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Background and Purpose: Precisely assessing the likelihood of an intracranial
aneurysm rupturing is critical for guiding clinical decision-making. The objective
of this study is to construct and validate a deep learning framework utilizing point
clouds to forecast the likelihood of aneurysm rupturing.

Methods: The dataset included in this study consisted of a total of 623 aneurysms,
with 211 of them classified as ruptured and 412 as unruptured, which were
obtained from two separate projects within the AneuXmorphology database. The
HUG project, which included 124 ruptured aneurysms and 340 unruptured
aneurysms, was used to train and internally validate the model. For external
validation, another project named @neurIST was used, which included
87 ruptured and 72 unruptured aneurysms. A standardized method was
employed to isolate aneurysms and a segment of their parent vessels from
the original 3D vessel models. These models were then converted into a point
cloud format using open3d package to facilitate training of the deep learning
network. The PointNet++ architecture was utilized to process the models and
generate risk scores through a softmax layer. Finally, two models, the dome and
cut1 model, were established and then subjected to a comprehensive
comparison of statistical indices with the LASSO regression model built by the
dataset authors.

Results: The cut1 model outperformed the dome model in the 5-fold cross-
validation, with themean AUC values of 0.85 and 0.81, respectively. Furthermore,
the cut1 model beat the morphology-based LASSO regression model with an
AUC of 0.82. However, as the original dataset authors stated, we observed
potential generalizability concerns when applying trained models to datasets
with different selection biases. Nevertheless, our method outperformed the
LASSO regression model in terms of generalizability, with an AUC of
0.71 versus 0.67.

Conclusion: The point cloud, as a 3D visualization technique for intracranial
aneurysms, can effectively capture the spatial contour and morphological
aspects of aneurysms. More structural features between the aneurysm and its
parent vessels can be exposed by keeping a portion of the parent vessels,
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enhancing the model’s performance. The point cloud-based deep learning model
exhibited good performance in predicting rupture risk while also facing challenges
in generalizability.
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1 Introduction

Intracranial aneurysms (IAs) are a frequently observed
cerebrovascular condition, with a global prevalence estimated to
be around 3.2% (Vlak et al., 2011). Although many IAs may exhibit
minimal size and lack noticeable symptoms, they nonetheless carry a
significant annual risk of rupture, estimated at 0.95% (Morita et al.,
2012). Subarachnoid hemorrhage (SAH) is a form of hemorrhagic
stroke that is associated with substantial rates of disability and
mortality, and its primary cause is typically the rupture of IAs.
The utilization of non-invasive imaging techniques has led to a rise
in the identification of IAs. However, determining the optimal
treatment for these lesions continues to be a matter of debate
due to the inherent risks and complications associated with
surgical clipping and endovascular coiling, especially in cases
involving tiny, unruptured IAs (Wiebers et al., 2003; Brown and
Broderick, 2014). The clinical decision-making process for IAs
requires a delicate balance between the possible risk of rupture
and the potential drawbacks of clinical intervention. Nevertheless,
the traditional approaches utilized for evaluating the probability of
rupture still exhibit certain limits and subjective aspects. It is
therefore of tremendous clinical significance to accurately and
objectively evaluate the probability of rupture in IAs in order to
improve patient prognosis and overall quality of life.

Prior studies have demonstrated a connection between the rupture
of IAs and several morphological factors such as aspect ratio, size ratio,
and irregular shape (Ujiie et al., 2001; Kashiwazaki et al., 2013; Lindgren
et al., 2016; Kleinloog et al., 2018). Additionally, clinical factors
including age, hypertension, smoking, previous SAH (Greving et al.,
2014; Tada et al., 2014; Can et al., 2017), as well as hemodynamic
markers such as wall shear stress and oscillatory shear index (Xiang
et al., 2011; Takao et al., 2012), have also been associated with IA
rupture. Using statistical or machine learning (ML) techniques, many
researchers have developed risk assessment models based on these
factors. The authors of this dataset (Juchler et al., 2022) quantified
various morphological features of aneurysms and investigated their
relationship with rupture status using a LASSO regression model based
on principal component analysis (PCA). However, there is currently an
absence of research endeavors that focus on the development and
validation of deep learning (DL) techniques.

As a critical subset of artificial intelligence, DL has exceptional
proficiency in extracting nuanced features and capturing intricate
relationships from extensive datasets. DL has been widely used for
the purposes of detecting, predicting, and treating cerebrovascular
disorders (Chen et al., 2022). There is only a tiny amount of
research that has employed DL techniques for the purpose of
predicting the likelihood of IA rupture. The groundbreaking work
by Kim et al. (2019) involved the utilization of a DL algorithm to
evaluate the likelihood of rupture in aneurysms of small dimensions
(less than 7 mm). They utilized a multi-view convolutional neural

network (CNN), resulting in an area under curve (AUC) of 0.755.
In a study conducted by An et al. (2022), a semi-automatic ML system
was built based on the CADAdataset, which consisted of 125 annotated
aneurysms. The average F2-score achieved by their model, which
integrates morphological, radiomic, clinical, and DL features, was
0.789. Yang et al. (2023) employed hemodynamic variables, such as
wall shear stress and strain, to predict the likelihood of IA rupture. Their
approach yielded an AUC of 0.883, based on a sample of 123 aneurysm
cases. Ou et al. (2022) were pioneers in employing DL techniques to
predict the likelihood of IA rupture based on 120 cases of stable and
unstable aneurysms, rather than ruptured and unruptured aneurysms.
By employing the feature fusion technique on a pre-trainedmodel, their
work achieved an AUC of 0.853. However, it is important to note that
most of the studies have limited sample sizes and are based on data from
single center. Consequently, there is a lack of external validation to
evaluate the effectiveness of these models.

A point cloud refers a collection of points in three-dimensional
(3D) space that is not arranged in any order. It serves as a representation
of an object’s shape and surface features (Guo et al., 2021). Currently,
several studies have been conducted to explore the utilization of point
clouds across various domains. Bizjak et al. (2021) used point clouds as a
predictive tool for the expansion of IAs. Chen et al. (2022) utilized
hemodynamic point clouds as features and evaluated the rupture risk of
IAs using machine learning algorithms. Using morphological point
clouds, Li et al. (2021a), Li et al. (2021b) accurately predicted the
hemodynamics before and after coronary artery bypass graft surgery, as
well as Flow-Diverting Stents placement. These studies demonstrated
the various applications of point clouds. However, to the best of our
knowledge, no empirical research has been reported to demonstrate the
efficiency of point cloud-based morphological models in predicting the
likelihood of IA rupture. Point cloud can be utilized for 3D visualization
in the context of aneurysm, enabling the representation of spatial
contour and morphological characteristics. We hypothesize that the
utilization of 3D point clouds as input for DL facilitates the neural
network’s ability to comprehend a greater amount of dimensional
information and examine the 3D morphological features of
aneurysms from various perspectives and depths. Consequently, the
primary objective of this study is to assess the feasibility and efficacy of a
point cloud-based DLmodel for predicting the likelihood of IA rupture.
This will offer a more objective and accurate reference for clinical
decision-making regarding IAs.

2 Methods

2.1 Dataset description

The AneuX morphology database is an open-access and multi-
centric database that has 3D geometric models of 750 IAs. These
models were gathered from three distinct projects: HUG (Juchler
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et al., 2022), @neurIST (Villa-Uriol et al., 2011) and Aneurisk
(Aneurisk-Team, 2012). The HUG initiative is a prospective and
continuous effort to recruit patients, which builds upon the data
collection framework established by the @neurIST project.
Aneurisk, on the other hand, is an independent undertaking that
relies on retrospective data and does not specify imaging timing in
different stages of aneurysm development. As a result, Aneurisk was
not included in this study.

The AneuX morphology database employs a standardized
processing architecture (Berti et al., 2010), to extract 3D models
from 3D rotational angiography (3DRA). In addition to presenting
the original mesh resolution, the database also offers cleaned and re-
meshed versions with target mesh cell areas of 0.01 and 0.05 mm2,
correspondingly. In addition, the aneurysms were segmented from
the entire vessels using four distinct planar and nonplanar cutting
configurations, specifically referred to as dome, ninja, cut1 and cut2.
We recommend consulting the original publication for a more
comprehensive understanding of the database and associated
processing methods (Juchler et al., 2022).

In this study, a total of 623 aneurysms (211 ruptured and
412 unruptured) were obtained from the HUG and @neurIST
projects, as described earlier. The HUG project, consisting of
124 ruptured and 340 unruptured cases, was utilized for the
purpose of model training and internal validation, while the
@neurIST project, including 87 ruptured and 72 unruptured
cases, was used for external validation. The inclusion and
exclusion procedure is illustrated in detail in Figure 1A, and the
baseline characteristics of the dataset included in this study are
presented in Table 1. For further details concerning the numbering

of the 15 aneurysm models with unknown rupture status and the
11 recurrent IAs, please refer to the Supplementary Material.

2.2 Data preprocessing

In this study, we assessed the effectiveness of two models in
predicting the likelihood of IAs rupture. The first model exclusively
considered the aneurysm dome, whereas the second model
incorporated a segment of the parent arteries beside the
aneurysm dome. The dome models were constructed using the
segmented original models obtained from the database. A single
planar incision was used to separate these models from the parent
vasculature (Juchler et al., 2022). With regard to the models
featuring partial preservation of the parent vessels, we followed
the vessel length principle as outlined in the original article’s “cut1”
method. This involved positioning the cutting surface perpendicular
to the local centerline within one vessel diameter from the dome.We
viewed the 3D models and noticed that some of the previously
segmented cut1 models in the database did not preserve the inflow
artery, which we believe contains necessary morphological
information for DL feature extraction. As a result, we re-
segmented the cut1 models from the original vessels, adhering to
the previously mentioned cutting principle, and referred to them as
cut1 models as well.

The original vessel model files were imported into Mimics
Medical software (version 21.0, Materialise, Leuven, Belgium),
and the “Fit Centerline” function was used to autonomously
generate the centerline of the vessels. Afterwards, we conducted

FIGURE 1
Overview of the study. (A) The flowchart of the dataset inclusion and exclusion, as well asmodel training, validation and evaluation. (B) The simplified
framework of PointNet++ architecture. (C) The diagram of five-fold cross-validation. FC Layers, fully connected layers.
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manual measurements of the parent vessels’ diameter and
performed excision of a length corresponding to the diameter of
the parent vessels along a section perpendicular to the vessel
centerline. In order to simplify the DL model, the small vessel
branches surrounding the parent vessels were eliminated. Moreover,
following the excision of a small vessel branch, a discernible notch
would remain on the parent vessel. To maintain the structural
integrity and ensure its continuity, we performed a restorative

procedure using the “fix” function within the 3-Matic Medical
software (version 13.0, Materialise, Leuven, Belgium). Figure 2A
depicts the flowchart outlining the cutting process employed in the
production of cut1 models.

Following the segmentation of all cut1 models, some irregular
cells and uneven meshes remained, which could potentially
compromise the extraction quality of point clouds. To mitigate
these defects, we applied a consistent processing approach to both

TABLE 1 Baseline characteristics of patients with ruptured and unruptured aneurysms from HUG and @neurIST projects.

HUG @neurIST Total

R (124) U (340) R (87) U (72) R (211) U (412)

Age 54.7 ± 14.3 55.5 ± 12.9 51.8 ± 11.7 54.0 ± 9.9 53.4 ± 13.3 55.2 ± 12.4

Female 83 268 60 55 143 323

Location

ICA 10 124 16 32 26 156

MCA 13 104 20 22 33 126

PComA 26 29 37 15 63 44

AComA 54 41 1 0 55 41

PC 13 28 10 2 23 30

ACA 8 14 3 1 11 15

R, ruptured; U, unruptured; ICA, internal carotid artery; MCA, middle cerebral artery; PComA, posterior communication artery; AComA, anterior communication artery; PC, posterior

circulation; ACA, anterior cerebral artery.

FIGURE 2
Flowchart of the pre-processing. (A) The whole process from cropping to repairing. (B) The complete process of edge smoothing, mesh
reconstruction, transformation, and visualization of the aneurysm point cloud for both the cut1 model and the dome model.
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the dome and the cut1 models. This approach involved a moderate
smoothing of sharp edges and mesh reconstruction. The “smooth”
function within the 3-Matic Medical software was employed, with
the smoothing factor and number of iterations configured to 0.5 and
3, respectively. To reconstruct the mesh, we used the “Uniform
Remesh” tool, and the target triangle edge length was specified as
0.15. Following these procedures, the meshes were exported as
stereolithography files and then converted into point cloud data
in txt format using the Open3D package in Python. A flowchart of
this process, applicable to both the dome and cut1 models, is shown
in Figure 2B.

2.3 Construction of model

The PointNet architecture (Qi et al., 2017a) represents a
significant breakthrough in the domain of DL for point cloud
processing. Its key strength is its ability to handle unordered and
irregular point sets. Nonetheless, PointNet’s performance is limited
due to its inability to effectively capture local features and inter-
point interactions, especially in complex point clouds that exhibit
diverse local densities. PointNet++ (Qi et al., 2017b) was developed
as a solution to these limitations, expanding upon the strengths of
PointNet while augmenting its performance even more.

Therefore, PointNet++ was chosen as the foundational DL
framework for this study. It employs a hierarchical architecture
that incorporates multiple levels of set abstraction, initially
abstracting small local regions before progressing to larger ones.
The hierarchical structure that emerges from this process effectively
captures both regional and global features. Figure 1B depicts a
simplified architecture of PointNet++. In particular, each set
abstraction level is comprised of three distinct layers, namely, the
sampling layer, the grouping layer, and the PointNet layer. The
sampling layer discerns a subset of input points to serve as the
centroids of local regions. Next, the grouping layer employs a ball
query strategy to identify points near the centroids, hence facilitating
the construction of local region sets. To represent regional patterns
as feature vectors, the PointNet layer utilizes a mini-PointNet
structure. Furthermore, PointNet++ introduces a multi-scale
grouping (MSG) strategy for extracting and concatenating
features from various scales at the centroids of local regions. This
enriches the model with multi-scale information, resulting in a more
robust feature representation.

The binary cross-entropy loss function (de Boer et al., 2005) was
employed for the PointNet++ model in this study. By computing the
difference between the predicted class probabilities and the
corresponding ground truth labels, this function normalizes the
network output into a probability distribution across different
classes and calculates the cross-entropy loss value. Such a value
plays a crucial role in updating the network weights during training,
ensuring that the predicted class probabilities align more accurately
with the ground truth labels.

The training and validation of the model were carried out on a
computer server equipped with an Nvidia GeForce GTX 3070 GPU.
The PointNet++ code was utilized through the PyTorch framework
and Python 3.8. The final hyperparameters were determined by
ablation experiments conducted with a fixed random seed (Reimers
and Gurevych, 2017). Specifically, a total of 8,192 points were

sampled for each aneurysm using the farthest point sampling
(FPS) strategy. In order to reach the requisite number of
samples, FPS employed an iterative process whereby the point
that is farthest from the previously selected points is successively
picked as the next representative sample. The process ensures that
the selected samples are evenly distributed and accurately reflect the
characteristics of the whole point cloud. The training procedure
utilized a batch size of 20, 200 epochs, an Adam optimizer with a
weight decay of 1e-04, and an initial learning rate of 2e-05.
Additionally, the Cosine Annealing Warm Restarts scheduler was
utilized to reduce the learning rate through the cosine annealing
method prior to each restart cycle. This approach sped up the
convergence pace while minimizing the risk of overfitting.

2.4 Model and risk evaluation

A stratified five-fold cross-validation approach (Pedregosa et al.,
2011) was employed to fully utilize the limited dataset for training
and evaluating of the model, making sure that each fold contained
an equivalent proportion of samples from each class. This strategy
effectively prevents potential pitfalls associated with class imbalance.
The receiver operating characteristic (ROC) curve was
systematically plotted, and a comprehensive array of statistical
indices, including accuracy, sensitivity, specificity, and AUC, was
calculated for each epoch in the internal validation set. Furthermore,
the ROC curve that demonstrated the highest level of reliability and
robustness throughout the training set, internal validation set, and
external validation set for each fold was identified as the optimal
curve (Table 2). The performance of the model was assessed using
the definitive evaluative metric, which was computed by taking the
arithmetic mean of these optimal curves using the numpy
1.23.5 package (Harris et al., 2020).

The model (cut1, fold3) that demonstrated greater overall
performance was chosen for the evaluation of rupture risk. The
confusion matrices of this model on both the internal validation set
and external validation sets were illustrated in Figure 3. Upon
processing point cloud data derived from an IA, the final output
layer of the model would produce a set of rupture risk scores,
transformed by a softmax layer (Goodfellow et al., 2016). These
scores, which ranged from 0 to 1, served as an indicator of the
likelihood of the IA rupture. A probability value trending towards
1 indicated an increased likelihood of IA rupture, whereas a value
closer to 0 signified a decreased likelihood of IA rupture. Risk
scoring diagram for the external validation set was illustrated
in Figure 4.

3 Results

Two models, namely, the dome model and the cut1 model, were
constructed using the AneuX morphology database. The HUG
project in the database consisted of 211 ruptured aneurysms and
412 unruptured aneurysms, which were partitioned in a 4:1 ratio for
training and internal validation using stratified five-fold cross-
validation. Table 2 listed the evaluation metrics used to quantify
the models’ performance, and Figure 5 depicted the mean ROC
curves. The dome model exhibited an average AUC, accuracy,
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sensitivity, and specificity of 0.81, 0.79, 0.61, and 0.86 upon internal
validation. In contrast, the cut1 model achieved an average AUC,
accuracy, sensitivity, and specificity of 0.85, 0.82, 0.72, and 0.86,
respectively. Notably, as compared to the dome model, the
cut1 model demonstrated significant enhancements in the first
three evaluation metrics.

For external validation, we utilized an independent project
within the AneuX morphology database, the @neurIST project,
which comprises 87 ruptured and 72 unruptured aneurysms. It is
noteworthy that there were noticeable dissimilarities in the
composition of ruptured and unruptured aneurysms between
the external and internal validation set. Application of the trained
DL weights to the external validation set resulted in the dome

model achieving an average AUC of 0.69, while the cut1 model
attained an average AUC of 0.71. Consequently, the cut1 model
outperforms the dome model in the external validation
set as well.

According to the literature (Juchler et al., 2022), the authors of
the original dataset developed a PCA-based LASSO regression
model, which achieved an average AUC of 0.82 in internal
validation and 0.67 in external validation. In comparison, our
cut1 model exhibited superior performance both in terms of
internal validation and generalizability.

Nonetheless, we observed that both the dome and cut1 models
demonstrated relatively lower sensitivity compared to other metrics.
For instance, in the cut1 model, the mean accuracy was 0.82, mean

TABLE 2 Performance comparison of the dome and cut1 models.

Model Pattern Val AUC Accuracy Sensitivity Specificity Test AUC

PointNet++ (dome) Fold 1 0.80 0.75 0.60 0.81 0.67

Fold 2 0.77 0.77 0.64 0.82 0.69

Fold 3 0.84 0.82 0.64 0.88 0.70

Fold 4 0.80 0.81 0.52 0.91 0.72

Fold 5 0.83 0.82 0.67 0.87 0.67

Average 0.81 0.79 0.61 0.86 0.69

PointNet++ (cut1) Fold 1 0.81 0.83 0.80 0.84 0.71

Fold 2 0.82 0.80 0.64 0.85 0.68

Fold 3 0.89 0.85 0.68 0.91 0.72

Fold 4 0.89 0.81 0.72 0.84 0.70

Fold 5 0.84 0.82 0.75 0.84 0.73

Average 0.85 0.82 0.72 0.86 0.71

The bold values is represent the average performance of the two models (dome and cut1) on the validation and test sets during five-fold cross-validation.

FIGURE 3
Confusion matrices of the cut1 model’s third fold on internal and external validation sets. (A) Confusion matrix on internal validation set. (B)
Confusion matrix on external validation set.
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specificity was 0.86, while the mean sensitivity was 0.72. We have
deliberated upon these issues, and possible explanations will be
further elucidated in the discussion section.

4 Discussion

The utilization of DL methodologies in the realm of
cerebrovascular disease imaging studies is expanding

dramatically, including various aspects such as detection,
prediction, and treatment. Nevertheless, the lack of sufficient
clinical data has hindered the progress of DL in assessing the risk
of IA rupture. This study aimed to assess the viability and
effectiveness of a point cloud-based DL model for predicting the
likelihood of IA rupture. To achieve this, we utilized an open-source,
multi-centric database.

During the preprocessing of the cut1 model, we ensured the
preservation of both the aneurysm dome and a portion of the parent

FIGURE 4
Risk scoring diagram generated by the cut1 model’s third fold on the external validation set. (A) An irregularly shaped ruptured aneurysm with a
significant bulge, exhibiting large aspect ratio and size ratio. Our model assigned a risk score of 0.982. (B) An elliptical-shaped, unruptured aneurysmwith
a regular morphology. Our model assigned a risk score of 0.089. (C) An irregularly shaped, unruptured aneurysmwith a significant bulge, exhibiting large
aspect ratio and size ratio. Our model assigned a risk score of 0.933.

FIGURE 5
The mean ROC curve based on five-fold cross-validation. (A) Dome + internal validation. (B) Dome + external validation. (C) Cut1 + internal
validation. (D) Cut1 + external validation.
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vessels. This preservation facilitated the DL model to extract a wide
range of morphological features associated with both ruptured and
unruptured aneurysms. It also allowed for the analysis of structural
aspects between the aneurysm dome and parent vessels, such as the
aneurysm-to-vessel size ratio, which has been demonstrated to be a
critical parameter in assessing aneurysm rupture risk (Dhar et al.,
2008). Furthermore, the presence of small vessel branches on parent
vessels may introduce redundant information into the model,
increasing its complexity. Managing a large number of input
features complicates the process of extracting key features,
increases execution time, and has the potential to impede model
convergence (Visalakshi and Radha, 2014). Therefore, we chose to
remove the smaller branches attached to the parent vessels
deliberately in order to reduce model complexity and enhance
computational efficiency.

Given that a point cloud is essentially a set of dense 3D points,
each possessing its own coordinates in 3D space. During the
sampling process, it is critical to minimize the loss of essential
information while maintaining sufficient morphological details of
aneurysms. Hence, after comparing the need for a detailed
representation against the computational cost, we chose a high-
density sampling of 8,192 points to ensure that the precise spatial
contour and morphological features of aneurysms could be
conveyed. The sampled point cloud model is depicted visually
in Figure 2B.

The performance of our approach was shown to be superior
when compared to the PCA-based LASSO regression model.
However, as the authors of the original dataset noted, we ran
into problems with the model’s generalizability when conducting
external validation using a novel and heterogeneous dataset.
Additionally, we have observed a phenomenon in which both
models exhibit favorable accuracy and specificity, while
displaying relatively lower sensitivity.

Two potential issues with the dataset could be contributing to
the model’s lack of generalizability. Firstly, the composition ratio of
ruptured and unruptured aneurysms differed significantly across the
HUG and the @neurIST projects. Specifically, ruptured aneurysms
accounted for approximately 27% of all aneurysms in the HUG
project, while they made up around 55% in the @neurIST project.
This structural composition disparity between the external
validation set and the training set can have an effect on the
model’s generalizability. Furthermore, we found discrepancies in
resolution and artifacts in the original 3D vessel models from the
two projects. Despite efforts to minimize these discrepancies during
preprocessing by utilizing “smooth” and “remesh” techniques, the
potential variation in data quality between the external validation set
and the training set could hamper the model’s generalizability in DL.

In this study, we proposed a possible explanation for the
observed discrepancy between the model’s high levels of accuracy
and specificity and its relatively low sensitivity. The term
“sensitivity” refers to the model’s ability to reliably identify
ruptured aneurysms among the total number of true ruptured
aneurysms, as expressed by the ratio of true positive predictions
(correctly identified ruptured aneurysms) to actual ruptured
aneurysms in the current study. It is worth noting that both the
HUG and @neurIST projects primarily included aneurysms imaged
with 3DRA, which is commonly used in the context of clinical
interventions (van Rooij et al., 2009). However, it is vital to recognize

that this reliance on 3DRA creates a potential selection bias towards
unruptured aneurysms within the database. Specifically, unruptured
aneurysms in the database are more likely to meet the criteria for
intervention and subsequently undergo clinical interventions
following 3DRA. As a result, the database may contain a higher
proportion of large-sized and irregularly-shaped unruptured
aneurysms compared to what is typically encountered in real-
world scenarios. This disparity in size and morphology between
the database and the actual population of unruptured aneurysms
could plausibly account for the lower sensitivity.

We evaluated the performance of the optimal curve using the
external validation set, and the risk score visualization for three
examples is depicted in Figure 4. The first aneurysm exhibited
irregular morphology, with a high aspect ratio and size ratio,
along with the presence of a noticeable bulge. The aneurysm
actually ruptured, and our model predicted a risk score of 0.982.
The second aneurysm had a regular shape and a smooth surface. The
aneurysm did not rupture, and our model predicted a risk score of
0.089. Additionally, the third aneurysm, similar to the first one,
presented irregular morphology, with a high aspect ratio and size
ratio, accompanied by a noticeable bulge. Although the aneurysm
did not rupture in reality, based on clinical experience, it was
deemed to have a high risk of rupture, which aligns with the
model’s predicted risk score of 0.933. These results demonstrate
that the point cloud representation can effectively capture the
contours and morphological features of aneurysms.

Our study has certain limitations. Firstly, IA rupture is a complex
event influenced by multiple factors. Some clinical risk factors, such as
blood pressure and smoking history, as well as hemodynamic factors
such as wall shear stress and oscillatory shear index, which might
potentially improve the model’s performance, were not included in
the model due to data availability and technical obstacles. Secondly,
while earlier studies (Kataoka et al., 2000; Beck et al., 2003; Lindgren
et al., 2016) indicated that the morphology of IA did not change
considerably before and after rupture, evaluating rupture risk based
on rupture and non-rupture eventsmay introduce some error into the
experimental results. Furthermore, our study did not validate the
performance differences between PointNet and PointNet++, even if
the latter is an iterative version of former. Hence, we cannot
definitively conclude that PointNet++ necessarily outperforms
PointNet in our study. Finally, our study only used classical
algorithms for point clouds. It is worth noting that while classical
networks are widely recognized and accepted, recent research has
introduced novel DL algorithms based on point clouds, such as
physics-informed neural networks (PINNs) (Zhang et al., 2023)
and point cloud transformer (PCT) (Guo et al., 2021). These
emerging algorithms may perform better in certain tasks. Given
these limitations, future studies should incorporate multiple
variables associated with rupture risk in prospective, multicenter
follow-up studies and validate the latest point clouds-based DL
algorithms, with the goal of providing a more comprehensive
assessment of the rupture risk for both stable and unstable aneurysms.

5 Conclusion

Our research evaluated the feasibility and efficacy of a point
cloud-based DL model in predicting the likelihood of IA rupture
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using a prospective, multi-centric dataset, indicating that point
cloud, as a 3D visualization tool for IA, can effectively capture
the spatial contour and morphological aspects of aneurysms. In
addition, we examined the performance of two models with distinct
cropping procedures, highlighting the importance of structural
elements between the dome and parent vessels. The point cloud-
based DL model exhibited good performance in predicting
aneurysm rupture risk while also facing challenges in
generalizability.
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