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The utilization of numerical methods, such as computational fluid dynamics
(CFD), has been widely established for modeling patient-specific hemodynamics
based onmedical imaging data. Hemodynamics assessment plays a crucial role in
treatment decisions for the coarctation of the aorta (CoA), a congenital heart
disease, with the pressure drop (PD) being a crucial biomarker for CoA treatment
decisions. However, implementing CFD methods in the clinical environment
remains challenging due to their computational cost and the requirement for
expert knowledge. This study proposes a deep learning approach to mitigate the
computational need and produce fast results. Building upon a previous proof-of-
concept study, we compared the effects of two different artificial neural network
(ANN) architectures trained on data with different dimensionalities, both capable
of predicting hemodynamic parameters in CoA patients: a one-dimensional
bidirectional recurrent neural network (1D BRNN) and a three-dimensional
convolutional neural network (3D CNN). The performance was evaluated by
median point-wise root mean square error (RMSE) for pressures along the
centerline in 18 test cases, which were not included in a training cohort. We
found that the 3D CNN (median RMSE of 3.23 mmHg) outperforms the 1D BRNN
(median RMSE of 4.25 mmHg). In contrast, the 1D BRNN is more precise in PD
prediction, with a lower standard deviation of the error (±7.03 mmHg) compared
to the 3D CNN (±8.91 mmHg). The differences between both ANNs are not
statistically significant, suggesting that compressing the 3D aorta hemodynamics
into a 1D centerline representation does not result in the loss of valuable
information when training ANN models. Additionally, we evaluated the utility
of the synthetic geometries of the aortas with CoA generated by using a statistical
shape model (SSM), as well as the impact of aortic arch geometry (gothic arch
shape) on the model’s training. The results show that incorporating a synthetic
cohort obtained through the SSM of the clinical cohort does not significantly
increase the model’s accuracy, indicating that the synthetic cohort generation
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might be oversimplified. Furthermore, our study reveals that selecting training
cases based on aortic arch shape (gothic versus non-gothic) does not improve ANN
performance for test cases sharing the same shape.

KEYWORDS

congenital heart disease, synthetic cohort, magnetic resonance imaging, computational
fluid dynamics, pressure gradient, machine learning

1 Introduction

In recent years, technological developments have enabled the
integration of artificial intelligence (AI), including machine learning
(ML), into clinical practice (Asselbergs and Fraser, 2021). This
promising development holds the potential to transform various
aspects of medicine, ultimately advancing the concept of precision
medicine and thereby improving healthcare across many domains -
from diagnosis to treatment decision and planning. One of the most
advanced applications of AI in clinical practice is the field of
diagnostic imaging (Yasaka et al., 2018; van Leeuwen et al.,
2021). Additionally, AI has demonstrated considerable success in
automating the diagnosis of electrocardiographic data (Siontis
et al., 2021).

Furthermore, technological advancements during the last
2 decades have facilitated the use of image-based computational
fluid dynamics (CFD) analysis within the field of cardiovascular
medicine (Morris et al., 2016). This approach, known as image-
based CFD modeling of patient-specific hemodynamics, allows the
computation of flow parameters with notably higher spatial and
temporal resolutions than achievable by any existing in vivo imaging
technique (Canè et al., 2022). The outcomes of these simulations
could finally be used for clinical support, particularly in
cardiovascular surgical planning and diagnostics (Morris et al.,
2016). However, despite having many benefits, image-based CFD
remains sparsely used in routine clinical practice, with a few
exceptions such as the calculation of the Fractional Flow Reserve
by HeartFlow (Taylor et al., 2013). Several factors contribute to the
limited clinical integration. Notably, CFD demands long
computation times, substantial computational resources, and
experienced engineers to set up simulations correctly.
Unfortunately, these limitations make CFD less usable with
current clinical workflows (Huberts et al., 2018).

Recently, ML has been proposed as a valuable tool to enhance
CFD methods. The primary objective of employing ML in CFD is to
optimize various aspects, including the acceleration of simulations,
as seen in direct numerical simulations (Bar-Sinai et al., 2019), the
improvement of turbulence models, and the development of
reduced-order models (Duraisamy et al., 2019; Vinuesa and
Brunton, 2022). Furthermore, ML can serve as a low-dimensional
approach to replace CFD by using deep learning (Yevtushenko et al.,
2022; Yevtushenko et al., 2023).

For instance, Ferdian et al. (2022) demonstrated that
spatiotemporal wall shear stress (WSS) in the aorta can be
estimated using a convolutional neural network (CNN) based on
U-Net architecture. They accomplished this by using data of four-
dimensional phase-contrast magnetic resonance imaging (4D PC
MRI) assessing a three-dimensional velocity field with various image
resolutions as input. The success of their approach leads to the

question of whether a similar approach could be applied to predict
other hemodynamic parameters, such as blood pressure.

The major aim of the presented study is to advance the use of
artificial neural network (ANN) for treatment decision support,
building upon recent work by Yevtushenko et al. (Yevtushenko et al.,
2022), for the calculation of the pressure drop (gradient) in
coarctation of the aorta (CoA) using the CNN as an alternative
approach to the bidirectional recurrent neural network (BRNN).
CoA, a congenital heart disease characterized by aortic narrowing
(stenosis), causes a high pressure gradient that affects human
circulation (Kenny and Hijazi, 2011; Brown et al., 2013). In
addition to introducing a change in network architecture (CNN
vs. BRNN), the low-dimensional representation of the aortic shape
(one-dimensional (1D) scalar values along the centerline) was
replaced with a high-dimensional approach (two-dimensional
(2D) cross-sections along the centerline) to potentially improve
the ANN performance by providing a more spatially accurate
representation of aortic shape. Furthermore, the study explores
several aspects of ANN training, including the use of real versus
synthetic aortic shapes with CoA and the impact of different
anatomical pathologies, such as gothic arch shapes.

2 Materials and methods

In this study, data for training and testing two different ML
models were used from a database provided in a recently published
study (Yevtushenko et al., 2022). These data were derived from
image-based CFD simulations of real patients as well as simulations
based on synthetically generated boundary conditions, as described
in our earlier work (Thamsen et al., 2021). Subsequently, the data
generation procedure is briefly summarized:

• The aortic geometry was manually reconstructed from 3D
steady-state free-precession (SSFP) magnetic resonance
images (MRI) of the thoracic aorta. Additional information
regarding the MRI device, MRI acquisition sequence, and the
segmentation procedure, including surface reconstruction for
CFD simulations, is described in our previous work
(Yevtushenko et al., 2022).

• In this study, real data were extracted from 106 patients with
CoA before treatment, 37 patients (a sub-cohort of 106 CoA
patients) after treatment, and 85 healthy subjects, forming a
real cohort of 228 cases. This cohort was also used to construct
an SSM, which allowed the generation of synthetic cases.

• A subset of 139 cases from the real cohort was used
to train ANNs.

• For accurate flow boundary conditions, 4D PC MRI was used.
This included obtaining the inlet velocity profile and peak
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systolic flow rates at the ascending and descending aorta for
the cases where PC MRI data were available. Otherwise, flow
boundary conditions were synthetically generated, as
described previously (Yevtushenko et al., 2022).

• A synthetic cohort of 2968 cases was generated based on
the statistical shape model (SSM) aiming to expand the
training database upon the real cohort. This entailed
generating both boundary conditions needed for CFD
simulations: the geometry of the aorta and the inlet as
well as outlet flow rates. The SSM approach used linear
principal component analysis as described in more detail
here (Thamsen et al., 2021; Yevtushenko et al., 2022).

• Hemodynamics of CoA cases, both real and synthetic, were
calculated using the commercial CFD solver Siemens
STAR-CCM+, version 13.02 (Siemens PLM Software,
Plano, TX, United States). Simulations were performed
only at the peak systolic state to reduce computational
costs of CFD simulations and because only this state of a
cardiac cycle is required for the treatment decision
according to the clinical guidelines (Baumgartner
et al., 2010).

• To evaluate the performance of the trained ANNs, 18 real
cases were reserved for testing. Among these, 13 cases were
CoA patients, whereas 5 represented individuals with a
healthy aorta. These cases were excluded from the training
and validation process, solely reserved for testing, and were
also not used for the development of the synthetic cohort to
mitigate data leakage.

This chapter is further subdivided into four subsections
(2.1–2.4) describing data structure and architecture for both
ANNs: 1D BRNN and 3D CNN. The subchapter after (2.5)
describes 4 ML experiments performed within the frame of this
study aiming to assess various aspects of ANN performance. The
final subchapter (2.6) provides an overview of the statistical tests
used to evaluate the significance of the results.

2.1 One-dimensional bidirectional recurrent
neural network data structure

The development of an ANN usually starts with a definition of
the ANN’s output parameters as well as their dimensions and
resolutions. In our case, the major aim of ANN development is
the prediction of hemodynamic biomarkers that characterize aortic
flow. These biomarkers could support clinical decision-making and
are typically computed using CFD. CFD primarily calculates
pressure and velocity vector fields with high spatial resolution,
which allows calculating derivatives, e.g., pressure drop or WSS,
as well as integral parameters such as surface-averaged WSS or
pressure drop between the inlet and outlet. However, high spatial
resolution quantitative data (velocity and/or pressure fields)
provided by CFD is not directly employed in clinical decision-
making. Therefore, an ML approach presents an opportunity to
develop a model capable of directly predicting integral and derived
hemodynamic parameters, while significantly reducing
computational cost, functioning as a form of reduced-
order modeling.

The following hemodynamic parameters were chosen to be
predicted by the initially proposedANNusing 1DBRNN architecture:

• relative static pressure, mmHg
• wall shear stress (WSS), Pa
• secondary flow degree (SFD), -
• specific kinetic energy (KE), mJ/kg
• average turbulence kinetic energy (average TKE), mJ/kg
• maximum turbulence kinetic energy (maximum TKE), mJ/kg
• average velocity magnitude over cross-section, m/s
• maximum velocity magnitude over cross-section, m/s

The selection of hemodynamic parameters to be predicted by the
ANN was based on the following considerations:

1. Pressure drop, which is calculated from the relative static
pressure curve, was selected because this is a major
quantitative clinical biomarker (if the invasive catheter-
based pressure measurements are performed) used by
clinicians to decide whether to treat the CoA. All static
pressure curves calculated by CFD or predicted by ANN
were set at the inlet to the fixed static pressure value of
120 mmHg. This is done to enable a comparison between
ANN and CFD since CFD is unable to calculate systemic
blood pressure and calculates pressure curve course only with
an inlet static pressure defined by a user.

2. Velocity magnitude, which is clinically measured with doppler
echocardiography, was selected because usually used to assess
pressure gradient by using the Bernoulli equation.

3. TKE was proposed because aortic flow is associated with
turbulent flow states. Respectively, the ability of the ANN to
predict turbulent parameters is indirectly associated with the
ability to correctly predict pressure and velocity parameters.

4. WSS was selected because this is currently one of the major
hemodynamic biomarkers used in cardiovascular research
that is associated with various pathologies, such as
atherosclerosis, thrombus formation, aneurysm
development, and vessel dilatation.

5. Specific (volume normalized) KE and SFD, which is calculated at
each cross-section as a ratio of the mean in-plane to the mean
through-plane velocity magnitudes, were selected because these
are hemodynamic parameters of interest since their increased
values are associated with flow features, such as recirculations,
helicity, and swirl. These flow features characterize abnormal
hemodynamics, which are associated with pathologies (e.g.,
bicuspid aortic valve (Thamsen et al., 2021) or cardiovascular
diseases (e.g., aortic valve stenosis (Nordmeyer et al., 2019)), and
affect other hemodynamic parameters, such as WSS, pressure
drop, turbulence, or maximal velocity magnitude.

As part of our reduced-order modeling strategy, we proposed to
assess hemodynamic parameters in a 1D centerline-aggregated
format, instead of the high-resolution 3D CFD data. This
transformation involved the following steps:

1. Generation of a discrete centerline: To start, a discrete
centerline along the case-specific surface model of the aorta
was generated, with points spaced 2 mm apart.

Frontiers in Physiology frontiersin.org03

Versnjak et al. 10.3389/fphys.2024.1288339

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1288339


2. Vessel cross-section creation: At each centerline point, vessel
cross-sections were generated, representing a slice of the aorta
that is perpendicular to the centerline. The area of each cross-
section was calculated.

3. Vessel surface segments: Vessel surface rings were created
between neighboring cross-sections, which are essential for
calculating surface-averaged WSS values in relation to the
respective cross-section point. Additionally, a moving average
filter with a window width of 12 neighboring rings was applied
to WSS centerline-based data due to its higher variance (see
Figure 1). As a result, the ANN was trained to predict the
segment averaged WSS instead of the exact average value for
every given centerline point.

4. Calculation of hemodynamics: On each centerline point, the
hemodynamic parameters, including relative static pressure,
WSS, SFD, KE, TKE, and velocity, were locally averaged across

cross-sections. Moreover, the maximum cross-sectional values
for TKE and velocity magnitude were determined.

The ANN was trained to map aorta geometry and blood flow
input information to the eight aforementioned hemodynamic
parameters, which resembles CFD simulations in a reduced form.
The input information was composed of seven features:

• radius (n × 1)
• gradient of radius (n × 1)
• centerline point coordinates (n × 3)
• blood flow rate (n × 1)
• average velocity magnitude through cross-section (n × 1)

where n denotes the number of centerline points, which was set
to 178, aligning with the number of centerline points in the longest

FIGURE 1
An exemplary real CoA case with a shape represented by circumferential lines. The red labeled line marks the stenosis site with the lowest diameter.
Seven one-dimensional input parameters and eight centerline-aggregated output parameters, calculated by CFD and prepared for the ANN training, are
shown. The yellow curve in the output WSS curve represents original WSS values with very high variance, whereas the blue curve shows 12-window
averaged (smoothed) WSS data.
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aorta within the clinical and synthetic cohort. Note that most cases
had fewer centerline points. Consequently, zero padding was applied
to all the subsequent centerline points after the outlet.

The radius was derived from the maximum inner sphere that
could fit into the aorta at each centerline point. The gradient of the
radius was computed using second-order accurate central
differences.

gx �
rx+1 − rx−1

2h
, x ∈ 2, n − 1[ ]

gn �
rn − rn−1

h

g1 �
r2 − r1
h

where r denotes the radius, g represents the gradient of the radius, h
signifies the spacing between centerline points, and n stands for the
total number of centerline points. Blood flow at each centerline point
was derived from the ascending inlet flow and outlet flow of the
branching vessels at the aortic arch. The initial ascending inlet flow
rate is diminished by the outlet flow after each bifurcation. Finally,
the average velocity magnitude through each cross-section was
computed by dividing the flow rate values by the area of the
circular cross-section:

vx � f x
πr2

, x ∈ 1, n[ ]

where v stands for the velocity through the cross-section, f denotes
the blood flow, and n represents the total number of centerline
points. An example of input and output data for a patient with CoA
can be found in Figure 1.

2.2 One-dimensional bidirectional recurrent
neural network architecture

The centerline-aggregated parameters of aortic flow can be
considered as the duct flow of the blood in one direction.
Hemodynamic values at any given centerline point are influenced
by those preceding and following it; therefore, an ANN capable of
capturing sequential dependencies is desirable. Hence, the recurrent
neural network (RNN) was employed to predict hemodynamics
along the centerline. The core ML approach was based on the model
published earlier (Yevtushenko et al., 2022), and the implementation

is done using TensorFlow 2.12.0 in Python (see Figure 2). It
consisted of three major components:

• a long short-term memory (LSTM) BRNN,
• a densely connected neural network layer (dense layer) with
Leaky rectified linear unit (ReLU) activation function, and

• an additional dense layer for hemodynamic outputs.

Leaky ReLU addresses the so-called dying ReLU problem, a
limitation observed in the traditional ReLU activation function.
Instead of assigning a gradient of 0 to all negative input values, Leaky
ReLU introduces an extremely small linear component for negative
inputs (Xu et al., 2015). The BRNN consists of two RNNs, one
trained on the original input sequence, and the other on a reversed
sequence. The hidden states of both RNNs are merged; in our case,
the forward and backward outputs were concatenated, resulting in
double the number of outputs that were fed into the next layer. The
Leaky ReLU activation function with a slope of 0.3 for negative
values was used in the following dense layer. Finally, another dense
layer is added to map the outputs from the previous layer to
hemodynamic values, resulting in an output space with a
dimensionality equal to the number of output features.

We named this model 1D BRNN, highlighting the
dimensionality of the training data and the core ANN. The 1D
BRNN was trained with an initial learning rate of 0.001 and a batch
size of 50. The learning rate was exponentially decreasing with the
number of epochs. To optimize hyperparameters, 10-fold cross-
validation was performed for each hyperparameter separately, with
the optimal values found for each one indicated in brackets:

• scaling input and output data (no scaling)
• loss function (masked root mean square error (RMSE))
• optimizer (Adam)

Adam optimization is a stochastic gradient descent method
based on adaptive estimation of first-order and second-order
moments (Kingma and Ba, 2014). The masked RMSE considers
only data within the aorta (non-zero output data) to compute
the error.

It is worth noting that conducting a grid search to explore all
possible hyperparameter combinations could have resulted in a
different set of optimal hyperparameters. Due to its time-

FIGURE 2
Schematic representation of the 1D BRNN architecture including input and output data with n representing the number of points describing the
centerline.
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consuming nature, this approach was mostly avoided in this
research. A coarse grid search was, however, used to determine
the best combination of units (output dimensionality) for LSTM
cells and the dense layer following the BRNN. The resulting 200 and
800 units, respectively, were found to provide the best performance.
Once the optimal hyperparameters had been selected, the final
model was trained on the entire training dataset. To prevent
overfitting, a small validation dataset was still retained, and early
stopping was used. Specifically, if the validation loss did not improve
for 20 epochs in a row, the training process was stopped.

One important issue to consider is the potential for data leakage
from the training to the validation datasets, as the synthetic cohort
was generated from the SSM of the real cohort. However, if the
estimation of general performance is equally biased for all validation
datasets within cross-validation experiments, data leakage may not
be a significant concern. After all, the main objective is to identify the
best hyperparameters for the final model, which can also be based on
relative performance. The held-out test was then used for the least
biased estimation of general performance.

2.3 Three-dimensional convolutional neural
network data structure

The centerline-aggregated method, which involves averaging
cross-sectional surface values of hemodynamic parameters along the
aorta centerline, as in the 1D BRNN approach, could result in a loss
of potentially valuable information and, consequently, worse ANN
performance. By retaining geometric cross-sectional surface
information and employing a different ML approach a more
accurate hemodynamic predictor could potentially be achieved.
In this alternative approach, the cross-sectional surface values
were stacked into a 3D array instead of using 1D values along
the centerline.

To prepare the input and output data for training, 80 cross-
sectional planes were extracted along the aorta centerline. Each
cross-sectional plane had an initial resolution of 100 × 100, which
was further decimated to 48 × 48. The decimation process involved
applying a low-pass filter, specifically a Gaussian filter, to smooth the
image before downsampling. This step helps to prevent aliasing
artifacts. The standard deviation (σ) of the 2D Gaussian kernel was
determined based on the following equation:

σ � s − 1
2

where s is a ratio between the input dimension and the desired
downsampled dimension. In our case, s � [100,100]

[48,48] , which results in
σ � [0.54, 0.54].

The spacing between the planes was set to 4 mm, twice the
spacing used for training the 1D BRNN model. Note that not all
80 cross-sectional planes were needed for each case, as the aorta
length varies from case to case. For all planes outside of the aorta, all
input and output values were set to zero (zero padding).

The maximum length of the aorta that the 3D ML model could
handle is 320 mm (80 cross-sections × 4 mm), which does not align
with the maximum length used for 1D BRNN, which was 356 mm
(178 centerline points × 2 mm). The reason behind this decision lies
in the design of the U-Net model (see Figure 3), which requires

dimensionalities that can be divided by 2 at least three times (three
decoder and encoder layers) to ensure the same input and output
dimensions. The input data consisted of 7 same features used for
training the 1D BRNN:

• radius (48 × 48 × n × 1).
• gradient of radius (48 × 48 × n × 1).
• cross-sectional plane grid coordinates (48 × 48 × n × 3).
• blood flow (48 × 48 × n × 1).
• velocity magnitude through cross-section (48 × 48 × n × 1).

where n is equal to the number of cross-sectional planes, which
was 80. The output data consisted of only one feature, which was
blood pressure (see Figure 4). Only one feature was selected due to
GPU RAM limitations to ensure a reasonably high batch size. Static
pressure was chosen because it is the most predictive hemodynamic
parameter for diagnosing patients with CoA.

To summarize, the training data consisted of an input data array
of size (48, 48, 80, 7) and an output data array of size (48, 48, 80, 1).
The first and second dimensions represent the height and width of
each cross-sectional plane, respectively, the third dimension
represents the number of cross-sectional planes, and the last
represents the number of input or output features. Note that
only the cross-sectional plane grid coordinates and pressure
contain 3D information, whereas the remaining input features,
including radius, gradient of radius, blood flow, and velocity
through cross-sections, are scalar values. To accommodate this
3D data requirement, one approach is to assign constant values
to the entire cross-sectional plane to represent scalar features (see
the second and third rows of Figure 4). Our goal was to investigate
whether including 3D geometric information provides additional
insight for improving pressure course and pressure drop (gradient)
prediction.

2.4 Three-dimensional convolutional neural
network model architecture

For the task of predicting the spatial distribution of blood static
pressure, a CNN inspired by the WSSNet (Ferdian et al., 2022)
model was selected. The authors were able to predict WSS in the
aorta from velocity sheets and coordinate flat maps using a U-Net-
shaped CNN architecture. Given the similarities between the task of
predictingWSS and blood pressure, theWSSNet was adapted for the
current task.

The CNN network, referred to as 3D CNN in this study,
consisted of three encoder and decoder blocks, with each block
comprising two convolutional layers that used a 3 × 3 × 3 filter size
and ReLU activation function. Batch normalization was applied at
the end of each block. The encoder blocks used max pooling with a
step size of 2 × 2 × 2, while the decoder blocks used transpose
convolution instead of bilinear upsampling. One difference between
these two methods is that the filter weights in bilinear upsampling
remain constant during training, whereas in transpose convolution,
they belong to trainable parameters. The filter size of 2 × 2 × 2 with a
step size of 2 × 2 × 2 was set to avoid overlapping.

The 3D CNN was trained on an NVIDIA GeForce RTX 3090 Ti
with 24 GB of memory. The initial learning rate was set to
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0.0001 and the Adam optimizer with exponential annealing
learning rate was used to find optimal weights. The model
performance was evaluated using the masked RMSE loss
function which ignores all values outside the aorta. A batch
size of 8 was utilized for training. While the output was scaled
by standard deviation, the input features were left unscaled
because training the model with both scaled input and output
features resulted in less accurate results. The measurement units
of features can be seen in Figure 4. Note that the training of the
3D CNN takes considerably longer compared to the 1D BRNN,
primarily due to the former’s higher number of trainable
parameters (5,600,000) compared to the latter (660,000).

2.5 Artificial neural network
performance analysis

Four ML experiments with different training data and ANN
architectures were performed to analyze their impact on ANN
performance:

1. 1D BRNN performance analysis.
2. Impact of a synthetic cohort on ANN training: real

vs. synthetic.
3. Impact of an aortic arch shape on ANN training: gothic vs.

non-gothic vs. mixed.
4. Impact of architecture on ANN training: 1D BRNN

vs. 3D CNN.

2.5.1 1D BRNN
To evaluate the performance of the 1D BRNN, the following

scalar parameters were selected:

• Inlet-outlet pressure drop (PD),
• maximum wall shear stress (WSSmax), and
• maximum velocity magnitude at the stenosis region (Vmax).

PD is equal to the difference between the inlet and outlet
pressure. These parameters are of particular interest in patients
with CoA, as they are known to exhibit high pressure drop, elevated
WSS, and abnormal velocity profiles near the narrowed section of
the aorta.

The Bland-Altman plots were used to assess the degree of
agreement between the parameters obtained from the reference
method (CFD) and the predictions from ML models. Various 1D
BRNN models with optimal hyperparameters and random weight
initialization were trained. Among these models, the one with the
lowest validation loss was selected for the final analysis.

2.5.2 Real versus synthetic training cohorts
To investigate the potential impact of training solely on real

clinical or synthetic cases, two separate models were trained. The
first model utilized 139 cases available from the clinical cohort, while
the second model was trained on 139 cases, randomly selected from
the larger synthetic cohort. The purpose of selecting a smaller
training subset from the synthetic cohort, equal to the size of the
clinical cohort, is to avoid bias that might arise if one model

FIGURE 3
Schematic representation of the 3D CNN architecture including input and output data.
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performs better simply because it is trained with more data. Both
models were trained using the same optimal hyperparameters
identified in the section on 1D ML model architecture (see
section 2.2), changing only the batch size from 50 to 10 to
increase the number of training iterations per epoch. It is
generally considered advantageous if each epoch consists of
multiple training iterations, as the weights go through the tuning
phase more frequently. The dataset was further split into training
and validation sets, with 116 cases used for training and the
remaining 23 cases for validation. The training process was
repeated five times, among which the one with the best
performance, determined by the lowest validation loss, was
selected for further analysis. Subsequently, the Bland-Altman
plots of both models are compared.

2.5.3 Gothic versus non-gothic versus
mixed cohorts

To explore the effect of anatomical pathologies, particularly the
gothic aortic arch (Ou et al., 2004), yet another experiment was
conducted. Both pathological shapes, CoA and the gothic aortic
arch, are associated with a pathologically high pressure
drop. However, flow phenomena causing these pressure drops
are different. The pathology of the CoA is associated with an
increased pressure drop in the aorta due to stenosis. Stenosis
(vessel narrowing) is a type of the so-called form resistance. Flow
separates downstream of the narrowing forming a recirculation

zone, which is associated with energy loss (pressure drop). The
gothic aortic arch, on the other hand, occurs when the width of the
aorta (the distance between the ascending and descending aorta)
becomes narrow, and the height of the arch is not maintained (Seo
et al., 2015). The aortic arch, being a curved duct, represents
another kind of form (shape) resistance. Curved vessels,
especially those with high curvatures, also cause flow separation
due to centrifugal force, resulting in pressure drop. However, the
pressure drop due to vessel curvature in non-gothic shapes is
usually negligible (Goubergrits et al., 2015; Bouaou et al., 2019). An
ANN trained to predict the pressure drop in aortas without a
gothic shape is not necessarily able to predict the pressure drop
caused by a gothic aortic arch. Thus, the experiment aims to
investigate whether there is a difference in performance when
the 1D BRNN is trained only on cases with a gothic aortic arch.
Three different models were trained using the following training
data from the synthetic cohort:

• 227 synthetic cases with gothic-shaped aortas (gothic cases),
• 259 synthetic cases with non-gothic-shaped aortas (non-
gothic cases),

• 112 synthetic gothic cases and 130 synthetic non-gothic cases
(mixed cases).

Only synthetic cases were used for training the 1D BRNNmodel
for this experiment because only a small fraction (about 20) of

FIGURE 4
An exemplary real CoA case (same as in Figure 1) with shape represented by cross-sections. The red labeled cross-section marks the stenosis site
with the lowest diameter. Seven input cross-sections and one output parameter, calculated by CFD and prepared for the ANN training, are shown.
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139 cases of a real clinical cohort can be considered as cases with a
gothic-shaped aorta. To examine and compare the performance of
these models, a new held-out test dataset was created. The original
test dataset had an imbalanced distribution with only 1 gothic case
and 17 non-gothic cases. To address this, a new test dataset was
formed with an equal number of gothic and non-gothic cases.
Specifically, 15 gothic and 15 non-gothic cases from the clinical
cohort were selected for testing. Note that these cases were
previously used in the creation of the synthetic cohort, which
introduces the possibility of data leakage from the training data
to the testing data.

Similar to the previous experiment, each experiment was repeated
five times with the same hyperparameters. The only difference is the
batch size, which is set to 20. The dataset was further split into training
and validation data with a ratio of 80/20. After five training sessions, the
model with the lowest validation loss was selected for further
performance assessment on testing data. The Bland-Altman plots of
all three models were compared. The impact of aortic arch shape on
ANN was investigated only for the PD parameter since the pressure
drop is the main factor that can be affected by an aortic arch shape.

2.5.4 1D BRNN versus 3D CNN
To assess the influence of architecture and training data

dimensionality on the performance of the ANN, the 3D CNN

described in Section 2.4 was trained. In order to compare the 1D
BRNN and 3D CNN, Bland-Altman plots for PD were plotted. The
cross-sectional pressure values (3D CNN predictions) were averaged
along the centerline of the aorta to align the output dimensionality to
1D. This allows for a comparison of both model outputs.
Furthermore, since PD is a scalar value, it does not provide
information about the pressure profile along the aorta centerline.
To assess the agreement of the pressure curves, the RMSE was
calculated:

RMSE �
������������
1
n
∑n
i�1

pi − p̂i( )2√

where n denotes the number of centerline points, pi the pressure
prediction by the 3D CNN or 1D BRNN on the ith centerline point,
and p̂i represents the CFD ground truth pressure value on the ith
centerline point.

2.6 Statistical analysis

Statistical analysis was conducted using IBM SPSS Statistics
software, version 28 (IBM, United States). For normally distributed
parameters mean and standard deviation were reported, and

FIGURE 5
Bland-Altman plots depicting the difference (y-axis) between the predicted (1D BRNN) and reference (CFD) values against the mean of these values
(x-axis) for PD, WSSmax, and Vmax. The plots are based on 18 test cases that were not part of the training set and were also not used in creating the
synthetic cohort.
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normality of distribution was assessed using a Shapiro-Wilk test.
Non-normally distributed parameters were described using median
and interquartile range [IQR]. A paired two-tailed Student’s t-test
was used to test for significant differences within normally
distributed parameter differences, whereas Wilcoxon signed-rank
tests were used for testing non-normally distributed parameter
differences. All tests used a standard significance level of 0.05.

3 Results

3.1 1D bidirectional recurrent neural
network performance

In Figure 5, the Bland-Altman analysis of themean prediction error
for PD shows a small, non-significant underestimation of −1.00 ±
7.04 mmHg by 1D BRNN for 18 test cases (BRNN: 16.52 with
[7.17–48.15] mmHg vs. CFD: 14.79 with [9.96–40.79] mmHg,
paired Wilcoxon test, p = 0.616). On the other hand, the model
tends to significantly overestimate WSSmax, with an average error of
7.06 ± 8.08 Pa (43.38 ± 26.14 Pa vs. 36.31 ± 25.05 Pa, paired Student’s
t-test, p = 0.002). However, it is worth noting that both WSSmax values
are significantly higher than physiologic values of a few (<10) Pa in a
healthy aorta (Callaghan and Grieve, 2018). Regarding the velocity, the
Vmax error also indicates a significant overestimation of 0.39 ± 0.43 m/s
(2.93 ± 1.11 m/s vs. 2.54 ± 1.17 m/s, paired Student’s t-test, p = 0.002).
However, this difference means according to the Bernoulli equation
(PD = 4×Vmax

2) an approximate PD of 0.6 mmHg, which is clinically
negligible. Furthermore, the plots reveal a slight negative trend for Vmax,
meaning that as the magnitude of velocity increases, the errors tend to
shift toward the lower part of the interval.

The 1D BRNN performance analyzed here is based on the model
trained with non-scaled data. Throughout the model development
process, various scaling methods were tested for both input and
output data, revealing significant differences in training and
validation loss curves (Figure 6). Notably, when the data were scaled,
either standardized or normalized, the 1DBRNNmodel showed signs of
overfitting. This is evident in Figure 6, where the training loss continues
to decrease, while the validation loss either converges (in the case of
normalization) or even increases (in case of standardization).
Consequently, the final model was trained with non-scaled data.

3.2 Impact of a synthetic cohort on ANN
training: real vs. synthetic cohorts

Themodel trainedon clinical (real) cases outperformed theone trained
on synthetic cases, as observed in the Bland-Altmanplots (Figure 7). This is
evident from the lower standard deviation of the errors for PD
(5.80mmHg compared to 10.60mmHg), WSSmax (7.20 Pa compared
to 8.53 Pa), and Vmax (0.45m/s compared to 0.60m/s). Additionally,
the model trained on real cases exhibited less bias for all three parameters.
The differences between 1D BRNNmodels trained with real and synthetic
cases in 18 real test cases were significant for all three predicted
hemodynamic parameters: PD (25.18 ± 20.95mmHg vs. 9.61 with
[1.39–39.06], Wilcoxon test, p = 0.006), WSSmax (33.92 ± 20.71 Pa vs.
38.59 with [23.61–78.52] Pa, Wilcoxon test, p < 0.001), and Vmax (3.13 ±
1.47m/s vs. 2.92 with [2.04–4.81] m/s, Wilcoxon test, p < 0.001).

3.3 Impact of an aortic arch shape on ANN
training: gothic vs. non-gothic vs.
mixed cohorts

Statistical analysis of the predictions from the three models versus
CFD results for all 30 test cases revealed significant differences in
mean error. The gothic model had a significantly higher mean error
of −8.41 ± 9.46 mmHg (paired Student’s t-test, p < 0.001 for both
tests) compared to the non-gothic and mixed models, which
had −2.76 ± 8.80 mmHg and −4.27 ± 10.10 mmHg, respectively.
However, the differences in errors between the non-gothic and mixed
models were non-significant (paired Student’s t-test, p = 0.092).

Figure 8 illustrates Bland-Altman plots for all three trained
models, separated for gothic and non-gothic test cases. The model
trained with only gothic cases had a higher mean PD prediction
error for gothic test cases compared to non-gothic cases (−11.35 ±
9.18 mmHg vs. −5.48 ± 9.08 mmHg). However, this difference was
not significant (Student’s t-test, p = 0.089). Similar results were
found for the model trained with non-gothic cases (−5.05 ±
5.05 mmHg vs. −0.48 ± 11.13 mmHg) as well as for the mixed
model (−8.53 ± 8.16 mmHg vs. −0.01 ± 10.59 mmHg). In the non-
gothic model, the differences were not statistically significant (paired
Student’s t-test, p = 0.158), whereas, for the mixed model, the
predictions for non-gothic test cases were significantly more
accurate (paired Student’s t-test, p = 0.018).

Interestingly, the model trained with non-gothic cases significantly
outperformed the gothic model in predicting gothic test cases (paired
Student’s t-test, p< 0.001) and themixedmodel (paired Student’s t-test,
p = 0.01). For non-gothic test cases, the performance of the gothic
model was significantly less accurate compared to the non-gothic
(paired Student’s t-test, p = 0.013) and mixed models (paired
Student’s t-test, p = 0.003), with no significant difference between
non-gothic and mixed models (paired Student’s t-test, p = 0.668).

3.4 Impact of an architecture on ANN
training: 1D vs. 3D

Based on the analysis of the mean and standard deviation of the
prediction errors (Figure 9), the 3D CNN exhibits a slightly higher
error (1.27 ± 8.91 mmHg) compared to the 1D BRNN (−1.00 ±
7.04 mmHg) in predicting PD. However, statistical analysis found
no significant differences when comparing PD values predicted by
the 3D CNN to those calculated by the CFD (26.19 ± 23.29 mmHg
vs. 14.79 with [9.96–40.79] mmHg, Wilcoxon test, p = 0.711) as well
as between PD values predicted by 3D CNN and those predicted by
the 1D BRNN (26.19 ± 23.29 mmHg vs. 16.52 with [7.17–48.15]
mmHg, Wilcoxon test, p = 0.528). The higher standard deviation of
the 3D CNN error can be primarily attributed to one outlier
(Figure 10), where both the 1D BRNN and 3D CNN
overestimated the pressure recovery after the stenosis.

Similar results were obtained when examining the point-wise
RMSE of pressure curves (Figure 10). The 3DCNN exhibited a lower
median RMSE (3.23 mmHg) compared to the 1D BRNN
(4.25 mmHg), however, this difference was not significant (paired
Wilcoxon test, p = 0.879). The IQR was also narrower for 3D CNN.
However, it should be noted that there were two outliers in the case of
the 3D CNN, which did not appear in the results of the 1D BRNN.
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Overall, it can be concluded that the 1D BRNN demonstrated slightly
better accuracy in predicting PD, while the 3D model marginally
outperformed the 1D model in terms of pressure profile accuracy.

Finally, a sensitivity and specificity analysis were conducted on
test cases using a PD threshold of 20 mmHg, following current
guidelines that recommend intervention if the peak-to-peak
coarctation gradient exceeds 20 mmHg at rest (Mercuri et al.,
2020). The CFD results served as the ground truth and were
compared with the 1D BRNN, which performed slightly better
than the 3D CNN in predicting PD (Figure 9). The results of
this analysis are as follows: 7 cases were true positive, 9 cases
were true negative, 1 case was false positive, and 1 case was false
negative. This yields a sensitivity of 87.5% and a specificity of 90%.

4 Discussion

The selection of BRNN for predicting hemodynamics along the
1D centerline of the aorta appears to be a reasonable choice,
considering that centerline points exhibit sequential
dependencies. BRNNs are well-suited for modeling such
dependencies in both forward and backward directions.

Furthermore, research has suggested that CNNs trained on small
data with a saturated activation function like Leaky ReLU perform
better than those trained with the standard ReLU, which has a zero-
slope part for negative values (Xu et al., 2015).

Both our models 1D BRNN and 3D CNN were trained with
unscaled data, with the exception of the output 3D CNN data, which
was scaled by standard deviation. Surprisingly, the models trained
on non-scaled data performed the best, which is not aligned with the
common machine learning practice of scaling the training data. In
our case, standardization and normalization of data resulted in
overfitting of the 1D BRNN, where the training loss continued to
improve while the validation loss converged or even increased.
Similarly, although scaling did not result in overfitting for the 3D
CNN, this model also performed better with unscaled input data.
This raises the question of why the models trained with unscaled
input data show better accuracy. One possible explanation is that
certain input features with smaller scales (e.g., centerline
coordinates) might be less predictive, implying they contain less
information about the hemodynamic outputs obtained from the
ANN. Essentially, because the less predictive features have smaller
scales and the more predictive features have larger scales, these more
predictive features might naturally have a greater impact on the

FIGURE 6
An example of the learning curves for one 1D BRNN training experiment out of the 10 conducted for each scalingmethod applied on both input and
output features. The red curve represents the training loss, whereas the blue one represents the validation loss.
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output. This is the exact scenario we usually want to avoid in
machine learning, where we aim to prevent the scale of input
and output data from introducing biases. However, in our case,
these biases might have actually been beneficial. It is important to
emphasize that more predictive features in the ANN model do not
necessarily align with the physical reality of the most predictive
factors for hemodynamic calculation.

To optimize the weights, the Adam optimizer was used, which
yielded the best results in cross-validation experiments. This is not
surprising, as it has already been shown before (Kingma and Ba,
2014) that Adam can be a better alternative to other optimizers such
as stochastic gradient descent (SGD) and root mean squared
propagation (RMSProp).

The performance of the 1D BRNN in predicting PD, with a
standard deviation error of 7.03 mmHg, suggests that this
approach has the potential to be used in clinical practice for
the diagnosis of CoA patients. The high sensitivity and specificity,
both around 90%, further indicate that the model’s error would
not be a limiting factor for clinical diagnosis. Moreover, the
model consistently and accurately predicts the position of the
stenosis (where the static relative pressure drops) in all CoA
test cases.

To improve PD prediction reliability, the introduction of
confidence intervals could be considered. If the predicted PD
value falls within the range of one standard deviation error

(7.03 mmHg), additional investigation would be recommended.
To a certain extent, adhering to confidence intervals already
exists in clinical practices, where doctors, using cardiac
catheterization for determining peak-to-peak pressure gradient,
acknowledge an error margin of around 5 mmHg (Yevtushenko
et al., 2022).

Furthermore, the 1D BRNN showed consistent errors in the
prediction of PD, WSSmax, and Vmax across a wide intensity
spectrum, as evidenced by the Bland-Altman plots (Figure 5).
The absence of outliers as hemodynamic values increase indicates
that the model has the potential to generalize well to a broader
patient population.

It turns out that training the CNN with 3D aorta geometry and
pressure distribution does not result in improved predictions of PD,
although the pressure curves showed a slight improvement in
accuracy. However, this approach has its drawbacks, including
increased spacing between cross-sections (4 mm instead of 2 mm)
and the limitation of predicting only static pressure. This decision
was made to maintain a reasonable batch size for training, which was
8 in our case. If additional output features such as a 3D velocity field
are added or the spacing between cross-sections is reduced, the batch
size would need to be decreased to fit into GPU RAM. It is preferable
to have a reasonably high batch size (with 32 being a good rule of
thumb), as lower batch sizes can lead to less accurate predictions
(Radiuk, 2017). It is worth noting that a 3D model could be

FIGURE 7
Bland-Altman plots comparing the accuracy of PD (1st row), WSSmax (2nd row), and Vmax (3rd row) 1D BRNN predictions on test cases for the
following experiments: trained only on real cases (left) vs. training only on synthetic cases (right).
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developed, where the first step involves a rough calculation of 3D
velocity fields inside the aorta using CFD-calculated velocity fields
for training. The information from this step could then be used in

the second step for predicting the pressure fields. In other words, we
could train the model to predict velocity fields instead of pressure
and still be able to predict pressure.

FIGURE 8
Bland-Altman plots comparing the accuracy of 1D BRNN PD predictions on 15 gothic and 15 non-gothic test cases for the following experiments:
trained only on gothic cases (1st row) vs. only on non-gothic cases (2nd row) vs. on mixed cases (3rd row).

FIGURE 9
Bland-Altman plots comparing the accuracy of PD predictions on 18 test cases between the 1D BRNN (left) and 3D CNN (right). CNN’s cross-
sectional values were averaged to get 1D pressure values along the centerline.
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One potential solution to address GPU RAM limitation could
be reducing the dimensions of cross-sectional planes. For instance,
resizing the 3D input and output arrays from (48, 48, 80) to (24, 24,
160) would reduce the overall array size by a factor of 2 while also
reducing the spacing to 2 mm. However, it is found that this
resizing approach results in lower accuracy of pressure profile
prediction, with a median error of 4.34 mmHg, which is 34%
higher compared to the 3.23 mmHg obtained by the non-resized
solution. Despite experimenting with various shapes, the final
shape chosen for the input and output arrays was (48, 48, 80),
as it yielded the best results.

The lower batch size (8 for the 3D CNN) compared to the 1D
BRNN (50) due to GPU RAM limitations highlights the challenge
posed by the higher-order complexity of transitioning from 1D to
3D. Additionally, there is a presence of redundant information
among input features, such as radius, gradient of radius, flow,
and velocity through cross-sections, which are originally 1D
features but need to be presented as 3D arrays (with constant
values on cross-sections) to comply with the 3D CNN
architecture requirements. Although CNNs are commonly used
in state-of-the-art machine learning practices, especially for
classifying and segmenting imaging data, their ability to model
sequential dependencies, similar to RNNs, is questionable.

In conclusion, a better-suited machine learning architecture,
combining the strengths of both, CNN (for convolutional layers) and
BRNN (for modeling sequential dependencies), while reducing the
information redundancy and retaining 3D geometry could be identified.

The experiments with different training data were conducted to
investigate whether there are any significant alterations in
performance, which can provide insights into the underlying
distribution of different datasets. Interestingly, it is observed that
the 1D BRNN performs better when trained solely on real cases
compared to when trained exclusively with synthetic cases. This
difference in performance suggests that there may be variations in
the data distributions between the two cohorts. It is possible that the
synthetic cohort does not fully represent the entire distribution of
the clinical cohort, leading to the underperformance of the model
trained on synthetic data.

The model trained on the clinical cohort is expected to
generalize better on unseen data if its training data better reflects
the true distribution of the population. Although the distribution of
flow hemodynamics (PD, WSSmax, and Vmax) is similar between the
real and synthetic cohorts, it has been observed before (12) that the
stenosis degree and stenosis position distributions do not match well
between the clinical and synthetic cohorts, which might suggest
potential flaws in the construction of the synthetic cohort.

FIGURE 10
Upper figure: The pressure curve for an exemplary test case with the highest pressure drop (PD) prediction error. Both the 3D CNN and 1D BRNN
overestimate the pressure recovery after the stenosis, thus affecting the PD prediction. The PD occurs right at the aorta’s narrowing (dashed black line).
The pressure course remains relatively steady at the aortic arch (black solid line). The shape of this specific case can be seen on the right side with the red
circlemarking the stenosis site with the lowest diameter. Bottom figure: Boxplots comparing the error of pressure curve predictions between the 1D
BRNN and 3D CNN by computing point-wise RMSE for all 18 test cases.
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Interestingly enough, there were no significant improvements in
the performance of the 1D BRNN when it was trained with gothic,
non-gothic, or mixed (50% gothic and 50% non-gothic) synthetic
cases. The results of this experiment suggest that, despite some
statistically significant differences between the models, they could
not effectively capture the distinctions between the gothic and non-
gothic cases. The outcome was somewhat unexpected, as you might
assume that the model would perform better for the cases it
was trained on.

Moreover, these results could also be attributed to the fact that
all the training cases come from the synthetic cohort, which was
found not to be equivalent to the clinical cohort in terms of
producing comparable model accuracy. What is particularly
interesting is that the gothic model performed significantly worse
than the non-gothic model for both gothic and non-gothic test cases,
alluding that adding another kind of the flow resistance (i.e., aortic
arch) might have confused the ANN model. In other words, the
model was not able to differentiate the pressure drop caused by the
aortic curvature or the narrowing. Also, it seems that the model
trained with non-gothic cases is also able to learn to predict the
pressure drop in gothic cases. This finding, that even the model
trained with no gothic cases can predict PD reasonably well for
gothic cases, is important since gothic cases are seldom found in a
real cohort and it is challenging to collect a large number of clinical
gothic cases to train the ANN.

However, there exists a reasonable doubt about the validity of the
results from the gothic experiment. Firstly, looking at Figure 8, some
cases can be distinctly identified where the mean value between the
predicted and reference values is negative. It is very much possible that
the model predicts a higher pressure at the outlet than at the inlet,
resulting in a negative pressure drop. This situationmay occur when the
pressure remains relatively constant throughout the aorta, which is
typical for healthy subjects without stenosis. This showcases one of the
limitations of the ML models, as they lack awareness of the physical
reality present in the given problem they attempt to solve. One
approach to tackling this limitation is to “teach” the model about
what is physically plausible by introducing penalty terms to the cost
function. For example, during the training process, if themodel predicts
a negative pressure drop, a penalty term could be added to the cost
function, aiming to avoid this outcome.

Secondly, some cases show extremely high errors, reaching
magnitudes of 100%. This could stem from training exclusively on
synthetic cases and having a relatively small training sample size. Our
findings, illustrated in Figure 7, indicate that the models trained only
on synthetic cases perform significantly worse than those trained only
on real cases. We used in this experiment gothic cases within the
synthetic cohort, as there are not many among real cases.

Further, the hemodynamic distributions among all three groups
are similar. However, upon closer examination, it is found that
gothic cases within the clinical cohort exhibit more severe
hemodynamics compared to non-gothic real cases. The same
observation does not hold true for the synthetic cohort,
suggesting that the synthetic cases may not accurately capture the
impact of the gothic arch on hemodynamics.

Considering these findings, further experimentation with
different methods for generating synthetic cases should be
conducted in the future. Improving the synthetic cohort could
potentially enhance the performance of the ANN even further.

Finally, we must note that the current study is limited to the
quasi-steady CFD model employed, which only calculated peak
systolic flow conditions in a pulsatile flow. Unsteady flow
simulations of the aortic flow are associated with high
computational costs, which are, based on our experience,
approximately 10-fold compared with a peak-systolic flow
simulation. This is because at least two heart cycles have to be
simulated to achieve a time-independent solution and because usual
time steps between 0.0004 s and 0.005 s (Qin et al., 2023) used for
aortic flow simulations result in approximately a few hundred or
thousands of time steps to be simulated. Unsteady flow simulations
are necessary to assess velocity and pressure fields accurately,
especially during high flow acceleration and deceleration phases.
However, during peak systole, which is the single time point used for
the CoA pressure gradient assessment according to the clinical
guideline, the impact of flow unsteadiness is considered to be
negligible. This assumption for the CFD model used in our study
is confirmed by a set of clinical validation studies against in vivo
catheter-measured pressure gradients vs. 4D PCMRI measurements
(Mirzaee et al., 2017; Bouaou et al., 2019; Goubergrits et al., 2019; Shi
et al., 2019).

5 Conclusion

This study showcases the potential of ML methods to replace
CFD, effectively mitigating computational costs and facilitating
their integration into clinical practice. The inclusion of 3D
geometric and pressure information does not boost ANN
accuracy in predicting PD. This leads to the conclusion that
condensing geometric and flow hemodynamics information into
a 1D representation along the aorta centerline is a reasonable
simplifying approach. The introduction of a synthetic cohort to
augment geometric and hemodynamic variability does not yield
an improvement in ANN performance, but it does demonstrate
the suitability of synthetic data for training ML models.
Consequently, future studies should focus on improving data
augmentation techniques to potentially acquire better ML
models. Finally, ML models do not seem to identify the
variations between cases that have different shapes of the
aortic arch. Additionally, exploring alternative architecture
could also lead to further improvements.
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