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stride length cadence
modification in older adults and
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Gait rehabilitation using auditory cues can help older adults and people with
Parkinson’s improve walking performance. While auditory cues are convenient
and can reliably modify gait cadence, it is not clear if auditory cues can
reliably modify stride length (SL), another key gait performance metric. Existing
algorithms also do not address habituation or fluctuation inmotor capability, and
have not been evaluated with target populations or under dual-task conditions.
In this study, we develop an adaptive auditory cueing framework that aims to
modulate SL and cadence. The framework monitors the gait parameters and
learns a personalized cue-response model to relate the gait parameters to
the input cues. The cue-response model is represented using a multi-output
Gaussian Process (MOGP) and is used during optimization to select the cue
to provide. The adaptive cueing approach is benchmarked against the fixed
approach, where cues are provided at a fixed cadence. The two approaches are
tested under single and dual-task conditions with 13 older adults (OA) and 8
people with Parkinson’s (PwP). The results show that more than half of the OA
and PwP in the study can change both SL and cadence using auditory cues.
The fixed approach is best at changing people’s gait without secondary task,
however, the addition of the secondary task significantly degrades effectiveness
at changing SL. The adaptive approach can maintain the same level of SL
change regardless of the presence of the secondary task. A separate analysis
is conducted to identify factors that influence the performance of the adaptive
framework. Gait information from the previous time step, alongwith the previous
input cue, can improve its prediction accuracy. More diversity in the initialization
data can also improve the GPmodel. Finally, we did not find a strong correlation
between stride length and cadence when the parameters are contingent upon
input cues.

KEYWORDS

adaptive auditory cueing, rhythmic auditory stimulation, gait rehabilitation, Parkinson’s
disease, aging gait

1 Introduction

Gait rehabilitation is an important physical therapy that helps preserve or improve
walking performance and counteract the symptoms of neurological disorders and aging.
Gait rehabilitation can be administered through rhythmic auditory stimulation (RAS).
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The stimulation utilizes a phenomenon known as entrainment
(Thaut et al., 2015), the coupling of a sensory system with the motor
system through the use of auditory cues, such as using metronome
beats or music with a strong rhythm (Thaut et al., 2015).

RAS is an attractive solution to gait rehabilitation due to its
low cost and ease of use even in unsupervised home training
(Ghai et al., 2018a). For neurological disorders like Parkinson’s
Disease (PD), the symptoms of gait impairment can become
resistant to pharmaceutical treatments over time (Cilia et al., 2015)
and therefore physical therapy is essential to the treatment
paradigm. RAS is commonly evaluated using spatial-temporal gait
parameters, such as cadence, stride length, and gait speed. Previous
literature has shown that RAS can influence cadence in both
older adults (OA) and people with Parkinson’s (PwP) (Ghai et al.,
2018b; Ghai et al., 2018a). However, the effect of RAS on stride
length can be mixed. While systematic reviews indicate auditory
cues can positively influence stride length (e.g., (Ghai et al., 2018b;
Ghai et al., 2018a; Spaulding et al., 2013)), individual experiments
have suggested the cues either have no effect on stride length or the
effect depends on the pace of the cues (i.e., cues faster than baseline
can negatively impact stride length) (Suteerawattananon et al., 2004;
Willems et al., 2006; del Olmo and Cudeiro, 2005).

In addition to the mixed results of RAS on stride length,
there are other challenges associated with existing approaches to
cue generation, which typically provide cues at a fixed frequency
(Ginis et al., 2018; Sweeney et al., 2019). The lack of cue adaptation
means the approach cannot handle habituation and change inmotor
performance (Ginis et al., 2018; Sweeney et al., 2019). Habituation
can affect both OA and PwP, as cues at a fixed pace can become
less salient over long-term use. People’s motor performance can
also change due to age or fluctuate due to medication cycle,
where the same static cue may not be as effective. Recently,
researchers have proposed adaptive cue generation to address these
challenges, e.g., (Zhang et al., 2022; Zhang et al., 2020). However,
studies to date are mostly conducted with healthy adults instead
of the target populations. In addition, these studies often focus
on using RAS to increase gait speed without considering the
coupling between stride length and cadence, known as the stride
length cadence relationship (SLCrel). Different individuals may
exhibit different SLCrels; common SLCrels include positive linear,
negative quadratic, and negative linear relationships (Egerton et al.,
2011). Gait impairment in PD, known as freezing of gait, is
often preceded by a breakdown of the normal SLCrel, where an
increase in cadence is followed by an abnormal decrease in stride
length (Sweeney et al., 2019). RAS that only consider gait speed
can potentially be detrimental in PD, as a faster gait speed can be
achieved by increasing cadence without increasing stride length,
which may lead to freezing. Finally, adaptive RAS has not been
studied under the dual-task scenario, where participants need to
walk while performing a secondary task. The capacity to perform
a secondary task during gait is essential for daily activities and can
be impaired due to age or disease, which can increase the risk of falls
(O’Shea et al., 2002; Beurskens and Bocks, 2012).

There are two aims in this exploratory study. The first aim is to
compare the performance of the adaptive cue provision framework
first proposed in (Wu et al., 2023b) to the state-of-the-art fixed
cue approach. Toward the first aim, we conduct an exploratory
study with OA and PwP under two task conditions: with and

without secondary task. The second aim is to explore how the
adaptive framework’s performance is impacted by the experiment
procedure and the model parameters. The performance of the
adaptive framework is evaluated after the first 12 participants (11
OA and 1 PwP) and changes to the model parameters and study
procedure are instituted for the remaining participants (1 OA and
7 PwP). Based on the two aims, the contribution of the study
is two-fold. First, we study the effect of RAS with respect to the
cueing approaches, participant group, and task conditions, using a
representative population. Overall, the OA and PwP respond to the
fixed/adaptive RAS in a similar capacity. Adding a secondary task
decreases gait performance in both groups. The fixed approach is
best at changing stride length in the condition without secondary
task. The adaptive approach can encourage the same level of stride
length change regardless of the presence of a secondary task. The
second contribution identifies key factors that improve adaptive
framework performance, which includes augmenting the input with
information from the previous gait state and adding more diversity
to the initialization data.

2 Methods

2.1 Proposed approach

The proposed framework adapted from (Wu et al., 2023b) is
summarized in the following section and illustrated in Figure 1. The
framework has three primary functions: estimate gait parameters,
model cue influence on gait, and select the next cue. We use a
Gaussian Process (GP) to relate the input cue and the resultant
gait parameters.

2.1.1 Estimate gait parameters
To estimate stride length and cadence in an unconstrained

walking environment, an IMU-based (inertial measurement unit)
algorithm is implemented, where the sensor is fixed onto the foot. To
estimate stride length, the Madgwick filter (Madgwick et al., 2010)
is first used to estimate IMU orientation. The accelerometer data
from the IMU is then transformed to the world coordinate, as the
stride length is equal to the horizontal distance traveled in the
world coordinate. Prior to integrating the accelerometer signals, the
zero velocity update (ZVU) method is applied to correct gyroscope
drift during the stance phase of the gait cycle (Skog et al., 2010).
ZVU requires distinguishing between the swing and stance phases,
which is based on the modified version of (Van Nguyen and La,
2016) described in our previous work (Wu et al., 2023b) to improve
robustness across participants. The gait estimation algorithm has
an estimation error and standard deviation of −0.09 ± 0.03 m
during straight-line walking and the error for circle-walking is
−0.024 ± 0.19 m compared to measurements obtained using Vicon
motion capture.

2.1.2 Model cue-influence on gait
A sparse multi-output Gaussian Process (MOGP) is used to

model the gait parameters (i.e., stride length and cadence) as a
function of the input(s). The model is as follows:

Y = f (x) + ϵ =Wg (x) + ϵ, where (1)
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FIGURE 1
The adaptive framework consists of three main functionalities: estimating gait performance, modeling cue influence on gait, and selecting new cues.

g (x) = {gq (x)}
Q
q=1
, gq (⋅) ∼ GP (0,kq (⋅, ⋅

′))

ϵ =N (0, σ2) (2)

where x is the input. g(x) is a collection ofQ independent latent GPs.
The outputs, Y, are assumed to be linearly correlated through the
weighting matrix, W, with added noise, ϵ (van der Wilk et al., 2020).
The data used to train GP is described as the following:

Y =

[[[[[[[

[

f̂1, ̂ℓ1
f̂2, ̂ℓ2
⋮

f̂N, ̂ℓN

]]]]]]]

]

xs =

[[[[[[[

[

0

c1
⋮

cN−1

]]]]]]]

]

xm =

[[[[[[[

[

0,0,0

c1, f̂1, ̂ℓ1
⋮

cN−1, f̂N−1, ̂ℓN−1

]]]]]]]

]

We explored two different input configurations in the study (see
Section 3.3.1 for discussion). The first single input configuration, xs,
consists of the specified cues at the preceding time step. The second
configuration, xm, extends the inputs to include the preceding
cadence and stride length. The subscript “s” or “m” indicates single
or multi-input configuration. The second configuration aims to
improve the model’s prediction performance by conditioning the
prediction of the response to cues based on the preceding gait state.
The output Y consists of f̂n, the estimated cadence, and ̂ℓn, the
estimated stride length, at the nth step from the gait measurement
sub-system. cn−1 is the cue given at the previous step that results
in the nth cadence/stride length. n is incremented at every footstep
and n = [1,2,… ,N]. n = 1 represents the baseline cadence and stride
length when no cue is given. Sparsity is introduced to the MOGP
through inducing points, Z = {[z1,z2,…zM]}Dd=1 along each input
dimension D. Then, the MOGP prior, p0, can be written in terms
of Z, where

p0 (gq) =N (mq (Z) ,kq (Z,Z′)) (3)

The model is used at run time to predict the resultant stride
length and cadence at the n+ 1 step as a function of the input(s)
using Eq 1. As the model is trained online during the experiment,
a two-phase behaviour emerges that we call the exploration and
the converged phase as explored in previous work (Wu et al., 2021).
During the exploration phase, which is set to be the first 2 minutes of

the experiment, the GP contains more unexplored regions, resulting
in higher model uncertainty. In the converged phase, GP prediction
performance and model uncertainty stabilize. The behaviour is
further discussed in Section 3.3.3.

2.1.3 Optimize cue provision
Weutilize theMOGPmodel to compute ametronome frequency

to minimize the squared difference between the predicted gait state
and the desired gait state while suppressing rapid cue changes. The
desired gait state consists of a cadence target and a stride length
target, which are selected using the process described in Section 2.3.
The cost function is defined as the following:

copt = arg min
c⋆n

J, subjectedtocmin ≤ c
⋆
n ≤ cmax

J(c⋆n) = α f( ftarget − f̂
⋆
n+1)

2 + αl(ℓtarget − ̂ℓ
⋆
n+1)

2

+ αe(c⋆n − cn−1)
2 (4)

where copt is the optimal metronome frequency subject to the
constraints. ftarget and ℓtarget are the cadence and stride length targets
respectively. αf,αl,andαe are three scaling factors that weigh the
relative importance of each cost term. f̂⋆n+1 is the predicted cadence
and ̂ℓ⋆n+1 is the predicted stride length estimated from the MOGP at
n+ 1, given the current cue, c⋆n , or current cadence/SL using Eq. 1.
Compared to our previous work in (Wu et al., 2023a) where rapid
cue changes are suppressed by changing the constraints based on the
current cadence (i.e., cmin/cmax = ±20%f n), the difference between
the selected cue and the previous cue is added to the cost function.
The change aims to address the local minima created due to the
algorithm encountering constraints when perhaps providing more
extreme cues can lead to greater benefit. The cost term does not
prohibit themore extreme cues from being reached like the previous
framework but moves gradually toward the desired cue.

2.2 Adaptive framework parameters

There are no parameters to tune in the gait estimation algorithm.
For the MOGP, the key model parameters are selected to be Q = 2,
M = 20 when D = 1 for xs, and M = 10 when D = 3 for xm. In the
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study, Q is selected to be 2 as it corresponds to the two output
dimensions, which remained constant throughout the experiment.
The input dimension D is dictated by the model input structure
(i.e., xs and xm). The number of inducing points, M, is selected
based on the time it takes to optimize parameters. M is decreased
as the dimension of the input increases in xm. The covariance,
kq (⋅, ⋅′), is chosen to be the sum of a squared exponential kernel
and a constant kernel. During cue selection, the constraints are
cmin = 0.65f baseline ≤ copt ≤ cmax = 1.35f baseline. For the majority
of the experiment, we selected αf = 1.5,αl = 10,andαe = 0.05. For
the last 4 PD participants, we tested αl = 20, then αl = 100 for
the last two. The effect of these parameter changes are discussed
in Section 3.3.2.

2.3 Target selection

Optimizing cue-provision requires setting ftarget and ℓtarget in
Eq 4, which are set based on the participant’s baseline cadence
(fbaseline) and initial SLCrel. The full procedure is described in
Section 2.5. Here, we describe constructing the initial SLCrel,
indicated in the experiment workflow diagram (Figure 2A). The
initial SLCrel is constructed by playing metronome beats at a fixed
pace at 70, 85, 95, 105, and 115 beats per minute (bpm) in random
order. 50 beats are provided for each frequency.The range is selected
based on Egerton et al. (2011), with the upper range reduced as we
intend to provide cues in the region where SLCrel holds. A quadratic
and a linear polynomial are fitted to the training data using NumPy
(Harris et al., 2020) and the polynomial with a lower residual
becomes the SLCrel. An example SLCrel is shown in Figure 2B ℓtarget
is selected to be a 0.1 m increase from the SLCrel, which is to ensure
that the change is large enough to be detected by the gait estimation
algorithm. Two candidate targets (labelled Target up/down in
Figure 2B) are evaluated by computing the y-values at ±10%fbaseline
on the SLCrel and adding a 0.1 offset. The up/down target is selected

based on the participant’s gait performance during the initial SLCrel
measurement. The lower target is chosen if the participant behaves
conservatively during training or is unable to follow the faster beats.
The lower target is used for 6 out of 13OA participants and 7 out of 8
PD participants.

2.4 Cueing conditions

The main experiment consists of testing two cueing approaches
(fixed and adaptive) under two task conditions (no secondary
task v. s with a secondary task), as shown in Figure 2C. The
cueing approaches are randomized within each task condition
and blinded from the participants. The fixed approach provides
cues directly at ftarget, whereas the adaptive cue computes cues
based on the framework described in Section 2.1. Both cueing
approaches provide cues when the participant’s stride is shorter
than the stride length target and provide 10 metronome beats
(5 steps per foot). In the adaptive approach, GP is updated after
every set of metronome beats and a new cue is computed. For
the condition without a secondary task, participants only need to
modulate their gait following the auditory cues (see Section 2.5 for
further instructions). In the secondary task condition, participants
have to recite as many words beginning with a randomly
selected letter as possible while walking, which has been used
in previous studies (e.g., Lohnes and Earhart, 2011; Beurskens
and Bock, 2012). For the experiment, the task is sufficiently
challenging, suitable for the experiment duration, and requires
no overhead setup.

2.5 Protocol

The experiment protocol is shown in Figure 2A. In the text
below, key steps that correspond with the workflow are in bold.

FIGURE 2
(A) The experiment workflow consists of 7 stages as described in Section 2.5. Note: the order of the step-length training and the initial SLCrel test is
switched for participants who received the second version of the SLCrel test described in Section 2.5. (B) A visualization of the two potential SL/CAD
targets derived from the initial SLCrel with respect to fbaseline computed during 6MWT. (C) The main experiment conditions consist of the combination
of the two cueing strategies (fixed v. s adaptive) over the two task conditions (no secondary task v. s. with secondary task). The order is
block-randomized and blinded from the participants.
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Participants first watched an introductory video and signed the
consent form after having a chance to ask questions. Two IMU
sensors were fastened onto the shoes at the crease created by
asking the participant to place the foot on the ground and lift
the heel, with the orientation shown in Figure 2. Participants went
through a metronome training session, where a metronome beat
was randomly selected and participants were instructed to sync their
walking to the beat naturally, one beat per step. Next, participants
were told to forget about the pace set during training and we
measured their baseline cadence (fbaseline) in a 6-min walk test
(6MWT). The Initial SLCrel of the participant is then measured
using the procedure described in Section 2.3. Two versions of the
SLCrel data collection procedure were administered. From OA#1-
11 and PD#1, participants were only asked to sync their walking
to the provided beats. Participants then went through step-length
training, where they were told to first sync naturally to the beat.
Keeping to the same beat, they were instructed to take bigger steps
and then smaller steps.Theywere told that the demonstration shows
the variety of step lengths one could associate with a beat and
their goal during the experiment was to interpret the goal set by
the metronome in terms of step length and cadence. They would
know if they have it right once the metronome turns off and the
goal is to keep the metronome off. The intention of the general
instruction is the ability to expand on the framework cost function
that may not have a clear physical interpretation (e.g., minimize
jerk, which is often seen in tremor suppression (Hu et al., 2019)).
In the second version of the SLCrel data collection, the researcher
first ran through the step-length training. Then, when the 5 sets
of fixed beats were provided, participants were instructed to take
20 natural steps, 20 big steps, and 10 small steps. The process
aims to provide a richer training dataset to initialize GP. As these
changes in the experimental procedure were made to the ongoing
sessions, we did not balance the number of participants in each
group. This is a limitation of the study, and is discussed further
in Section 4.

After the demonstration/SLCrel data collection, participants
went through a practice session, where the experimenter played
the role of the metronome system with the goal of decreasing the
participant’s stride length (i.e., opposite of the main experiment).
The participant was first told to walk naturally at the start of
the practice. After a few steps, the experimenter manually played
a metronome beat and the participant was guided to change
their step lengths. Once the experimenter saw the participant
taking smaller steps consistently, the beat was turned off. The
experimenter then reminded the participant to try and develop a
strategy to turn the metronome off and keep it off. Participants
then went through the first two cueing conditions where there
was no secondary task. Before commencing the conditions with
the secondary task, participants were reminded that they still had
to keep the metronome off while reciting words and the two
tasks were equally important. After each experiment condition,
participants answered a custom survey and a NASA-Task Load
Index (TLX). After completing all 4 experiment conditions,
participants repeated the SLCrel data collection (Post SLCrel). A
final survey was administered to collect information about the
participants’ overall experience. Participants were then given a
chance to review their data and be informed of the cueing conditions
they performed during the experiment. The project was approved

by Monash University Human Research Ethics Committee (ID
37639) and Monash Health Human Research Ethics Committee
(RES-22-0000-516A).

2.6 Materials

A Python program was developed for data collection and
runs on a Windows 10 Laptop (i5 core with no GPU). The
program interfaces with the wireless IMU sensors (WaveTrack
Inertial System, Cometa Systems, Milan, IT) and controls the
timing of the auditory cues. The cues are played from a Philips
speaker (BT50A), which is connected to the computer via a
3.5 mm audio cable. The GP model was implemented using
GPFlow 2.8 (van der Wilk et al., 2020) and the cost function
was solved using the Nelder Mead Method in Scipy 1.7.1
(Virtanen et al., 2020).

2.7 Participants

A total of 25 participants enrolled in the study. The two
recruitment channels of the study consisted of the City of
Monash volunteer group and the clinicians at Monash Health.
All the OA in the study were recruited from the volunteer
group; 7 PwP enrolled through clinician referral and one PwP
joined from the volunteer group. OA were eligible if they were
over 60 years old and had no issues with walking, balancing,
or hearing. PwP needed to have Hoehn and Yahr score ≤2
regardless of medication. The clinical scale is used to classify
the motor function of Parkinson’s Disease (Bhidayasiri and
Tarsy, 2012). Participants with a score of ≤2 can perform
their daily routine independently or with minimal assistance.
For potential PwP enrolling without clinician referral, we
developed a list of questions based on the Hoehn and Yahr
scale and asked the participant to self-assess their motor
performance. The participant had no issue with walking,
balancing, or performing their daily tasks and therefore was
enrolled in the study. All participants were tested during their
medication-ON state (if they were on medication). A few PD
participants took medicine during the experiment. We did
not collect data on the type/frequency of their medication.
While 25 participants took part in the study, data from 21
participants were used in the analysis. This is further discussed
in Section 3.1.

2.8 Analysis

Two separate analyses were conducted with respect to the two
aims of the study.

2.8.1 Evaluate overall performance: cueing
approach, participant group, task condition

First, we considered the following research questions.

• RQ1: Did the fixed and adaptive cueing strategies differ in their
effectiveness in modifying participants’ gait?
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• RQ2: Did the participant group impact responsiveness to cues?
• RQ3: How did secondary task affect cue responsiveness?

The research questions are examined in detail in Section 3.2
by computing the change in stride length from baseline,
change in cadence from baseline, cadence target error, and
the percentage of time cue is required. The TLX score
is also reported to capture the participants’ perceptions.
Finally, the pre and post-stride lengths from the SLCrel tests
were compared.

The gait performance metrics (i.e., change in SL and cadence)
were analyzed using t-tests and Linear Mixed Effect (LME) model.
t-test of each individual’s gait data for every cueing condition
is compared to the individual’s baseline data to determine the
effect size of the cueing condition. The test would show the
effect of the cueing condition on the individual level. As there is
limited space to display the sample mean for all 84 experiment
conditions, we reported the significance in terms of the number
of significant/non-significant instances and the population mean.
The number of samples included for each cueing condition
focused on the converged phase (i.e., the number of steps taken
in the last 2 min of the experiment). The number of samples
from the baseline condition matched the number of steps in
the converged phase (roughly matching the last 2 min during
baseline to the last 2 min during each experiment). The total
number of samples was different for each participant, ranging from
80 to 100+ samples per group.

After comparing the difference to baseline, LME models
were used to investigate the effect of the three independent
variables (i.e., cueing approach, participant group, and task
condition), which were included as the fixed effects. The LME
model is different from the t-test results as it shows the average
effect over the sample population. Specifically, the cueing
approach effect consists of fixed and adaptive approaches; the
participant group is the divide between OA and PD1; and
the task condition is walking with or without secondary task.
LME models can account for the between- and within-subject
variability introduced through repeated measures. Normality
and homoscedasticity assumptions were checked using Shapiro-
Wilk test and Levene test respectively. Since the order of the
experiment conditions was randomized, it was not included
as a fixed effect. The LME model that had all the fixed effects
and the three-way interaction was first built using lme4 and
lmerTest in R (Bates et al., 2015; Kuznetsova et al., 2017). The
model was subsequently modified by removing the combination
of interaction terms with no significance until the model only
contained fixed effects. Only significant results are shown in the
figures. Additional statistics are reported using marginal means
(μem), which is the mean of the group when averaging over the
fixed effect(s), or differences between marginal means (Δμem). We
also reported the intraclass correlation coefficient (ICC), which is
the percentage of the variance due to individuals over the total

1 Note that while participants may have been subjected to different experiment

procedures/changes in adaptive framework parameters, the only factor being

modeled is the OA/PwP divide when comparing the overall performance.

The rationale is further discussed in Section 3.3.2

variance of the random effect. The analysis of the gait metrics
focused on the converged phase (i.e., the last 2 minutes of each
experiment). Since the exploration phase is considered a transient
phase, the analysis examines the steady-state behaviour that is
the converged phase.

2.8.2 Evaluate adaptive framework performance:
input structure, training procedure, convergence,
and model structure

We conducted four separate analyses to study the behaviour
of the GP model. In the first analysis, we evaluated the GP model
performance with respect to the parameters, including the input
structure, training procedure, and model structure. For evaluating
the effect of model input (xs versus xm) and the effect of the training
procedure (Procedure 1 versus 2), we performed an analysis by
computing the mean squared error (MSE) and the standard error
(SE) for every participant for the adaptive experiment condition
with no secondary task and trained the GP models again with all
the data. In this exploratory study, the aforementioned analysis
was conducted after the first 12 participants (11 OA and 1 PwP),
which prompted the switch to xm and Procedure 2 for the remaining
8 participants (1 OA and 7 PwP). These changes were better
made during the study than post hoc because the outcome metrics
depend on the participants’ reactions and cannot be re-created after
the experiment.

In the second part of the analysis, we visualized all the
PwP performance metrics grouped by the parameter choices
was examined to determine whether the changes to the
experiment procedure/GP modeling choices correlate with
performance gain.

In the third part of the analysis, we evaluated the convergence
of the GP model using the Kullback-Leibler (KL) divergence. KL
divergence helped quantify the difference between the GP model at
each training iteration and the final model using the closed-form
solution from Robert (1996) summed over the input range. The
xm GP input structure was used for the analysis. The KL analysis
provided evidence of GP convergence to support using the halfway
point in the experiment (i.e. 2 min) to separate the exploration and
converged phases.

Finally, to evaluate the GP model structure, we computed
the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) over three model variations. While both AIC and
BIC represent a tradeoff between model complexity and goodness
of fit, BIC penalizes the model complexity more heavily as it is
scaled by the number of data points. A model with the lowest AIC
and BIC would represent the best tradeoff between model accuracy
and complexity.

3 Results

The result section is split into three parts. Section 3.1 presents
the demographic of the participants. Section 3.2 answers the
research questions with respect to the independent variables.
Finally, Section 3.3 examines the impact of the changes in
the pre-experiment training procedure and the performance of
the GP model.
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3.1 Demographics

17 OA participated in the study (9M/8F, Mean ± Standard
Deviation: Age 72 ± 9 years old, Height 167.06 ± 10.82 [cm],
Weight 71.86 ± 12.77 [kg]). Four OA were excluded from the
analysis: 1 participant was used to refine the study protocol, 1
participant did not finish the study, the gait detection algorithm
did not work on 1 participant, and 1 did not meet the age
requirement. The gait detection algorithm did not function
properly as the participant had a “stiff” walking pattern (walking
without bending the knee) due to other lower leg injuries.
This caused a breakdown of the stance/swing phases detection
and the gait detection algorithm consistently underestimating
the footsteps.

Eight PwP joined the study (6M/2F, Age 70 ± 7, Height 173.98
± 11.60, 73 ± 15.85). The average time since the diagnosis is 6 ± 3.5
years. PwP reported the following lower leg symptoms (the number
of participants who reported in brackets): stiffness 1), slowed
movement 4), trouble balancing 5), freezing of gait 2), anddyskinesia
2). One participant did not have any symptoms. No PwP had prior
experience with cueing using wearable devices. One participant was
going through gait rehabilitation. Most participants performed their
daily tasks independently, with a few needing help sometimes when
dressing, walking, climbing stairs, and doing housework. Overall,
data from 21 participants (13 OA and 8 PwP) were included in the
following analysis.

3.2 Results of overall performance

3.2.1 Change in stride length (SL) from baseline
We computed the participants’ change in SL during the

experiments (i.e., the 4 cueing conditions in Figure 2C)
compared to their baseline SL measured in the 6MWT as
the primary outcome. The metric is in centimeters (cm) and
should be as large as possible as the cues aim to lengthen
participants’ strides.

The SL during the converged phase was compared to baseline
SL for each participant per condition using a t -test. The results
are summarized in Table 1. The results showed that the SL changed
significantly from the baseline for 81% of the participants using the
fixed condition for both task conditions. The adaptive approach also
changed the baseline significantly for 67% of the participants in the
condition without secondary task and 61% of the participants in
the condition with secondary task. These results indicate differences
from baseline on the individual level. The mean SL across all
participants at baseline is 115 cm, and the mean SL across all
participants and all cueing conditions is 121cm, which is an average
of 6 cm difference.

Next, an LME model was formulated considering the influence
of the cueing approach, participant group, and task condition. The
LME model residual of the 84 trials was first checked for the
normality and homoscedasticity assumptions. The model passed
both the Shiparo-Wilk test (p = 0.29>0.05) and Levene test (p
= 0.77>0.05). The LME model showed a significant interaction
effect between the cueing approach and the task condition (F
(1,60) = 4.090, p = 0.048, Value = 4.799, Standard Error (SE) =
2.373, 95% Confidence Interval (CI) = [0.190, 9.409]). This meant

TABLE 1 Number of Participants with Significant/Non-significant
Change in SL compared to Baseline.

Significant
(percentage)

Not significant
(#OA/#PwP)

Fixed-no task 17 (81%) 4 (2 OA/2 PwP))

Adap-no task 14 (67%) 7 (5/2)

Fixed-with task 17 (81%) 4 (2/2)

Adap-with task 13 (62%) 8 (5/3)

Fixed/Adap indicates the cueing conditions. No task/with task indicates the condition
without/with secondary task. The total number of participants across each row is 21
(13 OA/8PwP).

that the stride length change induced by the fixed approach was
significantly different between the condition with v. s without
secondary task. Specifically, themarginalmean of the fixed approach
with secondary task dropped by 5.61 cm compared to no secondary
task (Δμem = 5.61 cm). On the other hand, the performance of
the adaptive approach was not significantly different between
task conditions (Δμem = 0.82 cm). The ICC was 82%, indicating
large individual differences. The resulting marginal mean is
shown in Figure 3.

With respect to the three independent variables (cueing
approach, participant group, and task condition): 1) the fixed
approach was more effective than the adaptive approach without
secondary task. The adaptive approach maintained the same
level of performance regardless of the task condition; 2) the
secondary task shortened SL to a similar extent in both
OA and PwP (Δμem = 3.22 cm), and 3) PwP increased their
SL more than OA (Δμem = 9.75 cm), though the effect was
not significant.

3.2.2 Change in cadence from baseline and
cadence target root-mean-square-error (RMSE)

We first examined whether the cadence significantly changed
from the baseline. The result is shown in Table 2. Overall, the
mean cadence across the population is 0.873 Hz. The mean
cadence across all cueing conditions is 0.831 Hz, which is an
overall 0.042 Hz decrease from baseline. The fixed condition
without secondary task was able to induce a change in cadence
for all the participants; the effectiveness dropped slightly
in the presence of secondary task. The adaptive approach
induced a similar level of change in cadence across the two
task conditions.

Moreover, we examined the cadence target RMSE, which
measures how well the target was achieved. The cadence target
RMSE is a secondary performance measurement that examines how
well the target selected from the original SLCrel can be maintained
when stride lengthwas changing. A lowRMSE indicates participants
were able to modulate their SL without changing the cadence. The
LME model residual of the 84 data points passed the Shiparo test
(p = 0.85) and Levene test (p = 0.32). With respect to the three
independent variables: 1) the adaptive approach was significantly
worse than fixed (F (1, 61) = 4.791, p = 0.032, Value = 0.016, SE =
0.0074, CI = [0.002, 0.031]), illustrated in Figure 4. The “Value”
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FIGURE 3
The marginal means of the cueing approaches and 95% confidence interval (CI) in relation to the interaction. Within each cueing approach, the
decrease in SL in the fixed approach between the no secondary task (no task) v. s with secondary task (task) condition is significant. The adaptive
approach has similar performance across the task condition.

TABLE 2 Number of Participants with Significant/Non-significant
Change in Cadence compared to Baseline.

Significant
(percentage)

Not significant
(#OA/#PwP)

Fixed-no task 21 (100%) 0 (0 OA/0 PwP))

Adap-no task 18 (86%) 3 (2/1)

Fixed-with task 20 (95%) 1 (1/0)

Adap-with task 18 (86%) 3 (1/2)

Fixed/Adap indicates the cueing conditions. No task/with task indicates the condition
without/with secondary task. The total number of participants across each row is 21
(13 OA/8PwP).

number indicates the LME model predicts a 0.016 Hz increase in
RMSE when using the adaptive approach compared to the fixed.
The result was expected as the fixed approach provides cues directly
at the target cadence, which was not the case for the adaptive
approach; 2) The secondary task increased the target RMSE but was
not significant, and 3) PwP had a significantly lower cadence RMSE
compared to OA (F (1, 19) = 5.310, Value = −0.025, SE = 0.011,
CI = [-0.047, −0.004]), as shown in Figure 5. The ICC was 21%,
which means there is a lower individual difference compared to the
change in SL.

3.2.3 Percent on
The percent on metric computes the percentage of time the

cue was played during the experiment. A lower number indicates
better cueing efficiency, as fewer cues are needed to increase the

stride.Themodel residual of the 84 data points passed the normality
test (p = 0.30) and Levene test (p = 0.37). We observed with
respect to the three independent variables: 1) the adaptive approach
played cues 2.85% more than the fixed approach 2) the secondary
task also caused a 2.65% increase in cue-playing and 3) PwP
required 7% less cues than OA. These differences are not statistically
significant.

3.2.4 Task Load Index (TLX)
The raw TLX score was computed for each experiment

condition. The LME model residual of the 84 data points passed
the normality test (p = 0.79) and Levene test (p = 0.33). The results
with respect to the three independent variables are as follows: 1)
the secondary task significantly increased the mental workload and
had the biggest effect size among the three variables (F (1, 61) =
38.78, p ≪0.05, Value = 5.404, SE = 0.868, CI = [3.705, 7.105]);
2) the adaptive approach also significantly increased the mental
workload compared to the fixed approach (F (1, 61) = 4.70, p =
0.034, Value = 1.88, SE = 0.868, CI = [0.181, 3.581]); and 3) the
TLX score was not significantly different between PwP and OA. The
results are shown in Figures 6, 7. The ICC was 41%, indicating large
individual variation.

3.2.5 Pre/post stride length change
To evaluate whether the cueing conditions had prolonged

effects on participants’ gait, the pre-post SL performance was
compared using a paired t-test at each of the 5 beats provided.
The normality assumption was validated using the Shapiro-Wilk
test for each of the 5 beats and all beats passed the test (p =
0.57, 0.07, 0.99, 0.46, 0.47 from the slowest to the fastest beat
respectively). The pre/post group each contains 21 data points. No
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FIGURE 4
The cadence RMSE for each cueing approach and 95% confidence interval (CI). The fixed approach has a lower RMSE compared to adaptive, which is
expected since the fixed approach provides cues directly at the target.

FIGURE 5
The cadence RMSE across the two groups of participants and 95% confidence interval (CI). PD participants have a lower RMSE compared to OA.

statistical significance in SL change was found at the slowest and
fastest fixed metronome pace (70&115 bpm). An increase was seen
between the pre and post-SL measurements for all intermediate
beats (85, 95, 105 bpm). At 85 bpm, the mean SL increased by
6.61 cm (mean difference M) = 6.61, standard deviation (SD) =
10.64 cm, t-value t) = 2.847, p = 0.010). At 95 bpm, M = 6.05,
SD = 9.77, t = 2.837, p = 0.010. Finally, M = 4.77, SD = 6.97, t

= 3.138, p = 0.005 for 105 bpm. In the post-test measurement,
participants repeated the initial SLCrel data collection procedure
(i.e., sync naturally or natural syncing plus taking big/small
steps). The data from participants who were instructed to take
big/small steps were excluded (i.e., only including the natural steps).
An increase in SL in the intermediate beats demonstrated that
there was a carryover effect from the experiment, as participants
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FIGURE 6
The TLX score is significantly higher in the adaptive approach.

FIGURE 7
The secondary task increases the mental workload significantly.

continued to lengthen their strides despite being told to sync to the
beats naturally.

3.3 Results of adaptive framework
performance

The following section focuses on studying the performance
of the GP model in relation to the experiment procedure and
modeling choices.

3.3.1 Input data and training procedure
3.3.1.1 Input data

We first compared the performance between the input
formulations (xs and xm) discussed in Section 2.1.2. The MSE
is the average prediction error and the SE indicates whether
the prediction error is within the GP’s variance (SE < 1
indicates the error is within the GP variance). During the
experiment, the analysis was conducted after the first 12
participants (11 OA/1PwP), which prompted the change in
model structure for the remaining participants. In this post
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TABLE 3 Comparison between input data on GP Performance.

Input data Metric MSE SE

Training only
n = 21

CAD 0.0269 0.5045

SL 0.0973 0.8903

Testing only
n = 21

CAD 0.0053 0.4786

SL 0.0196 0.8733

Training + Testing
n = 21

CAD 0.0054 0.3618

SL 0.0205 0.6750

The unit of cadence mean squared error (MSE) is Hz2 and the stride length MSE, is m2.
The unit on cadence standard error (SE) is Hz2 and SL SE, is m. The number of participant
n) is indicated for each row.

hoc analysis, since information regarding the previous gait
state was recorded, data from all participants (number of
participants, n = 21) were used to compute the MSE/SE for
xs and xm. The MSE for xs was 0.007 Hz2 and 0.036 m2 for
cadence and SL respectively. The MSE was lowered to 0.005 Hz2

and 0.021 m2 using xm. This meant adding more information
about the previous gait state improves GP prediction. The
improvement was small for cadence as the cues could entrain
cadence. The benefit of extending the input states was seen
in the SL prediction, where the average error was reduced
by 0.015 m2.

3.3.1.2 Training data
The next analysis examined whether more training data

improves GP performance. The MSE and SE were computed to
evaluate the loss on the dataset under three scenarios: using the
initial SLCrel data only (referred to as training only), using data
collected during the experiment only (i.e., testing only), and using
both (training + testing). Data from the no-task condition was
used. We proceeded with using xm as the formulation. During
the experiment, all participants used both the training and testing
data. In this analysis, all participants were also used to compute
the MSE/SE (n = 21). The results are presented in Table 3, The
MSE and SE were the highest for both CAD and SL when GP
was presented with only the training data as shown in Table 3.
This demonstrated the importance of online learning as the new
data can help the model adapt to the varying gait performance.
Between using testing data (second row) versus training + testing
(third row), both SL and cadence (CAD) prediction MSE were
similar. However, the SE was smaller when using both training and
testing data. The use of the testing data provided more diverse
samples to the GP model, thereby reducing the variance in regions
where GP might not have explored during the regimented training
phase.

3.3.1.3 Training procedure
Finally, we examined the GP performance between the two

initialization procedures (i.e., the two different SLCrel collection
procedures described in Section 2.5). In the first procedure,
participants were told to sync to the beats normally. In the second
procedure, participants were told to take neutral, bigger, and

TABLE 4 Comparison between training procedure on GP Performance.

Input data Metric MSE SE

First procedure
n = 12 (11 OA/1 PwP)

CAD 0.005 0.381

SL 0.022 0.740

Second procedure
n = 9 (2 OA/1 PwP)

CAD 0.006 0.345

SL 0.019 0.590

The unit of cadence mean squared error (MSE) isHz2 and the stride length MSE, ism2. The
unit on cadence standard error (SE) is Hz2 and SL SE, is m. The total number of participant
for each group (n), along with the breakdown of participant is shown in each row.

smaller steps while syncing to the fixed beats. We compared the
difference when using the xm and using both training + testing
data. The result is presented in Table 4. The prediction MSE
did not change much between the two procedures, meaning the
training procedure did not affect the GP’s mean. However, the
second procedure, which was designed to mimic the experiment
condition, improved the GP performance as it reduced the standard
error, particularly for the SL prediction. During the experiment, it
was hypothesized that changing the experimental procedure can
improve the adaptive framework prediction, prompting the change
in the protocol after the initial 12 participants (11 OA/1PwP). As
post hoc analysis cannot make up for the missing big/small steps
recorded in Procedure 2, the analysis divided the result based on
the procedure.

3.3.2 Impact of post hoc choices on performance
metric

In this section, the effect of the parameter changes during the
study was visualized and examined. The analysis helped determine
whether the parameter changes introduced factors that may have
impacted the outcome. The changes include the choice of the cost
function weight (αl), as discussed in Section 2.2, and the model
structure selection (xs versus xm) and training procedure (Procedure
1 versus 2), discussed in Section 3.3.1. The participant grouping
for the corresponding parameter changes during the experiment is
shown in Figure 8. The change in SL grouped by parameter choices
for the PwP data is presented in Figure 9; cadence RMSE is in
Figure 10; percent on time is in Figure 11, and finally the TLX score
is in Figure 12.

Data from PwP were plotted for visualization as the group
experienced all the parameter changes. From the visualization, no
apparent link was identified between the changes in framework
parameters to the performance metric. Instead, other factors
that were identified to have a larger impact on the performance
metrics, including data availability (i.e., having sufficient data
and variability to cover the larger state space as discussed in
Section 3.3.1) and the stability of the cues (i.e., participants
found the target difficult to figure out as discussed later
in Section 4).

3.3.3 Exploration and converged phases
In this section, the assumption of using the halfway point in the

experiment (i.e. 2 min) to separate the exploration and converged
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FIGURE 8
Participant grouping with respect to changes to the model parameters/experiment procedure during the experiment.

FIGURE 9
Visualization of PwP SL change compared to baseline grouped by the parameter choices. xs indicates the group where the GP model structure where a
single input is used to predict the two outputs. xm is the GP formulation where three inputs are used to predict the two outputs. αl = 20 is the group
where the SL cost term is 20. αl = 100 is the group where the SL cost term is further increased to 100.

phases of GP is examined using KL divergence. KL divergence
represents the relative entropy between two distributions, meaning
themetric can be used to quantify the amount of information gained
from continuous learning. The result averaged over all participants
is shown in Figure 13. From the figure, the KL for cadence (purple)
and stride length (yellow) were high initially. This is because various
cues were provided during the experiment compared to training
where cues at fixed rates were provided, allowing GP to better
model the person’s response to cues through online learning. During
exploration, it was observed that the KL decreased faster, while
in the converged phase the learning rate plateaus. This means

the GP model converges to a steady state performance during
the experiment.

3.3.4 Model structure selection
In the experiment, we adopted the GP model with two

independent kernels and a correlation matrix as outlined in
Section 2.1.2. The section examines the choice of GP structure
by comparing the AIC and BIC of 3 model structures. Model 1
represents the most rudimentary version of the Sparse MOGP,
with a kernel shared between the two outputs (i.e., q = Q = 1)
and no correlation matrix W. Model 2 comprises independent
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FIGURE 10
Visualization of PwP’s cadence RMSE grouped by the parameter choices. xs indicates the group where the GP model structure where a single input is
used to predict the two outputs. xm is the GP formulation where three inputs are used to predict the two outputs. αl = 20 is the group where the SL cost
term is 20. αl = 100 is the group where the SL cost term is further increased to 100.

FIGURE 11
Visualization of PwP’s percent on time grouped by the parameter choices. xs indicates the group where the GP model structure where a single input is
used to predict the two outputs. xm is the GP formulation where three inputs are used to predict the two outputs. αl = 20 is the group where the SL cost
term is 20. αl = 100 is the group where the SL cost term is further increased to 100.

kernels (Q = 2) with no correlation matrix. Model 3 is the
full GP structure described in Section 2.1.2. The result is
summarized in Table 5 and examples of the model fit are shown
in Figure 14. The goal is to minimize both the AIC and BIC
scores. When looking at the visualization, all GP models had
a similar mean in the data-rich region, which explained the
similarity in the AIC/BIC scores in Table 5. A bigger difference
was seen towards the tail-ends of the model where there was
a lack of data.

Based on the metrics, Model 2 had the lowest AIC and
BIC, meaning the correlation matrix was not essential but
having the independent kernel helped. The two independent
kernels enabled the GP to capture differences in the variation

magnitude between the two outputs. Figure 14 illustrates the GP
models where the input dimension is collapsed into 1D over
the range of cues. We can see the data spread for cadence is
smaller than the spread for SL. The difference in data spread
is especially prominent for the PwP GP model. For instance,
at around 1.4 Hz, the cadence ranges from 0.65-0.85, but SL
varies from 0.8-1.8. Therefore, the different kernels along each
output dimension would better model this behaviour. The larger
spread in SL aligned with the training procedure during the
experiment, as the instruction specifically requested participants
to try various stride lengths at the same cadence. Finally, the
correlation matrix W was not shown to be necessary based on the
AIC/BIC scores.
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FIGURE 12
TLX Score of PwP grouped by the parameter choices. xs indicates the group where the GP model structure where a single input is used to predict the
two outputs. xm is the GP formulation where three inputs are used to predict the two outputs. αl = 20 is the group where the SL cost term is 20. αl = 100
is the group where the SL cost term is further increased to 100.

FIGURE 13
The KL divergence for the GP model at each training iteration (every 5 steps) compared to the final GP model. The mean for each output is plotted as a
solid line and the standard deviation is plotted as the shaded area. The vertical line separates the exploration and converged phases.

4 Discussion

In this study, we showed that RAS can be used to change both the
cadence and the SL of themajority of the OA and PwP in the current
experiment under single and dual-task conditions. The discussion is
structured with respect to the three independent variables, starting
with the participant group. We also provided a summary of the GP
model findings.

Older Adults compared to PwP: For the PwP considered in
this study, there was no statistical difference between OA and PwP
in terms of their ability to modify their stride length. Previous
systematic reviews that examine the effect of RAS in OA and PwP
both suggest a small effect size on stride length (Ghai et al., 2018a;
Ghai et al., 2018b). Hence, the lack of statistical significance in
the stride length change is consistent with the literature. The only
significant difference between OA and PwP was seen in the target
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TABLE 5 Metrics for model structure selection.

AIC BIC

Model 1 −463.721 −340.101

Model 2 −488.233 −353.705

Model 3 −434.851 −285.779

cadenceRMSE,where PwPhad a significantly lower RMSE thanOA,
suggesting that PwP followed the beats more rigorously than OA.
This difference may be explained by motivation, where participants
with gait impairments (compared to healthy OA) were more willing
to change and improve their gait. The result is consistent with a
previous study, where PD participants synchronized to the beats
more compared to OA (Dotov et al., 2017).

Fixed compared to Adaptive approach: In this study, we
found that auditory cues can be used to increase the majority
of participants’ stride length compared to the baseline. The fixed
approach worked for a larger percentage of the sample population
compared to the adaptive approach in both task conditions. When
examining the cueing approaches on the population level using
the LME model, the range of SL changes fell between 5–12 cm
(Figure 3).These values are similar to the range reported in previous
literature that used fixed cues (e.g., Suteerawattananon et al., 2004;
Nieuwboer et al., 2007). This means the adaptive approach, while
in general inducing a smaller change in SL than the fixed approach
with no secondary task, was still comparable to the ranges reported
in previous literature. Reasons for the adaptive approach’s lesser
performance may be due to the non-static cues combined with
the experiment goal. As participants needed to adjust for cadence
(as per the instruction to sync the walking to the cues) and stride
length (instructed to explore different step lengths with each pace),
it was common for participants to first match their walking pace
to the beats, then work on changing their strides after realizing
only matching the cadence was insufficient. As one participant
put it “[I am] aware of the pace first instead of the step length.“.
This means while the cadence adaptation was fast, the change in
stride length took longer and required more effort. The difference
in difficulty in adjusting cadence versus stride length may also
explain the percentage of participants with significant change from
baseline for cadence was higher than the stride length percentage
(i.e., Table 1; Table 2).

Influence of Secondary Task: The last independent variable is
the presence of the secondary task. In a previous systematic review,
dual-task (i.e., RAS + secondary task) conditions have a small effect
size on increasing stride length and cadence compared to baseline
in PwP (Ghai et al., 2018b). We also observed an increase in SL
compared to baseline in both OA and PwP with the word-reciting
task on the individual level, though the number of significant
changes dropped with secondary task. The cadence RMSE between
with and without secondary task is not significant over the sample
population. In the post-study interview, participants uniformly
agreed that the secondary task was difficult and required more
mental effort (as indicated by the TLX score). Four PwP explicitly
mentioned they cannot perform beat-following and word-reciting

simultaneously and they need to alternate between the two tasks
(i.e., task-switch). The benefit of the adaptive approach was more
prominent in the task-switching context as the change in pace was
noticed more often. The effect was also mentioned in the post-study
interviews. While participants frequently associated the adaptive
approach with being more “frustrating” than the fixed approach,
they also described the adaptive approach as being more “attention-
grabbing”, especially in the dual-task condition. Two common
sources of frustration when using the adaptive approach came from
having difficulties in figuring out the gait targets as participants
often thought each new metronome pace meant a different set of
targets. In reality, the cues were changing due to the change in the
GP model as described previously. The second source of frustration
was the adaptive approach being seemingly more persistent. As one
participant described it, “the [adaptive approach] really wants me to
take bigger steps”. Participants also attributed more personality to
the adaptive approach such as saying “the metronome knows when
[they’re] slacking” or “the metronome is more assertive”, contrasting
the fixed approach which is described as “easy” or “do not have to
think much about it”. The perception raises an interesting challenge
for RAS design as the fixed RAS may be easily ignored, but too
much variation can also cause confusion and frustration. For the
current adaptive system, issues with cue variation may be addressed
by having a better training dataset and updating GP less frequently.

Lessons on Adaptive Framework Design: In this study, the
parameters of the adaptive framework were changed during the
experiment to better characterize the performance of the adaptive
approach. Some changes were more beneficial than others. For
instance, as seen in Section 3.3.2, changes to the cost function
weights did not improve the participants’ SL change. Instead,
more fundamental modeling problems needed to be resolved
first, including improving GP prediction accuracy and uncertainty
modeling. Factors that improved GP performance include adding
information regarding the previous gait states, and having more
variety in the training data. Interestingly, the correlation matrix
W that related cadence and SL was not found to be beneficial.
The correlation matrix may not be necessary as most variation
could be captured independently using the GP without mixing
the two outputs. The lack of correlation between stride length
and cadence was consistent with the literature, where the SLCrel
typically observed when participants walk at self-selected paces
disappears when either cadence or stride length was constrained
(Egerton et al., 2011).

Limitations of the Study: There were several limitations of the
study. First, for the analysis of how the training procedure and
GP model parameters influence the adaptive method performance,
the number of participants was not balanced across each group.
This presents a potential confound for the adaptive condition
results. While we did not find statistically significant differences
between participant groups within the adaptive condition, this
finding may not generalize and needs to be verified with a follow-
up study with balanced participants groups. Second, the gait
monitoring algorithm was unable to handle the participant with
an abnormal gait pattern and an alternative algorithm should be
explored. Third, since the GP performance was influenced by the
diversity of the initial training data, more robust techniques could
be used to better sample the state space. Previous literature has
approached the exploration/exploitation problem using expected
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FIGURE 14
Example of the GP model fitted to the data, where the input dimension is flattened into 1D (along the range of cues). The panels at the top show an
example of data from an older adult and the bottom panels are from a PD participant. Within each panel, the output cadence is plotted on the left and
the stride length is on the right.

improvement (e.g., Kim et al., 2017) and might provide a good
starting point. As mentioned previously, less frequent GP updates
may also reduce cue variation. Finally, the single-session study
setup was insufficient for evaluating habituation or the effect of the
medication cycle.

5 Conclusion and future work

In this study, we evaluated the performance of an adaptive
cue-provision framework that can modulate stride length and
cadence using auditory cues. The adaptive framework monitors gait
performance using a single IMU sensor and builds an individualized
cue-response model to relate how the gait performance changes

as a function of the input cues. The cue-response model is then
used in an optimization algorithm to determine the cue to provide.
The adaptive framework was compared against the state-of-the-
art, fixed cue approach where static cues are provided. The two
cueing approaches were compared with OA and PwP under two
task conditions, with and without secondary task.The result showed
that over half of the OA and PwP can modify their stride length
and cadence using auditory cues. When no secondary task was
present, the fixed approach was the best at increasing stride length,
but the performance of the fixed approach dropped significantly
in the presence of the secondary task. The benefit of the adaptive
approach was its ability to maintain the same level of stride length
change across the two different task conditions. Long-term studies
should be conducted in the future with a larger PwP population and
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balanced population groups to further evaluate the performance of
the adaptive framework.
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