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Numerous neurodegenerative diseases result from altered ion channel function
and mutations. The intracellular redox status can significantly alter the gating
characteristics of ion channels. Abundant neurodegenerative diseases associated
with oxidative stress have been documented, including Parkinson’s, Alzheimer’s,
spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington’s disease.
Reactive oxygen and nitrogen species compounds trigger posttranslational
alterations that target specific sites within the subunits responsible for channel
assembly. These alterations include the adjustment of cysteine residues through
redox reactions induced by reactive oxygen species (ROS), nitration, and
S-nitrosylation assisted by nitric oxide of tyrosine residues through
peroxynitrite. Several ion channels have been directly investigated for their
functional responses to oxidizing agents and oxidative stress. This review
primarily explores the relationship and potential links between oxidative stress
and ion channels in neurodegenerative conditions, such as cerebellar ataxias and
Parkinson’s disease. The potential correlation between oxidative stress and ion
channels could hold promise for developing innovative therapies for common
neurodegenerative diseases.
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1 Introduction

Reactive oxygen species (ROS) are generated by living organisms as a result of their
regular cellular metabolic processes and environmental factors, such as smoking, air
pollutants, UV radiation, alcohol consumption, infections, non-steroidal anti-
inflammatory drugs (NSAIDs), and inflammation (Valko et al., 2006; Birben et al.,
2012). ROS are required in small to moderate amounts for normal cellular functions.
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However, elevated concentrations induce detrimental alterations to
proteins, DNA, and lipids, which hinder cell function (Liguori et al.,
2018; Uttara et al., 2009). The lack of antioxidants generates
oxidative stress that increases reactive species’ levels (Uttara
et al., 2009). Pathological states often result in intracellular
oxidative agents overtaking reducing agents, causing redox
imbalances and oxidative stress (Simon et al., 2013; Sies et al.,
2017). Numerous oxidative stress-related diseases have been
reported (Sies et al., 2017; Ramírez et al., 2016), such as
neurodegenerative disorders involving Parkinson’s (Henchcliffe
and Beal, 2008), Alzheimer’s (Gella and Durany, 2009; Chang
et al., 2014), spinocerebellar ataxia (Guevara-García et al., 2012),
Huntington’s disease (Browne et al., 1999), and amyotrophic lateral
sclerosis (ALS) (Cunha-Oliveira et al., 2020). Several cardiovascular
diseases are also linked with oxidative stress, such as hypertension
(Griendling et al., 2021), heart failure (Pagan et al., 2022),
myocardial ischemia (Kurian et al., 2016), and atherosclerosis

(Kattoor et al., 2017). Other pathologies linked to oxidative stress
involve obesity (Manna and Jain, 2015), chronic inflammation
(Orzechowski et al., 2019), and chronic pain (Kaushik et al.,
2020). The literature is rich in presenting compelling evidence of
a significant association between neurodegenerative disorders,
aging, and oxidative stress (Browne et al., 1999; Gella and
Durany, 2009; Uttara et al., 2009; Riverón et al., 2010; Chang
et al., 2014; Cunha-Oliveira et al., 2020). Oxidative stress causes
neuroinflammation, and mitochondrial dysfunction leads to
apoptosis and cell damage that triggers neurodegenerative
processes (Figure 1) (Selivanov et al., 2011; Ashok et al., 2022).
Several neuroprotective therapies have been developed to combat
ROS that damage neurons and cause neurodegenerative disorders
(Uttara et al., 2009). The intracellular redox status can significantly
alter the gating properties of ion channels (Akbarali, 2014). Indeed,
various neurodegenerative diseases result from altered ion channel
function and mutations (Li and Lester, 2001).

FIGURE 1
Oxidative stress and neurodegenerative diseases (Ashok et al., 2022). An imbalance between ROS/RNS and antioxidants damages lipids, proteins,
and DNA. Cellular apoptosis and tissue death are promoted by impaired mitochondrial function and buildup of activated astrocytes and microglia. BBB,
Blood Brain Barrier.
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This review is an effort to summarize some of the common
modifications in ion channel regulations by ROS in some
neurodegenerative disease states.

2 Oxidative stress and ion channels

Oxidative stress passively damages proteins, lipids, and DNA but
also directly modulates many molecules in the cell signaling network,
such as ion channels. The ion channel is a macromolecular pore in cell
membranes that selectively conducts Na+, K+, Ca2+, and Cl–ions.
These pores are essential in conducting the ions across cell membranes
(Litalien et al., 2011). Different stimuli open ion channels and conduct
ions into or out of the cells, including changes in membrane potential,
chemical stimuli, or mechanical deformation (Li and Lester, 2001).
According to the stimulus they respond to, ion channels can be
classified into three superfamilies: voltage-gated (Purves et al.,
2001a), ligand-gated (Purves et al., 2001b), or mechanosensitive
(Martinac, 2012). Ion channel subtypes are differentiated by their
primary structure, distribution, and functional properties (Zheng
and Trudeau, 2023). In voltage-gated ion channels, the membrane
potential changes, and a specific ion is selectively dissolved; these
channels can be categorized into different families based on the ion
specificity (Purves et al., 2001a). Neurotransmitters or other ligands can
trigger ligand-gated ion channels. There are several subtypes of ligand-
gated channels, just like voltage-gated channels. Mechanosensitive ion
channels respond to alterations in mechanical forces on the cell
membrane (Zheng and Trudeau, 2023). Ion channels play a
fundamental role in nerve conduction, neural communication, and
muscle contraction, in addition to their conical function of transporting
ions across the cell membrane to set membrane potential (Rosendo-
Pineda et al., 2020) (Table 1) (Figure 2). Detailed information on recent
ion channel types can be found in the excellent textbook by Zheng and
Trudeau et al. (Zheng and Trudeau, 2023). There are also multiple
reviews on specific types of ion channels (Purves et al., 2001b; Shah and
Aizenman, 2014; de Lera Ruiz and Kraus, 2015; Nam et al., 2023a).

Posttranslational oxidativemodifications of certain proteins, such
as ion channels, can result from imbalances in cellular redox state
caused by ROS production, ineffective antioxidant defenses, or
environmental oxidative stress. (Bogeski and Niemeyer, 2014;
Kiselyov and Muallem, 2016). In ion channels and other proteins,
cysteine residues are the most vulnerable to oxidation due to their
highly reactive thiol groups. It is possible to oxidize thiols into sulfonic
acids and sulfonic based on the amount of oxidant present, the redox
potential, the amount of charge, and the temperature. Various
oxidative modifications can be applied to cysteines, including
processes like glutathionylation and nitrosylation. Elevated levels of
ROS can lead to the decomposition of amino acids, such as lysine and
arginine, into aldehydes or the conversion of methionine residues into
sulfoxides and sulfones (Bogeski and Niemeyer, 2014). Reactive
nitrogen species (RNS) and ROS have the potential to directly
alter ion channels by nitrosylation, nitration, and oxidation of
specific amino acid residues. This can eventually affect the
signaling pathways that modulate channel function, modifying
gene transcription, turnover, proteasomal degradation, and
trafficking (Akbarali, 2014). Sensitivity to alterations in the side
chains of the amino acid residues that serve as the targets for
ROS/RNS is typically associated with the presence of sulfur atoms

in (methionine and cysteine), aromatic rings (tryptophan, histidine,
and phenylalanine), or hydroxyl groups (tyrosine), (Annunziato et al.,
2002; Akbarali, 2014;Miranda et al., 2023). In biological systems, there
is a physiological balance between the generation of ROS and their
detoxification through antioxidant scavengers, such as glutathione,
catalase, and superoxide dismutase. When there is an imbalance,
oxidative stress occurs (Gulcin, 2020).

Many types of ion channels are recognized to be modulated by
oxidative stress. This modulation can be beneficial in some, while in
others, it leads to pathological states (Figure 3) (Akbarali, 2014). For
example, alterations in the gating properties and ion selectivity of
voltage-gated ion channels may occur. Oxidative stress can also
affect ligand-gated ion channels, thereby altering their signaling
pathways and sensitivity (Miranda et al., 2023). Another
consequence of oxidative stress on regulating intracellular Ca2+

levels is its ability to alter the function of Ca2+ release channels
within the endoplasmic reticulum and Ca2+ uptake channels in the
cell’s plasma membrane (Santulli et al., 2017). Ion channels might
also function as sensors of redox changes, given that various ion
channels are closely linked to oxidative stress. Also, ROS-induced
damage can be restored through natural protective mechanisms.
Consequently, for therapeutic purposes, understanding how these
reactants affect ion channel functionality is essential to
understanding how oxidative stress-related diseases are triggered.

2.1 Regulation of ion channels by
antioxidants

Post-translational modifications (PTMs) are significant
mechanisms modulating the functions of ion channels. Protein
phosphorylation is a classical PTM, and protein kinases regulate
many ion channels throughout phosphorylation (Yang et al.,
2014). There are different types of PTMs, such as Ubiquitylation,
S-glutathionylation, O-glycosylation, etc. Both normal and abnormal
states, including oxidative stress, are linked to post-translational
modifications (PTMs) mediated by redox processes targeting
cysteine residues’ thiol group. Redox-mediated post-translational
modifications (PTMs) constitute a significant set of PTMs that
specifically target the thiol group of cysteine residues. These
modifications are evident in various physiological and pathological
contexts, including situations marked by oxidative stress. Redox-
mediated post-translational modifications (PTMs) constitute a
significant group of PTMs that specifically affect the thiol group of
cysteine residues. These modifications are evident in various
physiological and pathological conditions characterized by
oxidative stress (Moran et al., 2001; Dalle-Donne et al., 2008; Yang
et al., 2014). One prominent mechanism for redox-mediated thiol
modulation is S-glutathionylation, which involves adding a
glutathione (GSH) group to the protein. The presence of reactive
oxygen species (ROS) plays a vital role in facilitating
S-glutathionylation. This phenomenon is increasingly observed in
various ion channels, including voltage-gated Ca2+ channels andATP-
sensitive K+ channels (KATP) (Tang et al., 2011; Yang et al., 2011).

Reduced GSH is a significant non-enzymatic antioxidant in
mammalian cells (Averill-Bates, 2023). GSH is a tripeptide
composed of glycine, cysteine, glutamate, and the active thiol
group in the cysteine residue that acts as a potent antioxidant.
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This antioxidant GSH is produced within the cell’s cytoplasm and
transported to the mitochondria (Wadey et al., 2009). Hydrogen
sulfide (H2S) has long been regarded as toxic, but it is now being found
to play an important physiological role (at low concentrations). Nitric
oxide (NO) is another well-known gaseous intracellular signal
transducer, including H2S. H2S is produced from cysteine by
several enzymes and plays a physiological role in cell signaling
regulation, homeostasis, and combating oxidative species, such as
ROS/RNS, in the body (Olas, 2015; Shefa et al., 2018).

Studies on the modulation of ion channel functions by NO and
H2S are summarized in Table 2.

2.2 Ion channel mutations and
oxidative stress

Most known human ion channel diseases or channelopathies
are hereditary and investigated through genetic approaches (Li and
Lester, 2001). Genetic analysis studies can be challenging because
the clinical phenotypes are complex, and significant genetic
heterogeneity exists. In other words, mutations in different
genes may lead to the same clinical phenotype. Despite these
challenges, numerous genes associated with human diseases
have been successfully identified, characterized, and localized by

TABLE 1 A Summary of different ion channel types and their role in the CNS (Zheng and Trudeau, 2023).

Family Subtype/Subfamily Subunit/Topology
transmembrane (TM)

Role in the CNS References

Voltage-gated Ca2+

channels (Cav)
Cav 2.1 (N- Type) (4 + 2 TM) x 4 Release of neurotransmitters and

Ca2+ ion transients within
dendrites

Purves et al. (2001a), Catterall
(2011), Schampel and Kuerten
(2017)Cav 2.2 (P/Q -Type)

Cav 2.3(R - Type)

Cav 3. (1–3)(T-Type) Frequent firing and pace-making

Voltage-gated Na+

channels (Nav)
NaV1.1, NaV1.2, NaV1.3 and
NaV1.6

(4 + 2 TM) x 4 Action potential initiation,
transmission, and modulation of
neuronal circuits

de Lera Ruiz and Kraus (2015),
Wang et al. (2017), Barbieri
et al. (2023), Zheng and
Trudeau (2023)

Voltage-gated K+

channels (Kv)
KV1 - KV4 (4 + 2 TM) Mediate outward K+ currents.

Setting the resting potential and
repolarizing action potentials
(limit neuronal excitability)

Purves et al. (2001a), Shah and
Aizenman (2014), Zheng and
Trudeau (2023)KV7 (KCNQ)

Eag (KV10- KV12)

Other related K+

channels
Ca2+ activated K+ channels (4 + 2 TM) Control cellular excitability and

maintain K+ homeostasis in non-
excitable cells

WEAVER et al. (2006), Aldrich
et al. (2021), Orfali and
Albanyan (2023), Orfali et al.
(2023), Rahman et al. (2023)

BK (KCa1.1)

SK (KCa2)—voltage independent

Two-Pore domain K+ channels
(K2P- Leaky K

+ channels): TWIK,
TREK, TASK, TALK, THIK, and
TRESK

(2 TM) x 2 Maintain the stability of the resting
membrane conductance and
contribute to the repolarization of
action potentials in excitable cells

Aggarwal et al. (2021), Fan et al.
(2022)

Inwardly rectifying K+ channels:
Kir1–7

(2 TM) Control of cellular excitability and
K+ ion homeostasis

Butt and Kalsi (2006), Adelman
et al. (2023)

Other cation-channels Transient Receptor Potential
Channels (TRP channels): TRPC,
TRPM, and TRPV

(4 + 2 TM) Neuronal firing and synapse
transmission

Sawamura et al. (2017), Wang
et al. (2020), Lee et al. (2021)

Hyperpolarization-Activated
Cyclic Nucleotide-Gated
channels: HCN1-4

(4 + 2 TM) Play a key role in modulating
synaptic transmission, dendritic
integration, and neuronal
excitability

Shah (2014), DiFrancesco and
DiFrancesco (2015), Chang
et al. (2019)

Voltage-gated Cl−

channels (ClC)
ClC-1 (17 TM) Set the cell resting membrane

potential and maintain proper cell
volume

Rinke et al. (2010), de Lera Ruiz
and Kraus (2015), Shen et al.
(2021)CIC-2 The membrane does not span all

helices

Ligand-gated channels Nicotinic acetylcholine receptor
(nACHR)

(4 TM) Fast synaptic transmission in the
nervous system and at the
neuromuscular junction

Purves et al. (2001b), Li et al.
(2014), Zheng and Trudeau
(2023)

Serotonin receptor (5HT-3) (4 TM) Fast synaptic transmission

GABAA receptor (GABA-A) (4 TM) Fast inhibitory transmission

Mechanosensitive ion
channels

Piezo (Piezo1) (38 TM) Regulation of neural growth and
development, neuroinflammation,
and angiogenesis

Martinac (2012), Jin et al.
(2020), Harraz et al. (2022)
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applying molecular genetic techniques (Li and Lester, 2001; Nam
et al., 2023a). Genome-wide association studies (GWAS) have
linked ion channels to oxidative stress-related disorders
(Akbarali, 2014; Ramírez et al., 2016; Liguori et al., 2018). The
consequences of these ion channel mutations related to oxidative
stress are diverse and contribute to the pathogenesis of various
diseases, such as neurological disorders, cardiac arrhythmias, and
certain types of cancers. Moreover, the aging process is linked with
increased oxidative stress and a higher incidence of ion channel
dysfunctions (Uttara et al., 2009; Chang et al., 2014; Kurian et al.,
2016; Liguori et al., 2018). Understanding the relationship between
ion channel mutations and oxidative stress is essential for
developing targeted therapeutic strategies. Detailed information
on specific potassium channel mutations and oxidative stress-
related disorders, such as ataxias, can be found in these
excellent manuscripts (Figueroa et al., 2010; Duarri et al., 2012;
Duarri et al., 2012; Lee et al., 2012; Nam et al., 2023a). This review
will generally cover different ion channel mutations caused by
oxidative stress in neurodegenerative diseases.

3 Oxidative stress in
neurodegenerative disorders

Neurodegenerative disorders affect millions of people
worldwide. Brain atrophy is the hallmark of neurodegenerative
diseases due to constant decline in neuronal function. Despite
age being a significant risk factor for all neurodegenerative
disorders, recent research indicates that genetic makeup and
environmental factors greatly influence the risk as well (Chen
et al., 2012; Lamptey et al., 2022). Although neurodegenerative
disorders have distinct etiologies and develop in different brain
sites, recent studies have observed that their effects on cellular and
molecular mechanisms are similar (Aborode et al., 2022; Gates et al.,

2022; Teleanu et al., 2022; Rehman et al., 2023). The central nervous
system (CNS) has a significant oxidative potential because of its
elevated oxygen usage. However, the CNS is particularly vulnerable
to oxidative stress because of the abundance of readily oxidizable
substances, limited levels of primary and secondary antioxidants,
elevated iron content in specific brain regions, the generation of ROS
by various internal mechanisms, and the presence of non-replicating
neurons (Maher, 2006; Adibhatla and Hatcher, 2010; Guevara-
García et al., 2012). Figure 1 demonstrates the tendency of
neurodegenerative diseases to progress as a result of oxidative
stress (Teleanu et al., 2022). Cells malfunction and even undergo
apoptosis because the redox balance shifts to oxidative (Lew et al.,
2022). Various neurodegenerative disorders are believed to be
impacted by oxidative stress (Figure 1). Ion channels’
dysregulation is another common pathophysiologic mechanism
that causes degenerative CNS diseases of widely differing genetic
etiologies (Huang and Shakkottai, 2023). Furthermore, H2S at low
concentrations lowers the level of ROS and thus protects neurons
from oxidative stresses (Shefa et al., 2018). The inhaled form of H2S
has a neuroprotective role In a Parkinson’s disease mouse model
(Kida et al., 2011). It also protects neurons from apoptosis and
degeneration (Olas, 2015).

Oxidative stress has been suggested as a factor in the development
of various neurodegenerative disorders, including certain types of
ataxias. The etiology of the diseases is multifaceted, with genetic and
familial investigations underscoring their heterogeneity (Guevara-
García et al., 2012). Point mutations often lead to diminished
expression of proteins specific to the mutated genes. The
connection between neurodegenerative disorders and oxidative
stress is dependent on molecular, in vitro, and animal studies
findings. Nonetheless, conflicting results emerge from human
biomarker studies, indicating the necessity for additional research
on the role of redox in neurodegenerative disorders associated with
channelopathies (Li and Lester, 2001; Guevara-García et al., 2012).

FIGURE 2
Topology diagrams of some ion channel families, showing locations of transmembrane domains and pore-forming segments.
Transmembrane, (TM).
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Listed below are some findings that correlate with the
modulation of ion channels and overproduction of ROS with
neurodegenerative disorders, such as inherited cerebellar ataxia
and Parkinson’s disease.

3.1 Inherited cerebellar ataxia

InheritedCerebellarAtaxias (ICAs) combine a group of complex and
uncommon neurodegenerative conditions that impact the cerebellum,
spinal cord, and peripheral nerves (Coarelli et al., 2023). A person with
ICA can experience balance, gait, speech, limb movement, eye
movement, and cognitive difficulties. A significant correlation exists
between ataxia location and cerebellar neuropathology: hemisphere
lesions result in limb or appendicular ataxia, while midline lesions
result in gait ataxia (Kashyap et al., 2020). Spinocerebellar ataxia
(SCA) is a subgroup of hereditary cerebellar ataxia, a progressive,

neurodegenerative, heterogeneous, rare disease that affects the
cerebellum (Brooker et al., 2021; Bhandari et al., 2023). The
pathology of spinocerebellar ataxia is still unknown, but the principal
cells involved in degeneration are Purkinje cells (Koeppen, 2005).
Purkinje cells regulate fine movement and muscle coordination. Thus,
a decline in the normal firing of the Purkinje cells leads to an excessive
calcium influx and excitotoxicity (Koeppen, 2005; Hosy et al., 2011). In
the CNS, particularly the cerebellum, histopathology shows atrophy and
enlargement of the lateral ventricles, loss of myelin in the frontal horn of
the spinal cord, and axonal degeneration (Bhandari et al., 2023).

3.1.1 ICA and oxidative stress
There is an association between oxidative stress and several

neurological disorders, including hereditary ataxias (Guevara-
García et al., 2012; Lew et al., 2022). Numerous investigations
have been conducted to prove the therapeutic roles of antioxidants
in ICAs (Sarva and Shanker, 2014; Braga Neto et al., 2016;

FIGURE 3
Pathophysiological consequences of redox modulation of some ion channels (Akbarali, 2014). Cysteine (CyS), Store-operated Ca2+ release-
activated Ca2+ (CRAC) channels or (Orai 1 channels). Tetrodotoxin-resistant (TTX-R) Na+ (NaV1.9) TTX-R.
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Picher-Martel and Dupre, 2018). Nevertheless, the results indicated
that these antioxidants only partially alleviated symptoms of ICAs.
This limitation may be because of the emphasis on clinical outcomes
rather than a comprehensive understanding of the underlying
molecular mechanisms associated with their approach to
addressing oxidative stress (Picher-Martel and Dupre, 2018; Lew
et al., 2022). The cause of ICAs is diverse (Coarelli et al., 2023).
The link between ataxia and oxidative stress depends mainly on
molecular, in vitro, and in vivo studies. Recent findings, for example,
have indicated that ataxin 2 and others are linked with the redox
imbalance in this disease (Guevara-García et al., 2012).

The significance of understanding the influence of oxidative
stress on ion channels is crucial in considering ataxias. It is also
needed to develop innovative approaches via alternative therapeutic
intervention in ICA and related diseases.

3.1.2 Ion channels involved in oxidative stress-
related ataxia

A cerebellar cortex includes Purkinje cells that integrate all input
into the cerebellum (Hosy et al., 2011; Hirano, 2018; Huang and
Shakkottai, 2023). A common feature of cerebellar ataxia is cerebellar
atrophy and Purkinje neuron degeneration (Koeppen, 2005; Cocozza
et al., 2021). Purkinje neurons are unique in that they spike
independently of synaptic stimulation. SCA mouse models
demonstrate that disruptions in the firing in Purkinje neurons
considerably weaken motor function, indicating that this
pacemaking ability of Purkinje neurons plays a critical role in
motor coordination (Kurian et al., 2016; Bhandari et al., 2023;
Dell’Orco et al., 2015; Jayabal et al., 2016). In resting conditions,
Purkinje neurons fire at an average frequency of 40 Hz with unvarying
inter-spike interval duration. Ion channels are predominantly
responsible for maintaining this regularity (Raman and Bean, 1999;
Braga Neto et al., 2016; Huang and Shakkottai, 2023).

In Purkinje neurons, voltage-gated Na+ channels (Nav1.6 and
Nav1.1) initiate action potentials when they are activated. Then, the

voltage-gated K+ channel activation will mediate the repolarization
of the action potential. Ca2+ enters Purkinje neurons via voltage-
gated Ca2+ channels, mainly Cav2.1 and Cav3.1, upon depolarization.
When Ca2+ binds to a specific type of K+ channel, called Ca2+-
activated K+ channels, an outward K+ current is generated, and the
Purkinje neuron is hyperpolarized to produce the
afterhyperpolarization (AHP) (Cooper and Jan, 1999; Li and
Lester, 2001; Burke and Bender, 2019). The main Ca2+-activated
K+ channels that generate the AHP in Purkinje neurons are small-
conductance Ca2+-activated K+ channels type 2 (KCa2.2) channels
(Kasumu et al., 2012; Nam et al., 2017; Nam et al., 2023b) and large-
conductance Ca2+-activated K+ (BK) channels (Du et al.,
2020) (Table 3).

Because ion channels play an important function in Purkinje
neuron physiology, maintaining redox equilibrium is crucial to
maintaining neurons’ homeostasis due to the alteration of their
activity by oxidative stress. Enzymatic antioxidants, such as
superoxide dismutase, glutathione peroxidases, and catalase, along
with non-enzymatic antioxidants like GSH and vitamins A, C, and E,
counteract various types of oxidative stress (Irato and Santovito,
2021). These antioxidants, whether endogenous or exogenous,
reduce oxidative stress and scavenge ROS in ICAs, which could
pave the way for a new ICA treatment (Pandolfo, 2008; Lew et al.,
2022). Activating antioxidative transcription factor NRF2 could be a
viable strategy to alleviate oxidative damage in ICAs (Kavian et al.,
2018). In response to oxidative stress, NRF2 modulates key
antioxidant enzymes, which, either directly or indirectly, regulate
redox homeostasis (Liu et al., 2016; Lew et al., 2022). AM-36 is a
neuroprotective agent that combines antioxidant and Na+ channel
blockade properties (Callaway et al., 2001). Compared to agents
possessing only one of these actions, AM-36 inhibited toxicity and
apoptosis (mediated by the generation of ROS) (Callaway et al., 2001).
Therefore, it is important to understand the link between the strategy
targeting specific ion channels and antioxidants in mediating the
progression of ICAs.

TABLE 2 A summary of studies on NO, H2S modulation affecting ion channels. Nitric oxide (NO), Hydrogen sulfide (H2S).

Channel Modulator Effect References

KV1-6 NO Block, suppress Brock et al. (2001), Núñez et al. (2006), Spiers and Steinert (2021)

KATP H2S H2S-activated KATP channels Tang et al. (2010)

NO NO-activated KATP channels Kawano et al. (2009), Spiers and Steinert (2021)

KCa H2S H2S-activated small and Intermediate conductance KCa

channels
Tang et al. (2010)

NO NO-suppressed SK currents Klyachko et al. (2001), Dalle-Donne et al. (2008), Artinian et al. (2012), Kyle et al.
(2013), Spiers and Steinert (2021)

NO-increased BK current

CaV H2S H2S-inhibited L-type Ca2+ channels in cardiomyocytes Tang et al. (2010)

NO H2S-stimulated the same channels in neurons Almanza et al. (2007), Chen et al. (2002), D’Ascenzo et al. (2002)

NO-activated L- and P/Q-type, whereas R and N-type
channels are unaffected

NaV NO Reduction of NaV currents Scheiblich and Steinert (2021), Spiers and Steinert (2021)

TRP H2S H2S-activated TRPV1 &TRPA1 Tang et al. (2010)

ClC H2S Activated Cl− channel Tang et al. (2010)
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3.2 Parkinson’s disease

Parkinson’s disease (PD) is a common neurodegenerative
condition distinguished by the progressive degeneration of
dopaminergic cells in the substantia nigra, a region in the
midbrain known for its accumulation of synuclein (Poewe et al.,
2017). The dopamine secretion by these neurons is crucial for
controlling movement ease and balance. Multiple pathways and
mechanisms are involved in the underlying molecular pathogenesis,
including synthase proteostasis, oxidative stress, mitochondrial
function, neuroinflammation, Ca2+ homeostasis, and axonal
transport (Miraglia et al., 2015; Poewe et al., 2017). The
etiologies of PD are still questionable. Leucine-rich repeat kinase
2 (LRRK2) Mutations are one of the causative genetic variants that
account for several autosomal, dominantly inherited PD
(Blauwendraat et al., 2020). It has also been discovered that other
genes, including ATP13A2, SNCA, PINK, GIGYF2, HTRA2, and
DJ1, can cause familiar and early-onset PD. Among their functions
are the degradation of ubiquitin proteins, the response to oxidative
stress, apoptosis, cell survival, and mitochondrial function (Maiti
et al., 2017).

3.2.1 Parkinson’s diseases and oxidative stress
Oxidative stress significantly promotes the erosion of

dopaminergic neurons in PD (Dias et al., 2013). Oxygen is
essential for brain function, and a large amount of oxygen is
converted into ROS. Overproduction of ROS in the brain raises

oxidative stress in people with Parkinson’s disease (Chang and
Chen, 2020). Oxidative stress is closely related to other
components of the degenerative process, like excitotoxicity, nitric
oxide toxicity, and mitochondrial dysfunction (Jenner, 2003;
Henchcliffe and Beal, 2008). Several genes associated with
familial PD, including parkin, alpha-synuclein, LRRK2, DJ-1, and
PINK-1, have been identified, providing important understandings
of the molecular pathways underlying the disease pathogenesis, as
well as highlighting earlier mysterious mechanisms where oxidative
stress plays a role in the disease (Dias et al., 2013). Examination of
brain tissue in Parkinson’s disease patients reveals a reduced level of
GSH compared to glutathione disulfide (GSSG) compared to healthy
brain tissue (Sian et al., 1994; Pearce et al., 1997). As oxidative stress
leads to programmed cell death, the mitochondrial condition of
GSH has gained recognition as a significant indicator of this
occurrence (Chang and Chen, 2020).

3.2.2 Ion channels involved in oxidative stress-
related Parkinson’s

Targeting ion channels provides an intriguing mechanistic
strategy to address the progression of PD and other
neurodegenerative disorders because of their important roles in
neuronal activities (Braga Neto et al., 2016). K+ channels are
important in neuronal excitability, neurotransmitter release,
neuroinflammation, and synaptic transmission in PD pathology.
In dopaminergic neurons, voltage-dependent K+ currents mediate
repolarizing action potentials and fine-tune pacemaker firing rates

TABLE 3 Summary of some ion channels involved in oxidative stress-related neurodegenerative disorders.

Channel Subtype Function Neurodegenerative
diseases

References

CaV CaV 2.1 (P/
Q-type)

Inward Ca2+ current upon depolarization SCA*6 Episodic ataxia type 2 Zhuchenko et al. (1997), Bushart and
Shakkottai (2019)

CaV3.1 (P/
Q-type)

SCA42 PD Morino et al. (2015)

Tabata et al. (2018)

NaV NaV1.1 Na+ ion influx and membrane depolarization during the
action potential

PD Saunders et al. (2016), Wang et al. (2019)

NaV1.1

KV KV3.3 K+ influx when the membrane depolarizes, leading to
hyperpolarization

SCA13 Figueroa et al. (2010), Zhang and
Kaczmarek (2016)

KV4.3 SCA19 and SCA22 Duarri et al. (2012), Lee et al. (2012)

KCa KCa1.1 Outward K+ current upon activation, fast AHP** in
neurons

SCA Staisch et al. (2016), Du et al. (2020)

KCa2.2 Medium AHP in neurons Cerebellar ataxia, SCA2 Klockgether et al. (2019), Nam et al.
(2023b), Rahman et al. (2023)

PD Lam et al. (2013)

TRP TRPC3 Mediate neuronal differentiation and vasomotor
function, inhibit the release of cytokines and NO.

SCA41 Fogel et al. (2015)

PD Rather et al. (2023)

TRPV4 Mediates inflammation pathways PD Vaidya and Sharma (2020), Liu et al.
(2022)

*Spinocerebellar Ataxia (SCA)

**Afterhyperpolarization (AHP)
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(Braga Neto et al., 2016; Picher-Martel and Dupre, 2018). Voltage-
gated Na+ channels modulate pacemaker frequency (Chen et al.,
2012; Sarva and Shanker, 2014).

Tetrodotoxin inhibits the voltage-gated Na+ channels, revealing
slow oscillatory potentials regulated by L-Type voltage-gated Ca2+

channels that regulate the precision, frequency, and robustness of
peacemaking (Zaichick et al., 2017) (Table 3). While excessive firing
and excess Ca2+ are significantly studied in connection to
neurodegeneration, the direct function of the related ion channels
in PD pathogenesis is mysterious. A variety of Parkinson’s disease
animal models, ranging from toxin-induced to genetically modified
mice, exhibit abnormalities in the operation of different ion channels
(Daniel et al., 2021). The pathogenesis of Parkinson’s disease
encompasses numerous interconnected pathways, including protein
aggregation, oxidative stress, mitochondrial impairments, and
abnormalities in autophagy. As a result, there have been numerous
efforts to address these pathways in order to provide neuroprotection
(Daniel et al., 2021). While several of these drugs in preclinical studies
have demonstrated positive outcomes, none of these interventions
have effectively transitioned into clinical application (Jenner, 2003).

In the field of ion channel drug discovery, a significant challenge
is preventing side effects arising from both target and off-target
mechanisms. Additionally, subtype selectivity is challenging when
various homologous members belong to the same subfamily (Brown
et al., 2020; Chen et al., 2023).

4 Concluding remarks

Ion channel malfunction is a common factor in neurological
disorders, evenwhen various genes are implicated as the root causes of
these diseases. The malfunction of ion channels can result from
changes in the intracellular redox environment, which alter how
these channels function. Consequently, oxidative stress shows a
significant role in the onset and development of neurodegenerative
conditions involving ataxias, Parkinson’s, Alzheimer’s, and ALS.
Despite recent advancements, the precise mechanisms of reactive
oxygen species (ROS)-mediated neurodegenerative diseases remain
partially understood. The role of ion channels in neurodegenerative
disorders associated with oxidative stress has now been recognized, as
they experience functional adjustments in such conditions. However,
the significance of targeting ion channels therapeutically varies
depending on the disease and the tissues in which these channels
are active. Ultimately, neurodegenerative diseases may be effectively
treated with a combination of ion channel-modulating therapy and
antioxidant medication. More research on the function of ion

channels in oxidative stress may provide a platform for exploring
new therapeutic approaches for treating many neurodegenerative
diseases associated with oxidative stress.
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