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Skin soft tissue expansion is the process of obtaining excess skin mixed with skin
development, wound healing, and mechanical stretching. Previous studies have
reported that tissue expansion significantly induces epidermal proliferation
throughout the skin. However, the mechanisms underlying epidermal
regeneration during skin soft tissue expansion are yet to be clarified. Hair
follicle stem cells (HFSCs) have been recognized as a promising approach for
epidermal regeneration. This study examines HFSC-related epidermal
regeneration mechanisms under expanded condition and proposes a potential
method for its cellular and molecular regulation.
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1 Introduction

Skin soft tissue expansion plays a crucial role in plastic and reconstructive surgery, and
is widely used for organ reconstruction, repair of extensive scarring, giant congenital nevi
and tissue defects (Cheng et al., 2020). During the expansion, the expander implanted
subcutaneously is continuously inflated with regular saline injections, thereby resulting in
the acquisition of skin tissues that are adequately to cover the wound defects matched in
color and texture. Despite the safety and satisfactory repair effects of skin soft tissue
expansion, a serious problem persists which is the low expansion efficiency (Dong et al.,
2020), prolonging the treatment duration for patients (Han et al., 2017). To addressed this
problem, facilitating skin regeneration becomes a promising approach which links to series
of underlying mechanisms (Guo et al., 2022).

Skin tissues undergo physiological growth primarily through biological responses to
mechanical stretch, as they are subjected to forces from the inflation of the expander
beneath the skin during the whole period of skin expansion over months. Therefore,
mechanical stretching is increasingly regarded as the major and initiated factor influencing
skin regeneration. During expansion, skin tissues undergo repeated microtrauma, wound
healing and skin development in response to mechanical stretch stimulation (Ding et al.,
2019). In such expanded condition, complexmechanobiological microenvironment induces
skin tissues sensing the stretching accompanied by cellular and extracellular matrix
reshaping (Guimarães et al., 2020), thereby resulting in multiple biological reactions
different from simple wound healing and skin renewal. Consequently, various cells,
molecules, and signaling pathways undergo constant changes, thereby leading to the
generation of new tissues. Cell behaviors and fates are determined by a multitude of
differentially expressed genes (DEGs), which can be influenced by mechanical stimulation
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and subsequently affect gene expressions. Additionally, mechanics-
related signaling pathways (Misra and Irvine, 2018) play crucial
roles in this process.

Recently, significant variations in the skin were reported
including the epidermis, dermis, and cutaneous tissues under
expanded condition (Yu et al., 2020; Zhang and Beachy, 2021).
The most noticeable changes throughout the skin were observed in
the epidermis (Huang et al., 2023), in which hair follicle (HF)
exhibits vigorous hair growth (Lee et al., 2019). Studies have
shown that the hair follicle stem cells (HFSCs) participate in
tissue repair (Li et al., 2022; Sun et al., 2023). HFSCs are located
in the bulge region of the HF, which is spatially relevant to the skin
(Joulai et al., 2017). HFSCs have recently gained significant attention
for their role in skin repair (Li et al., 2019) because they can
differentiate into other cells (Quan et al., 2017; Schomann et al.,
2020). In addition to having a greater potential for diverse
differentiation, HFSCs are easier to obtain with less harm to
donors than other stem cells (Wang et al., 2013; Chen and Guan,

2023). Though HFSCs are reported to make a nonnegligible
contribution to epidermal regeneration under expanded
condition (Cheng et al., 2020), the underlying mechanisms still
have not been thoroughly clarified.

This review elucidates the cell crosstalk and molecular
mechanisms (transcriptome changes, signaling pathways, and ion
channels) of HFSCs under expanded condition, thereby
contributing to a deeper understanding of HFSCs-dependent
epidermal regeneration.

2 HFSCs in epidermal regeneration

2.1 HFs and HFSCs

In mammalian skin, hair and hair follicles (HFs) are appendages
crucial for protection, thermal regulation, and sensory perception.
Throughout the life, HFs experience repetitive regenerative cycles

FIGURE 1
The effects of mechanical stretch on HFSCs and their niches Diverse groups of cells and extracellular matrix proteins around the HFSCs are
organized to form a niche that serves to promote and maintain the optimal functioning of these stem cell populations. The hair cycle and HFSCs
activation condition are changed induced by mechanical stretch. Under certain circumstances, HFSCs are transformed into epidermal stem cells which
can be promoted by several growth factors secreted by M2 macrophages. These effects on HFSCs play important roles in epidermal regeneration.
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that produce hair propelled by the intermittent activation of HFSCs
(Hu et al., 2021; Lee et al., 2023). HFs, consisting of the papilla,
matrix, dermal sheath, and bulge, are complex mini-organs
embedded in the skin. The dermal sheath contains the bulge
region, which is the major repository of HFSCs. It provides a
microenvironment, known as the “niche”, which is pivotal in
supporting functions of these stem cell groups and regulating
successive hair growth cycles, including telogen, anagen, and
catagen phases. The skin stem cells and their niches are shown
in Figure 1. HFSCs exhibit heterogeneity, with those in the upper
bulge not contributing to HF regeneration, also called isthmic stem
cells, whereas those in the lower bulge can regenerate the outer root
sheath of the HF (Hu et al., 2021). During HF morphogenesis, the
lower portion undergoes repetitive degeneration and regeneration,
which is contributed by HFSCs (Hsu et al., 2014).

Isthmic stem cells are distinguished at the upper region of the
HF by low α6-integrin levels and are negative for CD34. Research
has identified a versatile population of HFSCs are situated close to
the sebaceous gland. These cells are referred to HF-associated
pluripotent stem cells, and their offspring are located in the outer
root sheath of the HF (Li et al., 2023; Amoh and Hoffman, 2017).
Stem cells in the upper bulge area, usually dormant but with self-
renewal capabilities, are the primary source for the upper hair and
sebaceous unit (Rompolas et al., 2013). Han et al. reported that the
descendants of K15+, Lgr5+, and Gli1+ stem cells from the upper
bulge region contribute to the formation of sebocytes through a

process reliant on β-catenin (Han et al., 2017). Additionally, these
cells can differentiate into various cell types, including neuronal,
endothelial, and fat cells, beyond the HF (Hoffman, 2006; Amoh
et al., 2005; Amoh and Hoffman, 2017). Figure 2 Similarly, these
cells also exhibit significant clonogenic, multipotent, and self-
renewal capabilities and contribute to wound healing (Lough
et al., 2016).

HFSCs are located in the bulge and remain quiescent in the
telogen phase. HFSCs may experience activation–quiescence
transitions depending on their niche microenvironment, such as
the cycling of HFs and tissue injury. The status of HFSCs relies on
the factors originated from the microenvironment. When a certain
stem cell activator concentration is reached, some HFSCs will be
activated, accompanied by the beginning of the anagen phase (Ji
et al., 2021) while the remaining HFSCs still maintained quiescence.
Activated HFSCs play a role in hair growth and tissue regeneration,
exhibiting versatility in response to various external stimuli (Zhang
et al., 2023; Shwartz et al., 2020). Studies have highlighted the
significance of the microenvironment, especially the role of local
mechanics in tissue engineering and regeneration. Additionally, cells
adjacent to HFSCs in their niche modulate HFSC activity via
secreted molecules such as fibroblast growth factors and bone
morphogenetic protein inhibitors or direct interactions between
cells (Rendl et al., 2008).

Increasingly, HFSCs are recognized as vital reservoirs for
epidermal tissue regeneration post-injury. In the 1940s,

FIGURE 2
Signaling pathways induced by HFSCs under mechanical stretching There are mainly three signaling pathways induced by HFSCs under mechanical
stretching including Wnt/β-catenin, Shh and Notch pathway. They are underlying mechanisms of HFSCs promoting epidermal regeneration.
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researchers first reported that dedifferentiated cells from HFs
contribute to wound healing, and superficial wounds where HFs
remained intact healed faster (Toma et al., 2021). Moreover, grafts
containing HFs carrying HFSCs have shown great potential in
promoting epidermal healing for the treatment of chronic
cutaneous wounds (Liu et al., 2015; Martínez et al., 2016;
Martínez et al., 2017). HFSCs in the lower bulge region and the
isthmus of the HF both can migrate to the injury sites and contribute
to re-epithelialization during wound healing (Nuutila et al., 2017;
Burgy and Königshoff, 2018; Li et al., 2019). Cells located in the HF
lower bulge have the capability to generate both the HF and
epidermis, especially in injured newborn mouse skin. In these
scenarios, cells within the HF bulge can migrate towards the
epidermis (Liu et al., 2024). Recently, a study showed that when
a superficial wound was created in mice, the HF cells in the newly
formed epidermis were gradually replaced by keratinocytes derived
from the epidermis (Ji et al., 2021). It is indicated that HFSCs in the
bulge region predominantly react to epidermal wounds by
generating short-lived “transient amplifying” cells, which play a
part in the recovery of acute wounds (Lee and Choi, 2024). Langton
et al. reported that when a wound was created in the tail of mutant
mice lacking all HF development, the cutaneous wounds healed with
a delay re-epithelialization (Langton et al., 2008).

Therefore, the ability of HFSCs to differentiate and regenerate is
crucial for epidermal regeneration; however, the mechanisms
involved are intricate and worth exploring.

2.2 The crosstalk between HFSCs and other
cells in epidermal regeneration

The epidermis, serving as the primary environmental barrier,
adjusts its form and dimensions in response to mechanical
stretching (Khorasani and Sadeghi, 2024). HFSCs promote
epidermal regeneration caused by the connections between
HFSCs and cells including keratinocytes, endothelial cells (ECs),
and inflammatory cells (Gonzales and Fuchs, 2017), which are of
great help in epidermal regeneration. Furthermore, there exists
conversion such as differentiation in cell types in response to
mechanical stretching, which has tight relationship with HF
regeneration and wound healing (Rompolas et al., 2013).
Conversely, the complex interactions among different cells form
a feedback loop through growth factors or overlapping signaling
pathways that regulate the functions of each cell (Hsu et al., 2014).

2.2.1 HFSCs and keratinocytes
Keratinocytes constitute the epidermis and serve as a skin

barrier against external damage. Skin typically undergoes
epithelialization when damaged by outside stimuli. During this
process, keratinocytes are derived from the interfollicular
epidermal stem cells in the basal layer as well as from HFSCs
and their own proliferation. Epidermal stem cells reside in the
basal layer of the epidermis and exhibit limited division. They
are also accountable for differentiation into different lineages
within mature skin (Yang et al., 2020). The main site of
epidermal stem cell regeneration is the stratified epidermis, which
forms a physical barrier. Epidermal stem cells undergo either
symmetric division yielding two same stem cells, or asymmetric

division generating progenitor cells and ‘reserve’ non-stem cells with
slow cycling properties. The slow cycling stem cells are favored of its
turnover which are crucial for tissue regeneration. Lineage tracing
reveals that slow cycling cells, once mobilized, generate cell clones
that contribute to healing and then the healing areas are
characterized by a self-renewing interfollicular epidermis. Despite
their minimal role in tissue homeostasis, these cells are mobilized
post-injury, significantly aiding epidermal repair in areas devoid of
HFs. It is notable that in most cases, symmetric divisions are
characterized by a prominent population of self-renewal rather
than exclusive asymmetric division.

Daughter cells that have differentiated move away from the basal
layer and undergo further differentiation in the spinous, granular,
and suprabasal layers of the stratum corneum. Inward-moving inner
cells eventually replace these cells (Hsu and Fuchs, 2022). Hence, the
importance of epidermal stem cells lies in their ability to repair skin
defects, restore skin integrity, enhance tensile strength, and improve
barrier function (Singer et al., 1999). During wound healing and skin
regeneration, epidermal stem cells acquire the ability to repair
adjacent compartments, and these compartments can be refilled
with each other (Sada et al., 2016; Hirsch et al., 2017; Lee and Choi,
2024). Observed that mechanical stretching and epidermal stem cells
are closely correlated and regulated by EZH2 (Wang et al., 2021;
Wang et al., 2021).

HFSCs and epidermal stem cells can undergo mutual
transformation under certain conditions. They play a crucial role
in wound healing by recruiting and differentiating into epidermal
cells, a process that can be facilitated by exogenous cytokines, growth
factors, and chemicals (Matsumura et al., 2021). Gli1+ HFSCs are
more prone to differentiate into epidermal stem cells (Lee et al.,
2023). As HFSCs and epidermal stem cells are responsive to
mechanical traction and influenced by various factors, whether
endogenous or exogenous, a deeper understanding of the
underlying mechanisms is crucial. Therefore, the transition of
HFSCs to keratinocytes may be achieved via epidermal stem cells
under expanded condition.

2.2.2 HFSCs and ECs
It is important for cellular regeneration and tissue repairing to

obtain an accelerated neovascularization, increasing blood flow and
nutrition in surroundings. Cheng et al. confirmed that during skin
expansion, HFSCs can differentiate into vascular ECs stimulated by
the secretion of growth factors, including EGF, VEGF, bFGF, and
TGF-β (Cheng et al., 2020). After incubating HFSCs with VEGF and
bFGF for 7 days, Xu et al. found that the expanded HFSCs displayed
characteristics similar to endothelial cells, such as expressing vWF,
VE-cadherin, and CD31 (Xu et al., 2014). Although the interplay of
HFSCs and ECs has less been reported under expanded condition,
they indeed play a crucial role in epidermal regeneration because
tissue regeneration deeply relies on neovascularization and re-
epithelization. For example, in angiogenesis, which is vital for
skin barrier rebuilding (Liu et al., 2024), Heidari reported that
HF bulge cells increased vascularization in full-thickness wounds
inmice instead of HF isthmus cells (Heidari et al., 2016). In the study
conducted by Babakhani, when HFSCs were administered around
the periphery of the wound, it was observed that the wound area
exhibited significant enhanced neovascularization, particularly
notable on the 7th and 14th days following treatments, in
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comparison to other groups (Babakhani et al., 2020). These newly
formed blood vessels were instrumental in reducing the duration of
the inflammatory phase and in supplying essential nutrients and
oxygen for the proliferation of cells and the regeneration of tissues
(Xia et al., 2017). The effects of HFSCs on vascularization may be
due to the differentiation of HFSCs to ECs, whichmay also be closely
associated with the factors HFSCs promote to secrete.

2.2.3 HFSCs and inflammatory cells
Inflammatory cells, including macrophages and regulatory

T cells, promote quiescence and hair growth in HFSCs, leading
to epidermal regeneration.

Typically, there is a notable number of macrophages found in
the perifollicular compartment. They regulate hair cycles and enable
the HFSC niche to detect tissue injury and mechanical states.
Initially, they stimulate HFSC activation and differentiation by
releasing factors like Wnt7b and Wnt10a. Additionally, the
depletion of TREM2 dermal macrophages, producers of
oncostatin M, inhibits downstream JAK-STAT signaling resulting
in premature anagen phase entry. During wound healing,
macrophages are recruited via apoptosis signal-regulating kinase
1 (ASK1) or CCL2, activating HFSCs through the TNF-α/AKT/β-
catenin pathway. M2 macrophages produced in stretched skin
facilitate hair regeneration by secreting growth factors such as
IGF and HGF (Chu et al., 2019). This illustrates that various
populations of macrophages play separate roles in regulating
HFSC activation and differentiation.

In the skin, regulatory T cells (Tregs) primarily localize to HFs,
maintaining the HF niche. Numbers of Tregs are mainly found
surrounding HFs during the resting phase of the HF cycle. They not
only function traditionally as an inflammation controller,
promoting tissue homeostasis, but enhance the activation and
differentiation of HFSCs, promoting HF cycling. Tregs were
proved to facilitate the HF telogen-to-anagen transition
accompanied by the increasing number of proliferating
Ki67 HFSCs which was significantly lower in Treg depleted mice.
Under the condition of wound healing especially after epidermal
injury, HFSCs are recruited from the HF bulge and participate in the
repair of the upper HF and interfollicular epidermis through
controlling the specific IL17-CXCL5-neutrophil axis (Lee et al.,
2023). However, the inhibition of inflammation is not the only
way in which Tregs promote HFSCs function in the process of hair
regeneration. In certain research studies, Tregs produce the Notch
ligand, Jag1, which stimulates the proliferation and differentiation of
HFSCs and drives progression through the anagen phase (Ali et al.,
2017). HFSCs behaviors are changed during HF cycling through
Notch signal which is employed by skin-resident Tregs.
Interestingly, it is also found that the glucocorticoid receptor
(GR) in Treg cells affects hair regeneration without disturbing
immune homeostasis. GR promoted TGF-β3 induction in Treg
cells which activates Smad2/3 in HFSCs and facilitates HFSC
proliferation (Liu et al., 2022).

Interestingly, some researchers have also discovered that HFSCs
acquire an “inflammatory memory” (Cheng et al., 2023). It is well-
known that only certain immune cells develop memory to shield
tissues from external stimuli. However, Fuchs et al. demonstrated
that upon skin inflammation or trauma, HFSCs resist stimuli,
proliferate, and differentiate, thereby the damaged epidermal cells

are subsequently replaced (Naik et al., 2017). Even if the stimuli
disappeared, some cells maintained a post-inflammatory
characteristic for a long time, speeding up the wound healing
process. It may be related to chromatin remodeling and
enhanced inflammation-related transcriptional response,
augmenting IL-1β to promote the regenerative process. At
present, the inflammatory memory state in HFSCs could persist
for at least 180 days, showing the stability of the response.

3 Mechanisms of epidermal
regeneration induced by HFSCs under
mechanical stretching

The mechanisms of epidermal regeneration are part of a
comprehensive and complex system, as HFSCs are involved in
transcriptional, molecular, and signaling pathway regulation
under mechanical stretching.

3.1 Transcriptome changes

Recently, to elucidate gene information under various
microenvironments, transcriptomic analysis using RNA
sequencing has been increasingly employed, reflecting the
fundamental differential expression of RNA levels. To examine
the underlying molecular mechanisms, several researchers have
endeavored to investigate transcriptomic changes in expanded
skin soft tissue. Our mRNA sequencing results demonstrated that
expansion significantly stimulated most DEGs in the skin, which
were enriched in the biological processes of epidermal growth and
keratinization, corresponding to the thickened expanded epidermis.
These findings indicate significant changes in tissue remodeling and
the cytoskeleton of skin tissues (Ledwon et al., 2020; Liu et al., 2021;
Dong et al., 2022).

The majority of the new skin is composed of the thickened part
of the epidermis, which is a result of epidermal cell growth. A
transcriptomic study on expanded mouse skin reported that
epidermal cells serve as crucial effector cells in skin expansion,
with epidermal cell proliferation and renewal playing a decisive role
in skin regeneration (Joost et al., 2018; Aragona et al., 2020). It was
observed that expansion upregulates a number of HFSC-associated
genes and the possible downstream differentiated cells—epidermal
stem cells, including Krt14, Krt24, Cd34, Krt79, Fgf18, Lgr6, and
Lgr5 (Zhang et al., 2023; Zhao et al., 2023). The epidermal basal cells
of keratinocytes comprise epidermal stem cells that express Krt14 as
a marker of actively proliferating keratinocytes (Wiśniewska et al.,
2021). HFSCs were characterized by Krt24, Cd34, Krt79, and
Fgf18 expression and were specifically located in the inner bulge
cells. These cells serve as structural constituents of the epidermal
cytoskeleton and contribute to skin barrier strengthening.
Lgr6 encodes a member of the G protein-coupled 7-
transmembrane protein superfamily. It is well known that Lgr6 is
an epidermal stem cell marker, particularly during wound re-
epithelialization (Huang et al., 2021). The loss of Lgr6 indicates a
decrease in stemness (Ruan et al., 2019). In addition, Lgr6 activates
both the Wnt and Hippo/YAP signaling pathways, which are closely
related to mechanical stretching (Schlegelmilch et al., 2011).
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Moreover, recent studies have shown that during expansion, Lgr6+
cells in the epidermis proliferate, activate, and differentiate to
stimulate skin growth (Xue et al., 2022). Lgr5 encodes a protein
with high homology to the LGR6 protein (Sun et al., 2023). Both
Lgr5+ and Lgr6+ cells are engaged in Wnt signaling, but Lgr5+ cells
primarily contribute to HF renewal (Nusse and Clevers, 2017).

In addition, special transcription factors including MSX2, LEF1,
TCF7, HMGA1, and TFAP2C are involved in epidermal
regeneration. MSX2 encodes homeodomain transcription factors
that are necessary for morphogenesis (Liu et al., 2021). It is mainly
located in the epidermis and is highly influenced by stress and force,
as strongly evidenced in limb regeneration. LEF1 and TCF-7 are
members of the lymphoid enhancer-binding factor/T cell factor
family. They drive Wnt/β-catenin signaling pathway activation (Luo
et al., 2019) and play a significant role in HF differentiation.
HMGA1 is highly expressed in stem cells but rarely detected in
differentiated cells. By amplifying the Wnt signaling pathway,
HMGA1 typically enhances stem cell self-renewal (Xian et al.,
2017). TFAP2C, considered as a subunit of the transcription
factor AP-2, is activated in response to stress. TFAP2C promotes
the differentiation of progenitor cells into mature keratinocytes (Li
et al., 2019).

Furthermore, other changes at the transcriptomic level such as
circRNAs were observed to be expressed and involved in HFSC
regulation (Liu et al., 2019). Collectively, all these studies analyze the
changes in genes and transcription factors under mechanical
stretching, which are helpful for gaining a better understanding
of the underlying mechanisms. It has been identified that multiple
genes and factors in HFSCs and epidermal stem cells that play a role
in the biological processes promote epidermal regeneration during
skin soft tissue expansion (Gentile and Garcovich, 2019).

Contrarily, the stages of HF inactivity (telogen), growth
(anagen), and decline (catagen) phases depend on the complex
interactions of signaling networks like Wnt/β-catenin, Sonic
hedgehog (Shh), and Notch. More importantly, under the
condition that HFs continually experience and are affected by
intrinsic mechanical forces in vivo, these pathways showed
directly or indirectly relationships with mechanical stretch.
Consequently, this review describes the Wnt, Shh, and Notch
pathways in details, advocating for further cellular studies in
this field.

3.2 Signaling pathways in HFSCs that
facilitate epidermal regeneration

3.2.1 Wnt/β-catenin signaling pathway
The Wnt signaling pathway is a highly conserved cascade

transduction pathway in biological processes, which participates
in life activities, including embryonic development and stemness
homeostasis (Zhu et al., 2014; Houschyar et al., 2020). The Wnt
protein family is encoded by the wnt gene, which initiates complex
cascade signaling reactions by binding to Frizzled membrane protein
receptors and ultimately regulates the transcriptional activation of
target genes. Wnt signals are transmitted through at least three
different intracellular pathways, with the classical Wnt/β-catenin
signal having a close relationship with HFSCs (Li et al., 2023). The
Frizzled receptors are bound by the Wnt ligand, which in turn leads

to the anchoring of Axin to the phosphorylated lipoprotein receptor-
related protein (Ren et al., 2021). This leads to the disintegration of
the complex, including Axin, APC, and GSK3, thereby resulting in
β-catenin stabilization (Stamos et al., 2014; Houschyar et al., 2020).
β-catenin is crucial for stabilizing the Wnt/β-catenin pathway.
Notably, β-catenin acts as an effector of mechanical signals and
exists as both a cytoplasmic and nuclear protein. In the plasma
membrane, β-catenin can be found in two forms, the E-calmodulin/
β-catenin/α-catenin complex and as unbound β-catenin (Veltri
et al., 2018). β-catenin binds to E-calmodulin and α-catenin
complexes through adhered junctions and participates in
intercellular adhesion, migration, and cell–cell adhesion
mechanotransduction when no Wnt signaling is present (Ledwon
et al., 2022). When the β-catenin concentration in the cytoplasm
reaches a certain level, it is translocated to the nucleus and combines
with LEFs and TCF, thereby upregulating the transcription of
corresponding target genes and promoting HFSC proliferation
and differentiation (Nusse and Clevers, 2017).

Mechanical stimulation triggers nuclear localization of β-catenin
and activates the Wnt signaling pathway, which are essential for
epidermal cell skin regeneration (Cheng et al., 2020). As shown in
expanded epidermis, cell thickness and density increase which are
linked to WNT signaling activation and β-catenin accumulation in
basal keratinocytes due to mechanical stretching (Yu et al., 2020;
Guo et al., 2022). Moreover, β-catenin accumulation initiates HFSC
regeneration and activation in vivo, followed by a formation of the
positive feedback loop that continuously strengthens Wnt signaling
and HFSC regeneration by transmitting mechanical stimulation to
each cell through cell–matrix interactions, cell junctions, and
indirect cell communication, such as non-muscle myosin II
(NMM-II) protein. It is encoded by Myosin Heavy chain 9, and
has been reported play an important role in responding to stiffness
and rigidity sensing in cell adhesion, migration, proliferation, and
differentiation. It is an important constituent of the non-muscle
cytoskeleton. It is an important constituent of the non-muscle
cytoskeleton (Yang et al., 2023). Research has demonstrated that
MYH9 binds to GSK3, causing a decrease in GSK3β protein levels
through ubiquitin-dependent degradation. The β-catenin
degradation complex is impaired by this disruption, leading to
the activation of the Wnt/β-catenin signaling pathway (Lin et al.,
2020; Hu et al., 2022; Li et al., 2023). However, it is still worthwhile to
explore the role of this protein, along with Wnt signaling and
mechanical stretch.

Secreted Frizzled-related proteins and Wnt3a also regulate the
activation of the Wnt/β-catenin signaling pathway. Additionally,
mechanical stretching downregulates SFRP2, a Wnt pathway
antagonist, thereby increasing β-catenin levels (Ledwon et al.,
2022). SFRP2, in conjunction with Wnt3a or other Wnt ligands,
enhances Wnt signaling activation, which is served as Wnt pathway
agonists (Bai et al., 2023). Furthermore, the thickening of the
expanded epidermis leads to continuous re-epithelialization in
response to mechanical stimuli. New HFs gradually emerge in
the central epidermis of the microtrauma areas. The growth of
new HFs follows the hair cycle, resembling different stages of
embryonic HF development, and ultimately becomes
morphologically similar to adjacent hair (Kimura and Tsuji,
2021), suggesting the endogenous activation and recruitment of
HFSCs. Research indicates that distinct stem cell compartments
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exist in the epidermis and HFs under physiological conditions.
Upon re-epithelialization, these compartments become occupied
by new epidermal cells. HFSCs temporarily differentiate into
epidermal cells to cover the exposed dermis (Takeo et al., 2015).
Activation of bulge cells leads to their differentiation into epidermal
cells, indicating that transplanted HFSCs can become keratinocytes
with enhanced proliferation capabilities, thereby facilitating
epidermal regeneration. Activation of Wnt signaling in the
epidermis markedly boosts the quantity of HFSCs (Rishikaysh
et al., 2014). Combining other studies with our research, we are
convinced that the Wnt/β-catenin signaling pathway primarily
contributes to hair follicle stem cell-driven epidermal
regeneration under expanded conditions.

3.2.2 Sonic hedgehog (Shh) signaling pathway
The Shh pathway primarily controls signal transduction in the

epidermis and can respond to mechanical loading of different tissues
and stages both in vitro and in vivo (Zhang et al., 2023). HFSCs,
perpetually immersed in a mechanically dynamic niche, are linked
to Shh pathway activity (Huang et al., 2016). Shh signaling not only
enhances both epidermal and HF growth, but preserves the stemness
of HFSCs (Suen et al., 2020). Classic HH signal pathway
transduction usually involves several key elements, including the
HH ligand, cell surface receptor patched (PTCH), membrane
protein smoothened (SMO), transcription factor glioma (GLI),
and suppressor of fused protein (Zhang et al., 2023). Among the
HH pathway, the Shh pathway, which is currently being extensively
investigated, is essential in HFs (Ma et al., 2017). The SHH ligand
binds to PTCH, thereby leading to the release of SMO, which is
usually inhibited by PTCH during the resting state. The free SMO
subsequently activates the target GLI.

The Shh signaling pathway plays a crucial role in HF
development, primarily via enhancing dormant stem cell
proliferation and modulating dermal cues that stimulate transient
amplifying cell (TAC) proliferation (Hsu et al., 2014). Dormant stem
cells initiate Shh expression, whereas activated stem cells give rise to
TACs. The TAC population has been observed to diminish when
Shh signaling is absent. Notably, the Shh pathway stimulates HF
regeneration and accelerates HF maturation during skin wound
healing. For example, a reduction in SHH protein selectively reduces
the HF epithelium, suggesting that Shh signaling is essential for HF
integrity (Lim et al., 2018). The Shh/GLI signal not only controls the
development of HF in embryonic cells but also impacts the duration
and growth of adult HFs by stimulating the transition of follicular
cells from telogen to anagen. Furthermore, a study conducted by
Choi et al. found that treatment with a monoclonal antibody against
Shh resulted in reduced hair growth in mice (Choi, 2018). Therefore,
the detailed molecular mechanisms are arousing attention and have
been investigated. Mechanical stimulation influences the expression
of MSX2 which is the key transcriptional regulator of follicular
differentiation. Study have proposed that MSX2 can play a role in
the Shh signaling pathway based on certain studies (Liu et al., 2022).
When the Shh signal is activated, downstream GLI can positively
regulate MSX2 expression (Anichini et al., 2021).
MSX2 upregulation (Kim and Yoon, 2013) leads to an increase
in LEF1 expression. Interestingly, LEF1 can also upregulate
MSX2 expression in human pluripotent stem cells and other cells
(Wu et al., 2015). LEF1 has also been identified as a vital transcription

factor that regulates the expression of other factors involved in
cytoskeleton remodeling, including matrix metalloproteinases-13
(Elayyan et al., 2017). Otherwise, LEF1, a critical component of the
Wnt pathway, potentially bridges the Shh and Wnt pathways,
facilitating crucial crosstalk. However, GSK3β serves as an inhibitory
factor that downregulates both pathways. In addition, SFRP1, a
downstream gene of the SHH pathway, has a similar effect on the
Shh and Wnt pathways (Cierpikowski et al., 2023). However, the
downstream GLI family of the signaling pathway can activate both
of these pathways. Therefore, crosstalk between the Shh and Wnt
pathways can result in antagonistic or synergistic effects in HFSCs.

3.2.3 Notch signaling pathway
In the context of tissue renewal, Notch signaling plays a crucial

role in regulating cell growth, directing differentiation processes, and
determining cell fate. Notch signaling can be activated by mechanical
stimuli under diverse conditions. Studies have shown that Notch
signaling is dynamically activated and expresses in dental pulp cells,
including odontoblast-like cells, in response to mechanical damage
both in vitro and in vivo. Hilscher et al. have reported that the
mechanical stretching of liver sinusoidal endothelial cells leads to an
upsurge in CXCL1 expression. This response is mediated by the
integrin-dependent triggers of transcription factors influenced by
Notch, which also interact with the mechanosensitive piezo
calcium channel (Hilscher et al., 2017).

The relationship between HFs and Notch pathways has been
emphasized in multiple studies. A decrease in HF numbers was
noted when Notch1 signaling was lacking, and the presence of
Notch1-3 is noted within HF cells undergoing differentiation.
Moreover, Notch signaling is crucial for preserving the integrity
of the HF architecture. Previous research has indicated that during
the later stages of embryonic HF development, Notch signaling is
active, and mice deficient in this pathway exhibit thin, short, and
curly hair (Wang et al., 2022). Moreover, elevated and active
Notch1 levels have been documented in the foundational and
overlying cells of sebaceous glands during preliminary epidermal
layer formation (Zhu et al., 2021). Although less research has been
conducted on the relationship between mechanical stretching and
the Notch pathway in HFSCs, HFs continually experience and are
affected by intrinsic mechanical forces in vivo, including pressure,
compression, friction, tension, extension, shear, and mechanical
injury. However, there are reasons to believe that a tight
interplay exists between Notch signaling and mechanical stimuli.

3.3 Ion channel mechanisms

Mechanotransduction directly affects ion channels, which is
primarily manifested as changes in Ca2+ concentration, thereby
facilitating extracellular mechanical and intracellular chemical
signals. Ion channels have been investigated in skin wound
healing, and they are expected to play a similar role in skin
expansion. Transient receptor potential (TRP) channels (Karska
et al., 2023) in HFSCs are the channels involved in mechanical
transduction processes. The TRP channels of the vanilloid subtype
(TRPV) are mechanosensitive, and TRPV3 and TRPV4 have been
identified as the main ion channels involved in HFs. Song et al.
reported that HF phenotypes are affected by TRPV3 (Wang et al.,
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2013; Szöll}osi et al., 2018). TRPV3 knock-in mice exhibit enhanced
differentiation in HF cells due to Ca2+ influx activation regulation.
Additionally, ClC-3 channels exhibit distinct ion control specifically
related to Cl−. In addition, ClC-3 channel activation promotes the
migration of epidermal stem cells and HFSCs to the wound area,
thereby accelerating skin regeneration (Hämäläinen et al., 2021).

4 Conclusion and clinical perspectives

HFSCs have been proved effective in treating alopecia,
inflammation, and skin wound healing through stem cell-based
therapies. Although HFSCs has also been found to promote skin
regeneration, especially epidermis during skin soft tissue expansion
(Cheng et al., 2020), they are rarely studied in tissue expansion. They are
involved in the regulation of various transcriptome changes, signaling
pathways, and cellular interactions crucial for epidermal regeneration
under mechanical stretch. Clinical interventions using non-invasive
methods such as biological informatics, signaling pathway inhibitors/
agonists, or cell therapy are beneficial for both patients and physicians.
But there remain several problems which are needed to be addressed.
Firstly, safety of HFSCs use is definitely the most important in clinical
application. HFSCs could regulate epidermal proliferation through
Wnt/β-catenin pathway which, on the other hand, leads to excessive
growing of cells and results in tumor. Besides, most researches about
HFSCs have been carried out on animals so far that still has some
differences with human. Secondly, HFSCs are more observed in skin
wound healing. Although wound healing is involved in skin expansion,
the theories of HFSCs above cannot be completely appropriate in
tissue expansion.

HFSCs are equipped with numerous advantages, including
abundant sources, minimal harm during isolation, and versatile
differentiation potential (Babakhani et al., 2020). Advances in
technologies like gene knockout and transgenic techniques will
enhance the use of HFSCs in skin self-renewal, tissue repair, and
regeneration, broadening our understanding of HFSCs. This work
will play a particularly important role in tissue engineering,
regenerative medicine and other fields. Further studies should be
focused on improving the effectiveness of HFSCs for skin soft tissue
expansion. To fully understand the underlying mechanisms, further
comprehensive investigations are necessary.
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