data of viscoelastic finite element simulations to

obtain a surrogate - or reduced order - model. The final model
shows good performance as it is able to reproduce the finite
element simulation output with high accuracy (Figure 6). This is
in good agreement with the results reported by Chen (2021) who
trained a recurrent neural network containing long short term
memory cells on output data from an analytical viscoelastic model,
assuming infinitesimal strains and linear isotropic constitutive
behavior. Similar to their work, we have used a many-to-many
architecture with a fixed number of time steps during training.
Nevertheless, this limitation can be easily circumvented by the
interpolation of input data to the needed format. Additionally,
our model is able to capture the highly nonlinear relation of
in- and output data in the finite element simulations, which is
caused by inhomogeneous deformation states due to non-slipping
boundary conditions during testing (Hinrichsen et al., 2023b) as
well as the nonlinear finite strain generalized Maxwell constitutive
model. We note that this approach becomes computationally
profitable when the accumulated time saved in each optimization
becomes higher than the time needed for the initial surrogate
model training.

Monte-Carlo dropout-based active
learning can speed up surrogate model
training

The training of our recurrent neural network surrogate model
is linked to significant computational costs due to the needed finite
element simulation runs for the generation of ground truth labels.
Hence, we have implemented a Monte-Carlo dropout-based active
learning scheme (Algorithm 1) to iteratively update our training set
with the next best points in the parameter space in terms of the
estiamted gain in model accuracy. Here, we obtain this estimate
in terms of the model uncertainty, which is again obtained by
Monte-Carlo sampling of the stochastic neural network.We observe
in Figure 5 that the active learning approach is able to improve
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FIGURE 8
History of parameter values during the optimization using the hybrid approach with the surrogate and finite element model combined (hybrid) as well
as only the finite element model. Function evaluations contain all model evaluations including finite difference approximations of the gradient as well
as failed optimization steps. The cpu times are measured using the perf_counter function of the Python module time.

the model performance in terms of achieved average R2 and even
more so for the standard deviation when we compare it to adding
randomly sampled points from the parameter space. Still, we see an
asymptotic behavior with both approaches, yielding similar results
for later iterations.However, as the dominating costs of our surrogate
model generation are those from data labeling in terms of finite
element simulation runs, the additional effort for the active learning
algorithm is from our perspective outweighed by the potential
improvements for lower training set sizes. Similar results were
achieved by others using dropout-based active learning (Tsymbalov
et al., 2018).

Use-case study: Viscoelastic parameter
identification for human brain tissue

We have integrated the developed recurrent neural network
surrogate model as a hybrid approach in our parameter
identification pipeline, where we initially identify parameters
for the surrogate model and use these as starting values for a
subsequent optimization using the finite element simulation.

TABLE 1 Boundary constraints used during the optimization of the
surrogate recurrent neural network model and the finite element
simulation.

Parameter RNN surrogate FE simulation

α∞ [-] [-20,20] [-100,100]

μ∞[Pa] [100,2000] [0,∞)

η1 [Pa⋅s] [0,104] [0,105]

α1 [-] [-20,20] [-100,100]

μ1 [Pa] [100,2000] [0,104]

The application of this approach to experimental data of
human brain tissue in Figure 7 shows that we obtain good
estimates for the optimal set of material parameters using the
surrogate model. The comparison to an optimization on the same
experimental data set and identical initial parameters (Figure 8)
shows that the hybrid approach needs more iterations but is still
noticeably faster.
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Limitations

An important limitation of purely data-driven methods like the
here used recurrent neural network is their inability to capture
the underlying physical principles, which can lead to unwanted
behavior like unphysical solutions. Alternative hybrid approaches
like constitutive artificial networks mitigate these limitations by the
enforcement of physical constraints in their structure (Linka et al.,
2021). Still, if the surrogate model is solely used to approximate an
initial solution for parameter identification tasks, the appearance
of such unphysical solutions will be less problematic: the validity
of parameter values (e.g., positive shear moduli) can be enforced
through optimization constraints.

As opposed to comparably simple analytical regression
functions like polynomials, neural networks are practically a black
box, as their sheer number of parameters prevents meaningful
interpretations. This makes it difficult to estimate the model
behavior for unknown input data and motivated us to constrain
our model to the parameter ranges of the training data. New
developments in the field of explainable machine learning (Adadi
and Berrada, 2018; Muckley et al., 2023) have the potential to solve
this problem in the future.

Conclusion

In the present study, we have trained a recurrent neural network
as surrogate model for viscoelastic finite element simulations. The
trained model is able to well approximate the relation of in-
and output data of the high fidelity finite element simulation for
the same boundary conditions and strain-time-series but varying
material parameters. Additionally, we have implemented a Monte-
Carlo dropout active learning scheme that can guide the model
training process by estimating the most rewarding training points
to be added to the training set from the material parameter space.
While this approach causes minimal computational overhead, we
observed higher accuracy as well as decreased standard deviations
of R2 values in model predictions compared to random sampling for
the same training set size. Although the improvements compared
to plain random sampling become increasingly small for higher
training set sizes, they are always present and thus motivate the
general application of thismethoddue to thementioned acceleration
potential. Finally, we have demonstrated the performance gains
when using the surrogate model in a hybrid approach, where
parameters are initially identified on the surrogate model yielding
a good initial estimate and subsequently on the finite element
simulation to achieve a higher accuracy. The results highlight the
potential of applying the presented surrogatemodel architecture and
training approach as a versatile tool to reduce computational costs
inmechanical characterization tasks on the same experimental setup
and protocol but varying samples.
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