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Introduction: Elite breath-hold divers (BHD) enduring apneas of more than 5 min
are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low
oxygen-consumption in their hearts and skeletal muscles, similar to adult seals.
Adult seals possess an adaptive higher hemoglobin-concentration and Bohr
effect than pups, and when sedated, adult seals demonstrate a blood shift
from the spleen towards the brain, lungs, and heart during apnea. We
hypothesized these observations to be similar in human BHD. Therefore, we
measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n=
11) andmatched controls (n= 11) at rest, while myocardial mass, spleen and lower
extremity volumes were assessed at rest and during apnea in BHD.

Methods and results: After 4 min of apnea, left ventricular myocardial mass
(LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was
unaltered compared to rest. During maximum apnea (~6 min), lower extremity
volume assessed by DXA-scan revealed a ~268mL decrease, and spleen volume,
assessed by ultrasonography, decreased ~102 mL. Compared to age, BMI and
VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3-
biphosphoglycerate-concentrations, but higher total hemoglobin-
concentrations.

Conclusion: Our results indicate: 1) Apnea training in BHD may increase
hemoglobin concentration as an oxygen conserving adaptation similar to
adult diving mammals. 2) The blood shift during dry apnea in BHD is 162%
more from the lower extremities than from the spleen. 3) In contrast to the
previous theory of the blood shift demonstrated in sedated adult seals, blood shift
is not towards the heart during dry apnea in humans.
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In memoriam Poul-Erik Paulev, 1935 - 2017

Introduction

Diving mammals like the adult Weddell seals (WS) possess an
adaptive higher hemoglobin concentration and Bohr effect than
pups and during simulated dives, sedated adult seals have been
demonstrated to direct blood from the spleen to the heart, lungs and
brain to meet metabolic requirements during dives, when partial
pressures of oxygen (PaO2) decrease to 3.2 kPa (Zapol et al., 1979;
Kjekshus et al., 1982; Kjekshus et al., 1982; Qvist et al., 1986). Elite
breath-hold divers (BHD) are adapted to tolerate PaO2 to similar
levels as demonstrated in the diving and foraging adult seals (Kjeld
et al., 2018; Kjeld et al., 2021a; Kjeld et al., 2021c). However, in
contrast to sedated seals, BHD decrease all internal cardiac chamber
volumes ~40% during apnea, whereas left ventricle wall thickness
increases (Kjeld et al., 2021c), and the question is, whether the left
ventricle wall thickness increase could be due to myocardial
contraction or increased internal myocardial wall blood
volume and hence a blood shift, as demonstrated in the adult
seal? The adult hooded seals also have large spleens constituting
4% of their body volume and are capable of expanding the total
circulating blood volume by up to 13% during dives as part of the
mammalian diving response, and hereby increasing erythrocyte
gas exchange capability (Hurford et al., 1996; Foster and Sheel,
2005; Kjeld et al., 2009; Kjeld et al., 2021a). These findings in
diving mammals have led to studies of human apnea diving, which
demonstrated splenic volume reductions of up to 170 mL and
conclude that the spleen is an important reservoir of erythrocytes
(Schagatay et al., 2001; Schagatay et al., 2005; Prommer et al., 2007;
Schagatay et al., 2012; Ilardo et al., 2018; Bouten et al., 2019; Persson
et al., 2023). However, considering that an average 70 kg man has a
spleen size ~200 mL, a blood volume of 5.5 L, of which 20% is in the
musculoskeletal system and the lower extremities alone contain
volumes of ~ 2.2 L of blood (Karpeles and Huff, 1955; Adams and
Albert, 1962), the question is whether lower extremity blood volume
would be at least equally as important as the spleen to direct blood to
the vital organs during apnea diving in humans?

As an adaptive response to chronic hypoxia, high-altitude
species may also have higher concentrations of hemoglobin,
changed standard half saturation pressures and a different Bohr
effect than those of their lowland relatives (Vargas and Spielvogel,
2006) although this has been debated (Lenfant et al., 1968a;
Winslow, 2007). The Bohr effect is a physiological phenomenon
first described in 1904 by the Danish physiologist Christian Bohr:
the binding affinity of the hemoglobin to oxygen is inversely related
both to acidity and to the concentration of carbon dioxide (CO2)
(Benner et al., 2023). Hence, the Bohr effect refers to the shift in the
oxygen dissociation curve caused by changes in the concentration of
CO2 or the pH of the environment. Since CO2 reacts with water
to form carbonic acid, an increase in CO2 – like during apnea diving
– results in a decrease in blood pH, resulting in release of oxygen by
hemoglobin. Harbour seals also have a large fixed-acid Bohr
coefficient at 37°C and increasing with temperature (Willford
et al., 1990) – in contrast to humans (Boning et al., 1978). This
relatively large value for the Bohr coefficient is similar to those
reported for the Northern Elephant seals, Bladdernose seals, and

Weddell Seals, and may facilitate oxygen off-loading as acidosis
develops during a dive (Willford et al., 1990).

In competitive BHD, bouts of static and dynamic apnea increase
plasma erythropoietin (Richardson et al., 2005; Kjeld et al., 2015).
Hence, it may be that also the human elite BHD, that endure apneas
of up to 11 mins and swimming more than 300 m, or going beyond
200 m in depth, all on a single breath of air (www.aida-international.
org), would possess increased hemoglobin concentrations and
oxygen offloading as an adaptation to (diving) hypoxia similar to
diving mammals and high-altitude species.

Therefore, this study quantified 1) the oxygen binding properties of
hemoglobin and 2,3 biphosphoglycerate (2,3-BPG) at rest in BHD as
compared to matched controls, and 2) the left ventricle myocardial
mass, spleen volume and lower extremity volume during apnea in elite
BHD. BHD and controls werematched for age, bodymass index (BMI),
VO2max and spleen size (Chow et al., 2016). To ensure similar
adaptations in the BHD in this study towards diving hypoxia as
diving mammals, we required as inclusion criteria for BHD that
they could hold their breath for a minimum of 5 min (Kjeld et al.,
2018; Kjeld et al., 2021c). Also, to ensure similar adaptations as diving
mammals towards diving hypoxia, we instructed BHD to pause aerobic
training for 4 weeks before blood sampling (Bennett et al., 2001; Kjeld
et al., 2018). Likewise, controls were instructed to pause anaerobic
training for 4 weeks before blood sampling. Hence, we hypothesised
that BHD as compared to controls would possess similar adaptations
including binding properties of the hemoglobin to diving hypoxia as
adult divingmammals, and also a blood shift from the spleen and lower
extremities during apnea.

Methods

22 healthy male, non-medicated, non-smoking participants
were included in the study as approved by the Regional Ethics
Committee of Copenhagen (H-1-2013-060). All clinical
investigations have been conducted according to the principles
expressed in the Declaration of Helsinki. Informed consent,
written and orally, have been obtained from the participants.

Eleven participants were elite breath hold divers (BHD, age 44 ±
6 years), who were able to hold their breath for more than 5 min. For
comparison we studied eleven judo athletes matched for
morphometric variables (age, weight, body mass) and V

.
O2max

(Table 1; Figure 2) as described below. Judo athletes primarily
train aerobic, and we have previously described judo athletes as
controls in studies of BHD (Kjeld et al., 2018).

All BHDhad ranked among national top 10, three of the participating
free divers ranked among international top 10 and one was a
2016 outdoor free-diving World champion, one was a silver medalist
at 2022 World Championships, and one was a World record holder.

All the matched controls were either judo or jiu-jitsu black belts,
all were medalists at national championships, and all except one
were active fighters.

This study included the following measurements of the BHD and
matched controls (Figure 2; Table 2): Collection of blood samples for
hemoglobin and 2,3-BPG at rest, a V

.
O2max test, ultrasonography of the

spleen (US) at rest for both BHD and controls, whereas cardiacmagnetic
resonance imaging (cardiac MRI), positron emission tomography/
computed tomography (PET-CT), ultrasonography of the spleen
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(US), and Dual Energy X-Ray Absorptiometry (DXA) measurements of
the lower extremities during maximum apnea for BHD to ensure
maximum cardiovascular response (Kjeld et al., 2021a).

2,3-BPG measurements

Before taking blood samples from participants, BHD were
carefully instructed to refrain from aerobic exercise for 4 weeks,
and controls to refrain from anaerobic exercise for 4 weeks: we
assumed that this respectively would decrease and increase levels of
2,3-BPG in BHD and controls (Lenfant et al., 1968b; Willford et al.,
1990). However, these instructions did overall not change any habits
of the subjects in the study.

Blood samples were taken from an antecubital vein on the first
day of the study at rest in a supine position.

To prepare samples for 2,3-BPG measurement, 2 mL of
venous blood in heparinized tubes was collected, placed

immediately on ice, deproteinized with 0.6 M perchloric acid
(Sigma-Aldrich, Saint Louis, MO, United States) to lyse red blood
cells, and neutralized with 2.5 M potassium carbonate (Sigma-
Aldrich, Saint Louis, MO, United States). The supernatant was
kept for at least 60 min in an ice bath and centrifuged at 3,000 × g
for 10 min. The supernatant was stored at 28°C, and 2,3-DPG
levels were measured using the either Roche diagnostic kit (n =
3 BHD & n = 4 controls; no. 10148334001, Basel, Switzerland) or
Cusabio Human 2,3- BPG (n = 8 BDH & n = 7 controls) ELISA
Kit (Houston, TX, United States).

The Roche 2,3-DPG assay is based on enzymatic cleavage of 2,3-
BPG, and oxidation of nicotinamide adenine dinucleotide recorded
by spectrophotometry. The 2,3-BPG assays were performed in three
batches and in the range of 0.02–0.15 μmol (n = 3 BHD and
4 controls). Concentration of 2,3-BPG was calculated according
to the procedure proposed by the manufacturer. The 2,3-BPG levels
were normalized to the corresponding hematocrit value from the
same sample. Since the concentration of 2,3-BPG rapidly decreases
during storage (Hamasaki and Yamamoto, 2000), the procedure for
determining the 2,3-BPG level was performed immediately after
taking the blood samples. Determination of 2,3-BPG level was
carried out in duplicate on each sample. The reliability of 2,3-
BPG measurement was evaluated based on the coefficient of
variation (CV) using the test–retest method (Atkinson and
Nevill, 1998). CV for 2,3-BPG was between 0.30 and 0.76%,
which indicates that these measurements are characterized by a
high degree of reliability.

Production of the Roche assay had ceased when the
remaining participants participated. Hence, for the remaining
participants (n = 8 BHD and 7 controls), 100 µL plasma was
analyzed in triplicate for each participant using a 2,3-BPG ELISA
kit manufactured by Cusabio (Houston, TX). Briefly, analysis of
samples were done according to manufacturer’s instructions. All
incubation was done at 37 degrees and absorbance was read at
450 nm, using wavelength correction by subtracting absorbance
reading at 570 nm from absorbance read at 450 nm (Thermo
Scientific Multiskan Go, Waltham, MA). Concentrations of 2,3-
BPG were determined, using the average of the triplicate
absorbances for each sample, from a four-parameter logistic curve
of the absorbance of the standard at various concentrations.

The blood sample analyzes of two controls and one BHD failed
and could not be repeated.

TABLE 1 Participants characteristics (n = 11 BHD & 11 controls).

Divers Controls p

No. participants 11 males 11 males NS

Age (years) 44 ± 2 37 ± 2 NS

Static breath hold personal best (seconds) 381 ± 15 N/A NS

Height (cm) 189 ± 2 183 ± 1 0.015

Weight (kg) 83 ± 2 82 ± 2 NS

Body Mass Index (kg/m2) 23.3 ± 0.8 24.6 ± 0.6 NS

Spleen Volume/mL 230 ± 29 258 ± 30 NS

Maximal oxygen uptake (ml O2/(min*kg) 51.1 ± 2.7 56.8 ± 2.5 NS

Basic morphometric data. Values are mean ± Standard error of mean. p: level of significance. NS: non-significant. BHD, breath hold divers.

TABLE 2 BHD (breath hold divers) participation in sub studies: Hb
(hemoglobin), 2,3-BPG (2,3 biphosphoglycerate), CMRI (cardiac magnetic
resonance imaging of left ventricle myocardial mass), PET-CT (positron
emission tomography—computed tomography of left ventricle myocardial
mass), US (ultrasound of the spleen volume), DXA (Dual Energy X-Ray
Absorptiometry of the lower extremity volume).

BHD Hb 2,3-BPG CMRI PET-CT US DXA

1 X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

Total 11 11 6 6 10 10
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Hb was determined on an ABL 90 Flex (Radiometer, Bronshoj,
Denmark). Concentration of 2,3-BPG in mM was calculated per
mMHb, Analysis of samples from two controls and one BHD failed
and could not be repeated.

V
.
O2 max

After blood sampling, participants completed a
standardized warm-up followed by an incremental cycle test
(Lode®) starting at a workload of 50 W and increasing 50 W
every minute until exhaustion (Astrand and Ryhming, 1954).
The highest recorded 30 s average oxygen uptake (V

.
O2) during

the test was defined as V
.
O2max. For recognition of true

V
.
O2max, three of five criteria had to be met: individual

perception of exhaustion, respiratory exchange ratio >1.15,
plateau of V

.
O2 curve, heart rate approaching age-predicted

maximum and inability to maintain a pedaling frequency
above 70 rpm (Table 1).

Cardiacmagnetic resonance imaging: image
acquisition

On a separate day, the 6 participants with the longest breath
holds refrained from physical exercise and consumption of
alcohol or caffeine for 24 h before the following was

performed: Imaging was performed in a 1.5 T cardiac MRI
imaging system (Achieva, Philips Medical System, The
Netherlands). Subjects warmed up by holding their breath
three consecutive times with individual duration to maximize
the diving response including the blood shift (Kjeld et al., 2009;
Kjeld et al., 2021c). Cine images were acquired at 1) rest
during a short (<20 s) apnea at end-expiration with open
pharynx, 2) after 4 min of dry static apnea after
glossopharyngeal insufflation (Seccombe et al., 2006). Images
were collected shortly before end of apnea before breathing,
and participants were instructed to stay as calm as possible
during imaging to avoid imaging artefacts. Left ventricular
myocardial mass was collected in the transversal and double-
oblique short axis stacks with 8 mm thick slices and 25%
gap. Cine imaging was performed with retrospectively ECG-
gated steady-state free precession sequences (SSFP)
reconstructed to 25 phases covering the entire cardiac cycle
using the following settings: TR/TE 3.3/1.6 ms, flip angle 60°;
and spatial resolution 1.3 × 1.3 × 8 mm3 as previously described
(Kjeld et al., 2021c).

Cardiac magnetic resonance imaging:
image analysis

Left ventricular myocardial mass was determined in end-
diastole (ED) and end-systole (ES, Figure 1). Data were analyzed

FIGURE 1
Example of cardiac MRI determined myocardial mass by semi-automatic segmentation of the left ventricle, short-axis view. Delineation of
endocardial contour in red and epicardial contour in green. ED, end diastolic. ES, end systolic. Top: rest. Bottom: after 4 min of apnea.
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by a level three nuclear physiologist and a level one Cardiac MRi
cardiologist using dedicated software (Segment ® version 2.1, Lund,
Sweden). Image artefacts were carefully avoided especially during

involuntary breathing movements (Heiberg et al., 2010) and using a
fitting algorithm in the Segment software ® as previously described
(Bidhult et al., 2016; Kjeld et al., 2021c).

FIGURE 2
Flow chart.
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15O-H2O-PET/CT determined left
ventricular myocardial mass: imaging
protocol and image reconstruction

On a separate day, the same six participants who had cardiac
MRI were recruited for an additional 15O-H2O-PET/CT study. The
participants in the 15O-H2O-PET/CT sub-study were required to
hold their breath for 5 min while lying in the PET/CT scanner in the
supine position with arms raised above the head. They were
instructed to refrain from intake of chocolate, to refrain from
strenuous physical exercise for 1 day and to be fasting for at least
6 h before the study.

15O-H2O-PET/CT data were obtained in list mode on a GE
Discovery MI Digital Ready PET/CT system (GE, Milwaukee,
WI, United States) as described previously (Kjeld., et al., 2021a).
In short, the participants were scanned using 15O-H2O cardiac
perfusion PET/CT 1) at rest, 2) during hyperemia induced by a
dry static apnea after glossopharyngeal insufflation (Seccombe
et al., 2006) and after a warm-up of three individual consecutive
apneas to maximize the diving response including the blood shift
(Kjeld et al., 2009), and 3) in the recovery phase 4 min after
the apnea.

15O-H2O-PET/CT determined left
ventricular myocardial mass: image analysis

Left ventricular mass (LVM) was quantified by semi-
automatic segmentation of the LV wall on parametric images
of perfusable tissue fraction (PTF) as previously described
(Sorensen et al., 2021). In short, parametric images were
obtained by kinetic analysis of the dynamic 15O-H2O-PET/
CT scan using a 1-tissue compartment model with image
derived input from cluster analysis (Harms et al., 2011)In the
model, PTF accounts for partial volume effects on the difference

between myocardial blood flow estimated from 15O-H2O wash-
in and wash-out. The PTF parameter is more robust for
segmentation compared to myocardial blood flow since it is
less affected by perfusion defects and segmentation has been
shown to be highly reproducible (Sorensen et al.,
2021) (Figure 3).

Spleen volume

On a separate day, the participants had ultrasonography
(US) of the spleen using an Esaote ® scanner (Mylab, Omega,
Genova, Italy, 2017) with a 3.5/5-MHz convex transducer probe.
Spleen metrics were assessed by using defined
standard algorithms according to Koga T. (1979). With the
participants in the supine position after approximately
15 minutes of rest, the examination started in the posterior
axillary line in the approximate area of the 10th rib through
an intercostal space to identify the longitudinal view of the
spleen with the hilus. In this position, maximum length, and
width of the spleen was measured on a frozen high resolution
ultrasound image.

During breath holds (BHD only), the diaphragm changes the
position of the spleen, and to diminish measuring artefacts, we
decided only to measure the spleen in transverse axis. Hence, the
maximum length and the maximum width of the spleen was
determined, and according to the formula by Koga T. (1979), the
spleen volume calculates to

V � 7.53 x 0, 8 x length xwidth( ) – 77, 56

The above was performed minimum three times in all
participants at rest.

After a warm-up of three individual consecutive submaximal
apneas with short pauses (minimum 4 and maximum 7 minutes
pause) in between (Kjeld et al., 2014), BHD performed a
following maximum apnea to maximize the diving response
including the blood shift (Kjeld et al., 2009). Hence, the
above-described measurements at rest were repeated after
4 min of maximum apnea and up to 4 additional
measurements were made until just before termination of
apnea in the BHD (Figure 4).

Lower extremity DXA scan

On a separate day, three consecutive whole body scans were
performed, and data included total body weight bone mineral
content, fat free mass and lean mass. The first and the third scans
were routine whole-body scans at rest. After the first scan, the
BHD then performed three sub-maximal apneas with short
pauses (minimum 4 and maximum 7 minutes) in between to
warm up (Kjeld et al., 2014), and BHD were instructed to do
similar a warm-up as described above during the
ultrasonography study. The second scan was following a short
pause after the warm-up and during maximum apnea, of which
the last part of the scan including the legs, was timed to be
initiated 3 minutes and 30 seconds after initiation of apnea and

FIGURE 3
Example of left ventricular myocardial mass image as determined
by 15O-H2O-PET/CT using semi-automatic segmentation of the left
ventricular wall on parametric images of perfusable tissue fraction.
Borders of endocardium (inner circle) and pericardium (outer
circle) defined by delineated lines.
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finished after 4 minutes of apnea to ensure a maximum diving
response (Kjeld et al., 2021a). There was no repositioning
between scans except for movement of one arm in one case,
where the diver needed to adjust the nose clip. The Table 3 shows
changes in mass in tissue compartments of the lower extremities.
Note that the total mass (including blood pool) changes whereas
the bone mineral content remains unchanged indicating minimal
movement of the participant. The change in mass of the lower
extremities is attributed to a change in blood pool as other tissue
compartments are not as volatile to change. All scans were
performed on a GE Lunar iDXA scanner (GE Medical
Systems, Madison, WI). Regions of interest over the legs were

analyzed according to the method used by (Gjorup et al.
(2017) (Figure 5).

Statistical analysis

To test for imbalances in the variables in our study with a
limited number of participants, we performed a power
calculation: The sample size of 6 participants in the
15O-H2O-PET/CT sub-study was calculated for the primary
outcome (myocardial blood flow) of the study previously
published by our group (Kjeld et al., 2021c). A power

FIGURE 4
Example of spleenmeasurement (participant 6): With the participant in the supine position, the examination started in the posterior axillary line in the
approximate area of the 10th rib through an intercostal space to identify the longitudinal view of the spleen with the hilus. In this position, maximum
length and width were measured.

TABLE 3 15O-H2O-PET/CT and cardiacMRi left ventriclemyocardial mass (LVMM), ultrasonography assessed spleen volume and DXA lower extremities total
mass and bone mineral content (BMC) of 11 breath hold divers.

Rest Apnea

15O-H2O-PET/CT assessed LVMM/g 149 ± 11 146 ± 12

Cardiac MRi assessed LVMM/g 116 ± 6 112 ± 5

Ultrasonography assessed spleen volume/mL 230 ± 29 128 ± 21 (*1, *2)

DXA assessed lower extremities total mass (g) 23,792 ± 1,084 23,546 ± 1,077 (*1, *2)

DXA assessed lower extremities BMC (g) 982 ± 37 984 ± 38

Basic morphometric data. Values are mean ± Standard error of mean. *1: p < 0.001 compared to rest. *2: n = 10: 1 subject moved abroad during the study.
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calculation was performed post hoc but based on the test-retest
standard deviation of 19 g determined by Sorensen et al.
(Sorensen et al., 2021). The current analysis had a power of
80% to detect a difference of at least 55 g. A p-value <0.05 was
considered statistically significant. This was also the basis for the
sample size of the sub study of cardiac MRI, and also the other
sub-studies as the latter had more participants.

Variables are presented as mean ± standard error of the mean
(SEM). Data were analyzed by Sigma-Plot ® using one-way repeated
measures ANOVA. Holm-Sidaks method posthoc was used to
evaluate differences between the collected data during rest, apnea,
and recovery. A p-value <0.05 was considered statistically
significant.

Results

BHD were higher (189 ± 2 cm) than controls (183 ± 1 cm, p =
0.015), but their spleen volumes were similar (Tables 1, 3).

Compared to the matched controls, the BHD had similar
content of 2,3-BPG (BHD 0.138 ± 0.025 vs. controls 0.119 ±
0.009 mM, p = 0.534), but they had a higher concentration of
hemoglobin (p = 0.038; Figure 6).

Subgroups of BHD who underwent cardiac PET-CT, cardiac
MRI, ultrasonography of the spleen and DXA, respectively, were not
significantly different when comparing their age, height, weight,
BMI, V

.
O2max and apnea duration (Table 1).

After 2 and 4 min of apnea, 15O-H2O-PET/CT determined left
ventricular myocardial mass (149 ± 11 g) was unaltered as compared
to rest (146 ± 12 g; n = 6). Images of one participant were of poor
quality and could not be repeated. Therefore, results from only
5 participants could be obtained from this protocol.

After 4 min of apnea, cardiac MRI determined left ventricular
myocardial mass (116 ± 6 g) was unaltered as compared to rest
(112 ± 5 g; n = 6).

Spleen volumes at rest were not different between controls (n =
11) and BHD (n = 10: one participant moved abroad during the
study; Table 1). During maximum apnea (370 ± 67 s) the spleen
volumes of BHD decreased from 230 ± 29 to 128 ± 21 mL (p <
0.001; Table 3).

Whole-body DXA-scan of BHD revealed a total body weight of
81.2 ± 2.8 kg (n = 10: one participant moved abroad during
the study).

During maximum apnea (343 ± 9 s) the lower extremity mass
decreased from 23,792 ± 1,084 g at rest to 23,741 ± 1,081 g (p = 0.2)
after 4 min of apnea and decreased further at the end of apnea to
23,546 ± 1,077 g (p < 0.001; Table 3). The bone mineral content in
the regions remained unchanged indicating minimal movement of
the participants (rest 982 ± 37 g, during apnea 984 ± 38 g, after
apnea 984 ± 38 g).

Discussion

The main and novel findings of our study are as follows: After a
warm-up of three consecutive apneas, BHD have 1) unaltered left
ventricle myocardial mass after 2–4 min of apnea, 2) a decreased
spleen volume by ~102 mL during maximum apnea, and 3) a
decreased lower extremity weight by 268 g after maximum apnea,
indicating 268 mL less blood volume. These results indicate that the
blood shift during apnea in elite BHD– at least partly– comes from
the lower extremities and from the spleen, but the blood shift is not
towards the heart in contrast to observations in sedated adult diving
mammals. The present study also demonstrated that BHD have a
higher concentration of hemoglobin, but similar 2,3-BPG levels as
compared to controls matched for BMI, age, spleen volume
and V

.
O2max.

Our results demonstrate for the first time in BHD, that the blood
shift during maximum apnea after glossopharyngeal insufflation is
only partly similar to the blood shift found in other divingmammals.
Also, we suggest that the higher hemoglobin in BHD as compared to
controls is an adaptation to sustain hypoxia during dives similar to
adult diving mammals, that have higher hemoglobinmass and larger
spleens relative to terrestrial mammals.

Relatively large Bohr effects are observed in adult Harbour
seals, killer whales (Lenfant et al., 1968a) and Northern Elephant
seals (Willford et al., 1990), especially in tissues with low oxygen
content, for example, their skeletal muscles. Previously we have
demonstrated a mitochondrial adaptation to hypoxia in the
skeletal muscles of BHD similar to the adult northern
elephant seal (Kjeld et al., 2018). As adult seals have a higher
mitochondrial respiratory capacity and higher muscular
myoglobin concentration than juvenile seals, which are not yet
fully matured and adapted to long dives (Kanatous et al., 2008;
Chicco et al., 2014), the above suggests that adaptations leading

FIGURE 5
Example of DXA-scan (participant 2) with manually drawn regions
in the lower extremities using bone tissues (A) and soft tissue (B) images
to place regions. The table shows changes in mass of the lower
extremities (sum of the four regions) before and after 5 min 50 s
breath hold. Note that the bone mineral content (BMC) remains
unchanged, indicating minimal movement of the participant (A image).
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to increased skeletal muscle oxygen storage and diffusion
capacity is associated with improved diving performance.
Hence, a similar Bohr effect as demonstrated in diving
mammals could be expected in the BHD in our study could be
expected. However, Bohr effects in BHD and controls in our
study were similar, whereas hemoglobin concentrations differed:
Accordingly, no high altitude training studies have demonstrated
permanent changes in Bohr effects or 2,3-BPG content nor
permanently in hemoglobin concentration after returning
from high altitude (Gore et al., 2006; Millet et al., 2010; Faiss
et al., 2013): For example, Ploszczyca K. et al. demonstrated a
decrease in 2,3-BPG just after exercise, likely due to changes in
pH and CO2 (Ploszczyca et al., 2021) and Elia et al., demonstrated
higher hemoglobin levels, but lower mean cell volume and similar
hematocrits in BHD compared to BMI matched controls, but not
matched for V

.
O2max (Elia et al., 2019). Our previous studies

included BHD and controls with comparable levels of
hemoglobin (Kjeld et al., 2018; Kjeld et al., 2021a; Kjeld et al.,
2021c), but BHD in the previous studies were not instructed as in
the present study to refrain from aerobic exercise 4 weeks before
blood samples were taken and similarly for controls to refrain
from anaerobic exercise for 4 weeks before blood samples
were taken.

Hence, our results indicate that apnea training in BHD as
compared to V

.
O2max matched controls may increase

hemoglobin concentration, however within normal reference
values, but not 2,3-BPG.

Adult seals have increased hematocrits as compared to pups
(Thomas and Ono, 2015). Also, South American natives living in

high altitude with chronic hypoxic exposure have higher
hemoglobin concentrations, than those of their lowland relatives
(Boning et al., 1978; Vargas and Spielvogel, 2006; Storz and
Moriyama, 2008; Böning, 2019). These natives are also
demonstrated to decrease lactate concentrations during
maximum exercise (Ge et al., 1994; Hochachka et al., 2002),
similar to elite BHD during max apneas (Kjeld et al., 2021a;
Kjeld et al., 2021a; Kjeld et al., 2021b; Kjeld et al., 2021c; Kjeld
et al., 2021c). The increased hematocrits in high altitude natives due
to hypobaric living are of interest in lowland living endurance
athletes (Faiss et al., 2013), and hence hypobaric training has had
focus to cause increased hematocrits in these athletes (Zelenkova
et al., 2019), however, effects remain unproven (Hauser et al., 2016;
Hauser et al., 2017). Accordingly, all the participants in our study
had hemoglobin levels within normal range Hence, the explanation
for an adequate oxygen supply to tissues under intermittent hypoxic
conditions in BHD are not solely the oxygen carrier capacity in the
blood, but also in the tissues, including the skeletal muscles similar
to diving mammals, as demonstrated previously (Kjeld et al., 2018):
relative to comparable terrestrial mammals– the skeletal muscles of
seals and sea lions have higher mitochondrial volume densities and
correspondingly higher citrate synthase activity, higher beta-
hydroxyacyl CoA dehydrogenase activity and thus a higher
capacity for fatty acid catabolism for aerobic ATP production
(Kanatous et al., 2002). These adaptations may be speculated to
result in higher mitochondrial respiratory capacity, but strikingly,
the oxidative phosphorylation capacity of the northern elephant seal
muscle is generally lower than in non-diving humans (Chicco et al.,
2014). Interestingly, the skeletal muscles of BHD, compared to
matched aerobic athletes, are also characterized by lower
mitochondrial oxygen consumption both during low leak and
high electron transfer system respiration indicating slow muscle
oxygen consumption (Kjeld et al., 2018).

The movement pattern of the Northern Elephant Seal is
impressive: they travel up to 13.000 miles per year, but
swimming is slow: 1-2 m per second with less than 1 swimming
stroke per second (Adachi et al., 2014). This swimming pattern is
similar to elite BHD during their competitions and anaerobic
exercise. Aerobic exercise increases blood flow 10-fold in the
lower extremities of untrained individuals and up to 16 times in
endurance cyclist and swimmers (~ 4,500 mL/min) (Walther et al.,
2008). In comparison, the blood shift during apnea mediated by the
contraction of the human spleen is ~ 102 mL in the present study.
The human spleen contains 2-3% of total erythrocytes mass or
20–40 mL of erythrocytes (Wadenvik and Kutti, 1988), of which– if
all can be assumed to be released– would increase blood volume in
our study by ~ 256 mL. In our study we demonstrated that blood
volume expelled from the lower extremities is 268 mL during dry
apneas in BHD, and hence the legs are reservoir of blood volume of
at least equal importance as compared to the spleen in humans
(Schagatay et al., 2005; Schagatay et al., 2012; Ilardo et al., 2018):
Diving mammals have short limbs with high content of myoglobin
(Wright and Davis, 2006) in contrast to elite BHD (Kjeld et al.,
2018), and the size of for example, the spleen of the hooded seals
(Cystophora cristata, weighing ~ 250 kg) is up to 4% of the total
body mass, and expels ~ 13% of the total blood volume during dives
(Cabanac et al., 1997). Accordingly, the physiological characteristics
observed in adult diving mammals during apnea and underwater

FIGURE 6
Hemoglobin concentration (ctHb) in breath hold divers (BHD,
9.7 ± 0.1 mmol/L) as compared to controls (9.1 ± 0.2 mmol/L). *: p =
0.038. Error bars: Standard error of the mean.
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swimming are therefore not similar to terrestrial mammals during
exercise: During aerobic exercise, terrestrial mammals increase
ventilation, heart rate, cardiac output, and peripheral
vasodilation, and the latter increases skeletal muscle perfusion
(Wagner, 1991). By contrast, adult diving mammals during apnea
and underwater swimming are characterized by bradycardia,
decreased cardiac output and peripheral vasoconstriction including
contraction of the spleen, which collectively is known as the dive
response, and this physiological adaptive phenomenon has so far
been interpretated as similar in elite BHD (Kjeld et al., 2009; Kjeld
et al., 2014; Kjeld et al., 2015; Kjeld et al., 2018; Kjeld et al., 2021a; Kjeld
et al., 2021c): A blood shift has been measured with ultrasonography
and by injecting microspheres in anesthetized adult seals, placed with
their heads downwards immersed in ice water, and it included
centralization of blood to the brain, heart and lungs, and hence all
peripheral tissue, including muscles and splanchnic organs, have
reduced convective oxygen delivery resulting from both hypoxic
hypoxia and ischemic hypoxia (Zapol et al., 1979; Hurford et al.,
1996). However, studies of restrained and sedated seals during
apnea, may demonstrate the physiological consequence of the
sedation rather than the dive response, as the sedation
depresses the cardiovascular system including the myocardial
regional oxygen supply (Kanto, 1988), and cannot be compared
to the foraging animal with an increased metabolic demand during
their dives with concomitant hypoxia. Yet, our previous study
demonstrated that left ventricle wall thickness increases during
apnea in BHD, but that all internal cardiac chamber volumes
decreases ~ 40% (Kjeld et al., 2021c). As the results of the present
study indicates unaltered myocardial mass during apnea in BHD as
compared to rest, we suggest that there is not a blood shift towards
the heart in BHD as observed in sedated adult seals during apnea.
Together these results indicates a remodeling of the myocardium
during apnea and we suggest the remodeling to be similar as
observed in a cardiac MRI animal study of cardiac arrest and as
discussed previously (Berg et al., 2005; Kjeld et al., 2021c).

Conclusion

Our results indicate the following: 1) elite BHD compared to
matched controls are adapted with increased hemoglobin
concentrations to sustain extreme hypoxia, and 2) the blood shift
in elite BHD during maximum apnea after glossopharyngeal
insufflation is– at least partly– direction of blood from the lower
extremities and with a smaller volume from the spleen, but 3) in
contrast to previous studies of sedated diving mammals during
apnea, our study of elite BHD do not demonstrate a blood shift
towards the heart.

Perspectives

In our study BHD endured maximum apneas of 370 s on
average. Previously we have demonstrated similar duration of
apnea in BHD and similar tolerance for low PaO2 during apnea
as compared to diving mammals (Kjeld et al., 2021c). The BHD in
the present study had unaltered left ventricular myocardial mass
volumes after 2-4 min of apnea but decreased spleen volumes to

102 mL during maximum apnea, whereas extremities released
268 mL of blood, or ~162% more than the spleen. Mijacika et al.
demonstrated a large decrease in pulmonary blood volume after
glossopharyngeal insufflation following 4 min of apnea, and
hence, we suggest that blood released from lungs, spleen and
lower extremities are directed towards the abdomen.
Accordingly, the intestine, the kidneys and the liver are highly
sensitive to hypoxia in humans (Ebert, 2006; Fu et al., 2016;
Mijacika et al., 2017a; Mijacika et al., 2017b; Singhal and Shah,
2020), whereas the heart, lungs and skeletal muscles seem
resistant to hypoxic injury during maximum apnea in elite
BHD (Kjeld et al., 2015; Kjeld et al., 2018; Kjeld et al., 2021c).
Future studies may reveal whether blood is directed from the
extremities towards the hypoxia sensitive abdominal organs as an
oxygen conserving mechanism, which could explain the
evolutionary development of short flat peripheral extremities
in diving mammals (Goldbogen, 2018).

Limitations

The study population is small, because of the limitations in
the inclusion criteria of minimum 5 min of apnea in different
stressful environments. This limited the number of participants
in the sub studies. In addition, measuring 2,3-BPG and
hemoglobin concentrations compared to a control group
instead of prospective measurement in BHD, is a limitation in
our study. However, because we found no changes in the study of
LVMM, and significant results in the rest of the sub studies, we
assume this is of minor importance, although measurements of
LVMM were after 4 min of apnea and not at end of maximum
apnea (~6 min).

The study did not include measurements of the atrial and right
ventricle mass as this was not possible due the thin walls of these
structures. However, our previous studies indicated no changes
in pro-atrial-natriuretic factor during maximum apnea in
competitive BHD indicating no stretching of atrial muscle,
and as the right ventricle is much less muscular than the left
(Rodrigues et al., 2007), we assume that changes in these
chambers may be of lesser importance (Kjeld et al., 2015;
Kjeld et al., 2021c). Measurements were all done during dry
apneas after glossopharyngeal insufflation, which limits venous
return (Eichinger et al., 2010). As submersion during diving may
cause 500-700 mL increase in circulating volume (Weston et al.,
1987; Weenink and Wingelaar, 2021) future studies may reveal
the most important reservoirs of blood and volume changes
during human apnea diving.
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