AUTHOR=Donhauser Jonas , Tur Bogac , Döllinger Michael TITLE=Neural network-based estimation of biomechanical vocal fold parameters JOURNAL=Frontiers in Physiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1282574 DOI=10.3389/fphys.2024.1282574 ISSN=1664-042X ABSTRACT=
Vocal fold (VF) vibrations are the primary source of human phonation. High-speed video (HSV) endoscopy enables the computation of descriptive VF parameters for assessment of physiological properties of laryngeal dynamics, i.e., the vibration of the VFs. However, underlying biomechanical factors responsible for physiological and disordered VF vibrations cannot be accessed. In contrast, physically based numerical VF models reveal insights into the organ’s oscillations, which remain inaccessible through endoscopy. To estimate biomechanical properties, previous research has fitted subglottal pressure-driven mass–spring–damper systems, as inverse problem to the HSV-recorded VF trajectories, by global optimization of the numerical model. A neural network trained on the numerical model may be used as a substitute for computationally expensive optimization, yielding a fast evaluating surrogate of the biomechanical inverse problem. This paper proposes a convolutional recurrent neural network (CRNN)-based architecture trained on regression of a physiological-based biomechanical six-mass model (6 MM). To compare with previous research, the underlying biomechanical factor “subglottal pressure” prediction was tested against 288 HSV