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Cardiotocography (CTG) measurements are critical for assessing fetal wellbeing
duringmonitoring, and accurate assessment requires well-traceable CTG signals.
The current FHR calculation algorithm, based on autocorrelation to Doppler
ultrasound (DUS) signals, often results in periods of loss owing to its inability to
differentiate signals. We hypothesized that classifying DUS signals by type could
be a solution and proposed that an artificial intelligence (AI)-based approach
could be used for classification. However, limited studies have incorporated the
use of AI for DUS signals because of the limited data availability. Therefore, this
study focused on evaluating the effectiveness of semi-supervised learning in
enhancing classification accuracy, even in limited datasets, for DUS signals. Data
comprising fetal heartbeat, artifacts, and two other categories were created from
non-stress tests and labor DUS signals. With labeled and unlabeled data totaling
9,600 and 48,000 data points, respectively, the semi-supervised learning model
consistently outperformed the supervised learning model, achieving an average
classification accuracy of 80.9%. The preliminary findings indicate that applying
semi-supervised learning to the development of AI models using DUS signals can
achieve high generalization accuracy and reduce the effort. This approach may
enhance the quality of fetal monitoring.
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1 Introduction

To mitigate the risk of fetal acidosis, it is crucial to assess fetal wellbeing during
pregnancy, labor, and delivery. Cardiotocography (CTG) is widely used as a continuous
monitoring method to assess fetal wellbeing. The International Federation of Gynecology
and Obstetrics (FIGO) has provided guidelines on CTG interpretation, enabling
obstetricians and midwives to analyze and evaluate fetal oxygenation based on CTG
readings (Lewis et al., 2015). Signals for fetal heart rate (FHR) and uterine contractions
in CTG correlate with the health status of the fetus (German Society of Gynecology and
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Obstetrics, 2014; Arnold and Gawrys, 2020). A well-traceable CTG,
particularly with a continuous FHR that does not show any loss, can
effectively reflect the fetal status.

The most common technology used to measure the FHR is based
on Doppler ultrasound (DUS). The FHR is obtained from the average
interval of the correlation coefficient peaks calculated using an
autocorrelation function (ACF) applied to the DUS signals
(Alnuaimi et al., 2017; Hamelmann et al., 2020). The DUS signal
does not have a fixed amplitude peak for each heartbeat but occurs
periodically, and the peak of the correlation coefficient is paired with
the occurrence of a heartbeat (Marzbanrad et al., 2018). However, the
FHR calculation algorithm with DUS and ACF has limitations and
causes poor CTG recordings, such as signal loss and inaccurate FHR
(e.g., double or half counts). Specialists frequently encounter CTGs
with inadequate signal quality, which hinders their ability to diagnose
fetal wellbeing, particularly during the second stage of labor (Nunes
et al., 2014; Faiz et al., 2021; Reis-de-Carvalho et al., 2022). Mismatch
between the signal range required for calculating correlation
coefficients and the actual length of the obtained signals can result
in double-counting or half-counting. This phenomenon occurs under
conditions in which abnormal fetal heartbeats such as fetal
arrhythmias or artifacts appear between beats. Signal loss occurs
when the correlation coefficient peak interval is no longer paired
with the FHR due to artifacts introduced by fetal or maternal motion
within the DUS signal or due to the fetal heart moving out of the scan
area (Marzbanrad et al., 2018; Hamelmann et al., 2020; Reis-de-
Carvalho et al., 2022). Furthermore, if maternal blood vessels are
present in the scan area, the heart rate is calculated from the beating of
these blood vessels. This means that the fetal heart rate cannot be
accurately determined and the signal related to the maternal heart rate
can be calculated (Bakker et al., 2004; Lewis et al., 2015). During labor,
the quality of FHR can deteriorate because of momentary noise
interruptions. However, the signal-to-noise ratio representing the
quality of DUS signals is sufficient for FHR calculation. The object
size and distance considerably influence the quality, and as the
gestational weeks progress, fetal heart enlargement and the
distance between the fetus’ heart and the device decrease.
Therefore, DUS signal quality can be excellent during delivery
Hamelmann et al. (2019).

Several studies have addressed the limitations of DUS and ACF.
Liang H. et al. (2022) investigated the efficacy of in-phase and
quadrature demodulation in electronic fetal heart rate monitoring to
reduce false reports of FHR doubling or halving, possibly due to fetal
cardiac arrhythmias. Jezewski et al. (2011) used dynamic
adjustments of the autocorrelation window, adaptive
autocorrelation peak detection, and the determination of beat-to-
beat intervals to reduce the number of erroneous cardiac cycle
measurements. Hamelmann et al. (2019) used multiple
transducer arrays to reduce the possibility of moving the fetal
heart within the ultrasound range. Eliminating the artifact effect
during FHR computation might be achievable throughmethods that
either directly count fetal heartbeat onsets within the DUS or
perform ACF by extracting only the waveform of the fetal
heartbeat signal within the DUS. Both approaches necessitate the
extraction of the fetal heartbeat segment from the DUS signal.

Among artificial intelligence (AI) technologies, deep learning
(DL) has achieved remarkable success in various tasks, including
classification (Krizhevsky et al., 2012). Because diverse types of data

are processed by AI, it is widely applied in various research fields.
Within obstetrics, some studies have directly assessed fetal hypoxia
using CTG input and AI to determine whether the arterial cord blood
pH level is below a certain threshold (Ogasawara et al., 2021; Liang Y.
et al., 2022; Gude and Corns, 2022; Spairani et al., 2022; Liang and Lu,
2023). Other studies have investigated DL models that could
determine whether the bpm displayed on CTG is maternal or fetal,
which is not supported by existing CTG analysis systems (Signorini
et al., 2003; Magawa et al., 2021; Boudet et al., 2022). In addition, some
studies have also used DL models to filter maternal ECG signals and
extract fetal ECG signals (Hasan et al., 2009; Fotiadou et al., 2021;
Ghonchi and Abolghasemi, 2022; Mohebbian et al., 2023).

AI models typically require a large amount of training data to
effectively learn intricate features within a dataset. For example, the
MNIST dataset used for image recognition consists of labeled data
with 60,000 samples for training and 10,000 samples for evaluation
(El Kessab et al., 2013). Given the time-consuming nature of dataset
creation, in particular labeling, utilizing prelabeled open data is a
time-effective choice for developing AI. In obstetrics, while open
data exists for CTG or fetal ECG, none exists for DUS (Marzbanrad
et al., 2018). Consequently, creating training data using DUS
requires considerable time and effort.

Semi-supervised learning has emerged as a strategy to alleviate
the significant labeling effort associated with AI tasks (Miyato et al.,
2019; Chen et al., 2020; Sohn et al., 2020). Semi-supervised learning
improves the performance of AI generalization by using both labeled
and unlabeled data for training. This approach streamlines the
training data creation process by focusing on data containing
features that require minimal labeling effort.

The objective of this study is to enhance CTG quality by
accurately determining FHR in DUS signals without artifacts. We
hypothesized that classifying DUS signals by type could be critical
for CTG improvement. Identifying fetal heartbeats can prevent the
use of artifacts in calculating FHR and reduce inaccuracies. We also
focused on identifying single beats using DUS. By doing so, we aim
to extract the parameters utilized to calculate the inter-beat interval
from the corresponding occurrence times.

We propose using AI for classifying DUS signals into their
respective signal types. To the best of our knowledge, AI is yet to be
implemented for DUS signals. Thus, efficacy validation is necessary.
A key challenge for the integration is the considerable costs
associated with dataset creation. Therefore, this study confirms
the effectiveness of semi-supervised learning in AI for classifying
DUS signals.

2 Materials and methods

The study was conducted in accordance with the Declaration of
Helsinki, and approved by the Institutional Review Board of the
Niigata University of Health and Welfare (Approval No.
18890-220810).

2.1 Data acquisition

The research materials used in this study consisted of CTG data
and simultaneously recorded DUS signals. All data used in this study
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were collected by TOITU Ltd. and shared with the investigators at
Niigata University of Health and Welfare as anonymously processed
information. A total of 528 datasets were used, comprising 442 cases
with a non-stress test (NST) and 86 cases in the first or second stages
of labor. The dataset included pregnant women aged 20 years and
older, with gestational ages ranging from 24 to 41 weeks. There were
no cases of twins or more, fetal or maternal deaths, necessitation for
careful monitoring, cesarean sections and instrumental vaginal
deliveries. The total recording times for NST and labor were
161 h, 23 min, and 34 s, and 218 h, 32 min, and 44 s, respectively.
The CTG monitors used in this study were the MT-610 and MT-516
models (TOITU Ltd., Tokyo, Japan). These monitors transmit signals
to the central server via Ethernet. The recorded data were obtained
from the FHR and uterine contractions on the CTG. The FHR was
sampled at a frequency of 4 Hz with a resolution of 0.25 bpm.
Simultaneously, DUS signals were recorded at a frequency of 1 kHz
with a 16-bit resolution using custom software.

2.2 Extraction of fixed data length for AI

During fetal monitoring, the DUS signal consists of three main
components: the fetal heartbeat, artifacts, and low-level signals
without any periodic pattern. Double counting, half counting,
and signal loss typically occur when calculating FHR using ACF.
These problems originate from malfunctions resulting from
constraints on the signal length and the calculation of heartbeats
even for signals other than the target beat.

A solution is to classify the DUS signals into respective categories
for appropriate processing. We used four categories, that is, the three
categorized previously mentioned components, in addition to our own
defined categories. The first category is single fetal heartbeat,
representing one cycle of heartbeat motion. The second category is
artifact, representing transient signals due to various movements. The
third category is low-level signal, representing signals with noise
amplitude. The fourth category is multiple heartbeats, indicating the
presence of two heartbeats within a segment. Detecting two beats
within a specific interval in the categorization of DUS signals is crucial
for recognizing the necessity of detecting heartbeats before and after
them, which can prevent double counting and half counting. These
categories were used as labels for the DUS signals to be classified by AI.
The fetal heartbeat is the most important because its onset timing and
duration are used to calculate indices, such as the FHR and heartbeat
interval. When preparing the training data, the segment was based on
this parameter and was adjusted to one beat length. Artifacts and low-
level signals are factors that lead to loss in the existing FHR calculation
system. The fourth category also led to half-counting in the system.

The categorized data underwent a semiautomated four-step
process to reduce the cost of data preparation.

In the first process, we performed segmentation using filtering
and thresholding, which are the same methodology as the ACF
methods (Hamelmann, et al., 2020). To avoid mixing different
beats, the segment length was set to 350 ms so that it is shorter
than 400 ms, which was reported in a previous inter-beat interval
evaluation (Jezewski et al., 2006). This process was specifically targeted
at extracting single fetal heartbeats and includes artifacts that meet the
requirements. We applied high- and low-pass filters to DUS to
enhance the frequency components associated with fetal heart

movement while suppressing noise. We extracted the segmented
signal, which ranged from 250 ms to 350 ms, using a threshold-
based approach. This threshold was dynamically updated at each fixed
analysis interval, and a morphological closing process was applied to
prevent the division of single fetal heartbeats (Haralick et al., 1987).

In the second process, we extracted amplitude signals below a
threshold; these signals are considered noise in ACF methods
(Hamelmann et al., 2020). The same filtering and segmentation
methods as described above were used to extract noise levels with
durations ranging from 250 ms to 350 ms.

In the third process, segments identified during the initial process
were categorized into two groups, whereas signals extracted during the
second were assigned to a single category. The classification used the
ACF expressed in Eq. 1, where x is the DUS signal, n is the first sample
of the autocorrelation window, N is the ACF window length, τ is the
delay, and max is the delay at which the autocorrelation value is the
maximum. In the ACF method, intervals in which a stable FHR can be
derived correspond to pairs of beats and peaks of ACF output
(Hamelmann, et al., 2020). Therefore, segments extracted in
conjunction with τmax were classified to be “Single fetal heartbeats”.
By contrast, in cases in which the FHR could not be derived due to
transient signal contamination, τmax could not be obtained. Therefore,
segments for which τmax did not exist within the same interval were
classified “Artifacts.” The data extracted in the second process with no
τmax in segments were classified as “low-level signals.”

In the fourth process, a novel segment was extracted from two
individual fetal heartbeats to accommodate the presence of two beat
fragments within the extracted data. The category of “multiple
heartbeats” was created by shifting the extraction starting point of
the first single fetal heartbeat by half the wavelength when two
consecutive single fetal heartbeats were present. All the extracted
data shorter than 350 ms were padded with zeros to achieve the
fixed length.

As shown in Table 1, 602,409 data points were obtained and
labeled for all categories. Examples of each extracted category are
shown in Figure 1. Signal extraction and categorization algorithms
were developed using the MATLAB R2022b software.

ACF τ[ ] � ∑
N−τ
j�0 x n + j( )x n + j + τ( ), 0≤ τ ≤N (1)

2.3 Data selection and dataset

Equal amounts of training data were used across all categories to
develop an AI with high generalization performance. To investigate

TABLE 1 Number of extracted data points in acquisition conditions.

Data label
Number of data points

Labor NST Labor + NST

Single fetal heartbeat 108,444 176,622 285,066

Artifact 9,045 8,762 17,807

Multiple heartbeats 108,444 176,622 285,066

Low-level signal 10,362 4,108 14,470
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the effectiveness of semi-supervised learning, we required both
labeled and unlabeled data. The results presented in Table 1 were
generated automatically by the algorithm without researcher
validation, acknowledging the impracticality of manually
verifying each data point owing to time and cost constraints.
Consequently, the researcher performed checks on the data to be
labeled in the semi-supervised learning process. Recognizing the
uncertainty surrounding the amount of training data required for
DUS-based AI applications, a concerted effort was made to
incorporate as much labeled data as possible. We visually
inspected figures generated in units of several tens of seconds,
which simultaneously depicted data generated by the semi-
automatic labeling process and DUS signals, and confirmed that
the generated labels matched the established definitions. The
“labeled” data are the data that were checked by the researcher,
and all other data were “unlabeled.”

The amount of data used in each category was adjusted to
correspond to the category with the lowest count. The amount of
labeled data was adjusted to approximately one-fifth that of the
unlabeled data. The ratio of labeled to unlabeled data was set higher
than that for other research with semi-supervised learning (Miyato
et al., 2019; Sohn et al., 2020) to evaluate the accuracy by changing
the number of labeled data points. A total of 2,400 labeled data
points and 12,000 unlabeled data points were randomly selected
from each category (Table 2). For training and validation purposes,
2,000 labeled data points were allocated, with 400 points for each

category. Of the 9,600 labeled data points, 5,000 were from labor
data and 4,600 were from NST data.

2.4 AI model

To create an AImodel for classifying the four categories, we used
a 1D-CNN for supervised learning. The core architecture comprises
a series of three interconnected layers: convolutional, activation, and
max-pooling layers. This sequence was repeated four times, and the
probability of each option was calculated using a fully connected
layer with softmax and classified as the option with the highest
probability.

FIGURE 1
Example of labeling fixed-length data. (A)Waveform for one heartbeat (Single fetal heartbeat). (B) Non-periodic and transient signals (Artifacts). (C)
Overlap with two heartbeat waveforms (multiple heartbeats). (D) Low amplitude and no characteristic behavior signal (Low-level signal). The amplitude of
the acquired DUS signal was normalized to be within the 1 to 1 range.

TABLE 2 Number of labeled and unlabeled data points for each category.

Data label

Number of data points

Labeled data
Unlabeled data

Train Validation

Single fetal heartbeat 2,000 400 12,000

Artifact 2,000 400 12,000

Multiple heartbeats 2,000 400 12,000

Low-level signal 2,000 400 12,000
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The architecture of the AI model used for semi-supervised
learning was identical to that of the supervised learning model,
except for the loss function. The iterative process is as follows: First,
supervised learning was performed on labeled data, followed by
semi-supervised learning on unlabeled data. In the semi-supervised
learning phase, both unlabeled data and data augmented with white
noise were used. The noise-augmented data were added a random
value to each point of the unlabeled data with an upper limit on the
amplitude. The unlabeled data were processed in each layer using
the same parameters used in the supervised learning. Similarly,
unlabeled data with added noise were processed and trained to
minimize the Kullback–Leibler distance. This iterative process is
repeated. The AI model used in this study is illustrated in Figure 2.
The AI was built using Sony Corporation’s Neural Network Console
version 2.1. The specifications of the machine used for training and
evaluation are as follows: An Intel(R) Core(TM) i9 series CPU
operating at 3.00 GHz and an NVIDIA GeForce RTX 3090 GPU.

2.5 Performance evaluation

To evaluate the generalization performance of the AI, we
performed a 6-fold cross-validation of the data listed in Table 2.
To confirm the effectiveness of semi-supervised learning, we
reduced the amount of training data in each fold to observe
changes in accuracy. We randomly reduced the number of
training data points to 8,000, 4,000, 2,000, 1,000, 500, and
240 while maintaining a consistent proportion for each category.
Furthermore, the results of each 6-fold validation were combined
and stratified based on the NST and labor data acquisition
conditions to investigate whether any patterns of differences in
accuracy were present.

Accuracy is often the most intuitive index used to evaluate
model performance. However, in cases where data are
unbalanced, accuracy may not be a reliable reference.
Therefore, we also considered other indicators to evaluate the
performance of the model in terms of precision, recall, and
F-measure. The results can be classified into four categories:
true negative (TN), false negative (FN), true positive (TP), and
false positive (FP).

Accuracy indicates the proportion of samples that the model
correctly predicts for the overall sample and assesses the overall
model performance.

Accuracy � TP + TN
TP + FP + TN + FN

× 100 %[ ] (2)

Precision indicates the proportion of samples that the model
predicts as positive that are actually positive, and assesses the impact
of false positives.

Precision � TP
TP + FP

× 100 %[ ] (3)

Recall indicates the proportion of samples that the model
correctly predicts as positive from the actual positive samples and
assesses the impact of false negatives.

Recall � TP
TP + FN

× 100 %[ ] (4)

F-Measure is the harmonic mean of the goodness-of-fit and
reproducibility and provides a balanced assessment of the accuracy
and sensing ability of the model.

F −Measure � 2 × Precision × Recall

Precision + Recall
× 100 %[ ] (5)

FIGURE 2
AI model architecture for semi-supervised learning.
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3 Results

Table 3 presents the evaluation results for both supervised and
semi-supervised learning, which are in the left and right halves of the
table, respectively. The top and bottom halves of the table present
the results for the training datasets of 240 and 8,000 data points,
respectively. The precision, recall, and F-measures for each category
are the average values derived from a 6-fold cross-validation.

In the supervised learning of the 240 training data points, the
accuracy of each fold was in the range of 20.8%, from 32.3% to
53.1%, with an average accuracy of 42.1%. The highest average
precision and F-measure were obtained for the multiple heartbeats
at 61.8% and 51.4%, respectively. Single fetal heartbeat exhibited the
highest average recall rate of 61.0%. In the semi-supervised learning
of the 240 training data points, the accuracy of each fold was in the
range of 18%, from 57.3% to 75.3%, with an average accuracy of
65.4%. The precision, recall, and F-measure had the highest averages
for the low-level signal at 96.0%, 84.3%, and 88.9%, respectively.

In the supervised learning of the 8,000 training data points, the
accuracy of each fold was in the range of 7.1%, from 75.3% to 82.4%,
with an average accuracy of 79.6%; precision, recall, and F-measure
all had the highest average for the low-level signal at 97.9%, 97.0%,
and 97.4%, respectively. As shown by the results presented for semi-
supervised learning on the 8,000 training data points, the accuracy of
each fold was in the range of 4.1%, from 78.3% to 82.4%, with an
average accuracy of 80.9%; precision, recall, and F-measure all had
the highest averages for the low-level signal at 97.0%.

The number of training data points and average 6-fold accuracy for
each training method are presented in Figure 3. For each amount of
training data, the accuracy of semi-supervised learning consistently
exceeded that of supervised learning. For each training data point, a
t-test was conducted using the softmax outputs from both the supervised
and semi-supervised learning. Across all training conditions, the p-values
were less than 0.001 between supervised and semi-supervised learning.
These statistical analyses demonstrate a significant difference between
the two learning methods across all training data.

Figure 4 shows the validation data divided by acquisition conditions
to identify trends. Figure 4A shows a comparison of accuracy against the
number of training data in the labor dataset by the training method, and
Figure 4B shows the same in the NST dataset. The trend in which the
accuracy of semi-supervised learning was higher than that of supervised

learning remained unchanged when the data were divided into different
acquisition conditions. In addition, the accuracy appeared to be
consistently higher for labor data compared with NST data.

In addition to the results presented here, Supplementary Table
S1 also present the results from each fold for both semi-supervised
and supervised learning, as well as the average accuracies and
p-values depicted in Figure 3.

4 Discussion

Ultrasound-based FHR calculation methods are widely used in
fetal monitoring systems. The DUS signal is used only for FHR
calculations in conventional methods. However, the DUS signal
inherently contains various factors necessary for the assessment of
fetal cardiac function and a lot of potentially valuable information
(Jezewski et al., 2006; Khandoker et al., 2009). We focused on DUS
signals because it can provide useful information for fetal
monitoring. In this study, the DUS signals were classified into
four categories, including fetal heartbeats. To the best of our
knowledge, this is the first study on DUS signals that applies AI
to classify each type of signal during fetal heart rate monitoring.

The developed AIwas tailored to classify four different waveforms
of the observed DUS signals during fetal heart rate monitoring: single
fetal heartbeat, artifact, low-level signal, and multiple heartbeats.
Supervised learning resulted in an average accuracy of 79.6%, and
semi-supervised learning achieved 80.9% accuracy. Previous studies
involving AI for discriminating environmental sounds have presented
models with discrimination accuracies ranging from 79.8% to 86.4%,
which have led to successful classification outcomes (Su et al., 2019).
Based on these results, it can be concluded that AI can be applied to
DUS to extract crucial information such as fetal heartbeats and
artifacts. This means that if DUS and its labels are prepared,
various identifications are possible and may provide parameters
that are not available in conventional fetal monitoring. An
example is the distinction between maternal and fetal heart rates,
which is difficult during fetal monitoring. This could lead to early
attention in cases where the maternal heart rate is misidentified as the
fetal heart rate during delivery (Pinto et al., 2015).

In Table 3, the results for single fetal heartbeat and artifact tend to be
lower than those of other categories. Tables 4, 5 present the confusion

TABLE 3 Performance of supervised and semi-supervised learning for each training data point.

Training data points
Supervised learning Semi-supervised learning

Labels Precision Recall F-measures Precision Recall F-measures

240

Single fetal heartbeat 39.3 61.0 45.7 57.7 56.8 55.9

Artifact 29.6 31.7 28.9 42.9 50.8 45.7

Multiple heartbeats 61.8 47.0 51.4 80.3 69.9 74.6

Low-level signal 51.0 28.9 34.5 96.0 84.3 88.9

8,000

Single fetal heartbeat 69.3 65.8 66.9 70.5 67.9 69.0

Artifact 60.6 63.0 61.3 63.9 65.5 64.5

Multiple heartbeats 91.9 92.8 92.3 92.4 93.0 92.7

Low-level signal 97.9 97.0 97.4 97.0 97.0 97.0
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matrices for each condition. Table 4 presents the confusion matrix for
using 240 data points for learning, with a) representing semi-supervised
learning and b) representing supervised learning. Table 5 presents the
confusion matrix for using 8,000 data points for learning, with a)
representing semi-supervised learning and b) representing supervised
learning, respectively. These confusion matrices represent the combined
results of all folds. In Tables 4, 5, the AI misclassified artifact as a single
fetal heartbeat, and, except for Table 4 b), misclassified single fetal

heartbeat as artifact. This phenomenon suggests similarities in the
features of Artifact and Single fetal heartbeat. If this method is
intended for medical use, misclassification can have fatal
consequences. Therefore, further improvements in the accuracy are
necessary. The accuracy could be improved by using additional
parameters for training the AI, for example, the uterine contraction
signal in the CTG. This may provide a potential guide for estimating the
occurrence of artifacts. Additional training data should be required to

FIGURE 3
Number of training data points and accuracy of semi-supervised and supervised learning.

FIGURE 4
Number of training data and accuracy of semi-supervised and supervised learning for each data acquisition condition. (A) Data acquired by labor
(5,000 data points); (B) Data acquired by NST (4,600 data points).
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separate these characteristics effectively. In addition, considering that this
study achieved a classification accuracy of over 90% for overlapping
heartbeat signals, combining multiple conditions to determine fetal
heartbeats could improve the discriminative accuracy.

There are two potential developments from this study’s AI. The
first is the classification in the pre-ACF phase. The FHR is calculated
only when the DUS category, determined by using AI, is a single fetal
heartbeat. Hence, the FHR could be improved by eliminating the
effects of artifacts. The second is the direct FHR calculation by

monitoring the timing of the occurrence of each fetal heartbeat. The
FHR is obtained from the time interval between the characteristic
cardiac activity signals (e.g., valve opening and closing) determined
by AI within the DUS. The utilization of a specific cardiac activity
signal, such as valve action, ensures robustness against fluctuations
in the signal amplitude of the DUS, which affects the accuracy of the
FHR in the ACF. Moreover, the FHR obtained through this
approach could be closer to those obtained from ECG, which
serves as the gold standard. Thus, this approach has the potential

TABLE 4 Confusion matrix using 240 training data points.

(a) Semi-supervised learning

Predicted labels

Low-level signal Single fetal heartbeat Multiple heartbeats Artifact

True Labels

Low-level signal 2,022 62 67 249

Single fetal heartbeat 5 1,362 91 942

Multiple heartbeats 47 132 1,677 544

Artifact 51 859 271 1,219

(b) Supervised learning

Predicted labels

Low-level signal Single fetal heartbeat Multiple heartbeats Artifact

True Labels

Low-level signal 693 573 195 939

Single fetal heartbeat 50 1,465 244 641

Multiple heartbeats 108 775 1,127 390

Artifact 160 1,130 350 760

TABLE 5 Confusion matrix using 8,000 training data points.

(a) Semi-supervised learning

Predicted labels

Low-level signal Single fetal heartbeat Multiple heartbeats Artifact

True Labels

Low-level signal 2,328 3 29 40

Single fetal heartbeat 5 1,630 34 731

Multiple heartbeats 31 26 2,232 111

Artifact 37 670 121 1,572

(b) Supervised learning

Predicted labels

Low-level signal Single fetal heartbeat Multiple heartbeats Artifact

True Labels

Low-level signal 2,328 0 26 46

Single fetal heartbeat 2 1,579 28 791

Multiple heartbeats 20 28 2,226 126

Artifact 28 717 144 1,511
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to provide an assessment of cardiac function by measuring not only
FHR, but also the time of each cardiac function interval, such as
short-term variability, whose parameters have generally only been
measured using ECG with scalp electrodes (Gonçalves et al., 2006).

Semi-supervised learning has proven to be effective for tasks that
require novel labeling, such as DUS signal labeling. Semi-supervised
learning was found to reduce labeling costs and improve
generalization performance, as confirmed in this study. The labeled
data were validated by the researchers after algorithmic signal
extraction and categorization. Employing semi-supervised learning
has enabled researchers to reduce label-validation efforts by several
dozen hours. In Table 3; Figures 3, 4, the accuracies of semi-supervised
and supervised learning are higher than those of supervised learning.
Furthermore, the variations in accuracy per fold in supervised
learning were 20.8% for the 240 training data points and 18% for
the 8,000 training data points. In contrast, the variations in accuracy
per fold in semi-supervised learning were 7.1% for the 240 training
data points and 4.1% for the 8,000 training data points. The variation
in accuracy between each fold was smaller by approximately 3% in
semi-supervised learning than in supervised learning. This confirms
the robustness of semi-supervised learning. Therefore, the use of semi-
supervised learning in DUS offers performance advantages.

In this study, the classification accuracy of each category of DUS was
reported to be at most 80.9%, but there is potential for further
improvement. This study employed a CNN and semi-supervised
learning as the AI models. There are various types of AI models, such
as ResNet (He et al., 2016), which extends the structure of CNNs, and
Transformer (Vaswani et al., 2017), which exhibits high performance in
natural language processing. The accuracy can be improved by using
different models. Moreover, accuracy can be enhanced by choosing a
particular method of semi-supervised learning. In this study, semi-
supervised learning was used, which means that simple white noise
was added to the unlabeled data, and the most accurate amplitude was
selected based on the results shown in Figure 5. Nevertheless, various

semi-supervised learningmethods can improve accuracy. These methods
include Virtual Adversarial Training (Miyato et al., 2019; Chen et al.,
2020), which optimizes noise, and FixMatch (Sohn et al., 2020), which
assigns pseudo-labels to improve generalization performance. Semi-
supervised approaches can potentially enhance accuracy.

The results shown in Figure 4 suggest that the AImodel developed
in this study ismore effective during labor. Given the higher likelihood
of signal loss in CTG during labor, integrating this AI model during
labor while retaining conventional methods during the NST could
improve CTG quality. To improve the accuracy of the AI model in
NST, further research is necessary to identify the factors that affect the
difference in accuracy between labor and NST. Differences in fetal
heart sizemay be an influential factor affecting accuracy. Because NST
is conducted at an earlier gestational week than labor, it may result in a
smaller fetal heart. The fetal heart sizemay have affected the signal-to-
noise ratio (SNR) of the Doppler signal used in this study, owing to its
correlation with the amplitude of the received ultrasound signal.
Another contributing factor could be related to differences in the
signal shape arising from variations in examination conditions. When
the positions of the ultrasound probe and the fetal heart are not very
close to each other, the fetal heart rate can still be calculated, even
when the DUS signal is of poor quality, and the DUS signal may be
more variable than during labor or delivery. NST is characterized by
fewer uterine contractions andminimalmovement by the mother and
fetus, which Contraction h inherently reduces signal loss occurrences.
In the cases examined in this study, the average signal loss was 4.6%
during NST and 20.5% during labor.

The method used in this study to classify the DUS signals into
multiple categories has the potential to accurately detect abnormal
findings during fetal monitoring. For instance, it might be possible
to diagnose fetal arrhythmias that were previously diagnosed using
ultrasound diagnostic devices or fetal electrocardiograms using DUS
signals for assessment (Jezewski et al., 2006; Khandoker et al., 2009;
Wacker-Gussmann et al., 2014; Chivers et al., 2022). Table 3 shows

FIGURE 5
Noise amplitude and accuracy of unlabeled data in semi-supervised learning. The accuracies for different levels of noise amplitudes, including 0.01,
0.03, 0.05, 0.07, 1, 0.3, and 0.5, with the number of training data points set to 8,000.
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that both supervised and semi-supervised learning methods tended
to occasionally misclassify artifacts and fetal heartbeat components.

5 Limitations

In this study, we set the fixed data length to 350 ms for a
preliminary investigation. This data length aims to prevent the
overlap of two heartbeats and the splitting of one heartbeat.
However, because there are some variations in each heartbeat, it
is necessary to consider an AI model that can handle variable-length
labeled data in the future (Fotiadou et al., 2021).

In addition, we used an algorithm to extract the fixed-length
data and confirmed that the extracted waveforms matched each
category, which was performed by an ultrasound engineer, because
the confirmation was clear: waveforms within the extraction
segment were compared based on the DUS shape, as indicated in
previous studies (Jezewski et al., 2006; Khandoker et al., 2009).

Although categorization could be performed for the extracted
fixed-length data, the algorithm used was strongly influenced by the
SNR of the DUS signal, which resulted in heartbeats and artifacts
that were not extracted.

We performed the classification in terms of three categories: fetal
heartbeat signals that may occur during regular monitoring, artifacts,
and no signals. However, one limitation is that we did not establish a
framework to classify cases that deviate from normal fetal heartbeat
signals, such as fetal arrhythmias. Fetal arrhythmias, which were not
included in the fixed-length data used in this study, are known to
produce longer or extremely short heartbeat waveforms. To classify
abnormal fetal heartbeat waveforms, such as fetal arrhythmias, further
investigation is required to developDUS signal extractionmethods for
fetal arrhythmia findings and accrue a more extensive dataset.

6 Conclusion

To the best of our knowledge, this is the first study to explore the
application of AI to DUS signals to improve fetal monitoring quality.
We developed an AI model using semi-supervised learning to
accurately classify DUS signals into four categories: single fetal
heartbeat signals, artifacts, low-level signals, andmultiple heartbeats.

The results of this study suggest that integrating semi-supervised
learning into AImodel development with DUS signals can efficiently
lead to high generalization performance in terms of accuracy while
simultaneously reducing the required labor-intensive efforts.
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