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Neural network-based
estimation of biomechanical
vocal fold parameters

Jonas Donhauser*, Bogac Tur and Michael Döllinger

Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck
Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen,
Germany

Vocal fold (VF) vibrations are the primary source of human phonation. High-
speed video (HSV) endoscopy enables the computation of descriptive VF
parameters for assessment of physiological properties of laryngeal dynamics,
i.e., the vibration of the VFs. However, underlying biomechanical factors
responsible for physiological and disordered VF vibrations cannot be accessed.
In contrast, physically based numerical VF models reveal insights into the
organ’s oscillations, which remain inaccessible through endoscopy. To estimate
biomechanical properties, previous research has fitted subglottal pressure-
driven mass–spring–damper systems, as inverse problem to the HSV-recorded
VF trajectories, by global optimization of the numerical model. A neural network
trained on the numerical model may be used as a substitute for computationally
expensive optimization, yielding a fast evaluating surrogate of the biomechanical
inverse problem. This paper proposes a convolutional recurrent neural network
(CRNN)-based architecture trained on regression of a physiological-based
biomechanical six-mass model (6 MM). To compare with previous research,
the underlying biomechanical factor “subglottal pressure” prediction was tested
against 288 HSV ex vivo porcine recordings. The contributions of this work
are two-fold: first, the presented CRNN with the 6 MM handles multiple
trajectories along the VFs, which allows for investigations on local changes in VF
characteristics. Second, the network was trained to reproduce further important
biomechanical model parameters like VF mass and stiffness on synthetic data.
Unlike in a previous work, the network in this study is therefore an entire
surrogate of the inverse problem, which allowed for explicit computation of the
fitted model using our approach. The presented approach achieves a best-case
mean absolute error (MAE) of 133 Pa (13.9%) in subglottal pressure prediction
with 76.6% correlation on experimental data and a re-estimated fundamental
frequency MAE of 15.9 Hz (9.9%). In-detail training analysis revealed subglottal
pressure as the most learnable parameter. With the physiological-based model
design and advances in fast parameter prediction, this work is a next step in
biomechanical VF model fitting and the estimation of laryngeal kinematics.
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1 Introduction

Phonation is the engine behind daily human communication.
Whether at work, in school, or for casual conversations, having voice
problems hinders social interaction, which may lead to depression
and other mental health problems (Nerriere et al., 2009). For the
diagnostics of an affected patient, nasal and oral endoscopy is often
used by physicians to inspect potentially irregular oscillating vocal
folds (VFs). While the most popular recording technique is still
stroboscopy (Fukahori et al., 2016), indirectly recording the organs’
motion by periodic imaging through light strobes, modern high-
speed video (HSV) endoscopy systems are able to precisely record
the motion (Figure 1) at more than 4,000 frames per second (FPS),
enabling detailed research on VF motion (Kunduk et al., 2010;
Schutzenberger et al., 2016).

Not only disordered voices can be identified through HSV
(Inwald et al., 2011), but also visually inaccessible quantities like
subglottal pressure, which is comparably increased in dysphonic
patients (Ketelslagers et al., 2007; Giovanni et al., 2000), and
tissue characteristics (Moore and Thibeault, 2012; Björklund and
Sundberg, 2016) are crucial for voice production. To get further
insights, biomechanical mass–spring–damper (MSD) systems are
used to simulate physiologically based VF motion with a given set
of model parameters. Even though being motivated as a substitute
to inaccessible anatomical tissue properties, the parameter’s use
should be rather seen as a kinematic VF representation, rather than
in being an exact estimate for anatomical mass and stiffness. One
of the earliest biomechanical VF models is the two-mass model
(2 MM) developed by Ishizaka and Flanagan (1972), based on two
spring coupled point masses per side, oscillated through a Bernoulli
airflow-based driving force. Steinecke and Herzel (1995) simplified
the model to its commonly used form, for which coherences
between parameter adjustments, left–right asymmetries, and clinical
observations have been shown (Story and Titze, 1995; Fraile et al.,
2012). While the simple model successfully captures many

important phonatory characteristics, a major shortcoming is the
oversimplification of the tissue as a linear spring (Gray et al., 2000;
Zhang K. et al., 2006a; Döllinger et al., 2011), which was resolved
by adding a cubic term to the spring response (Fulcher et al., 2006;
Gómez et al., 2018). A limitation is the absence of longitudinal
coordinates in the 2 MM, such that the 2 MM prohibits meaningful
reconstruction of the glottal area. By dividing the 2 MM into three
spring-interconnected longitudinal sections as shown in Figure 2,
the six-mass model (6 MM) by Schwarz et al. (2008) was obtained.
Through this augmentation, to multiple tracking points in the
longitudinal direction, localized adaption of tissue biomechanics
is enabled. By this, the 6 MM can account for polyps, and match
local differences in VF dynamics, which are of particular interest to
analyze functional dysphonia with disordered oscillations. Anterior-
to posterior-wise differing VF geometry positions can furthermore
account for an increased glottal gap, which is prevalent in women
(Cielo et al., 2019). By further increasing spring mesh resolution,
which is, e.g., preferable for medial VF surface analysis, multi-mass
models were obtained (Yang et al., 2010). To better account for
differing tissue layers, Story and Titze (1995) extended the classical
2 MM to a so-called body-cover model by adding an extra ”body”
mass in the lateral direction. None of the presented models consider
acoustic coupling effects due to vocal tract interactions, which
increasedly impacts phonation at higher fundamental frequencies
and causes phenomena like frequency jumps and subharmonics
(Zhang Z. et al., 2006b; Titze et al., 2008; Lucero et al., 2012).
Systematic model reviews can further be found in Birkholz (2011)
and Erath et al. (2013).

The availability of precise HSV recordings, paired with
increasing computational power, enabled the adaption of simple
numerical models to recorded trajectories. To reveal visually
inaccessible biomechanical properties from VF oscillation, the
computed trajectories of an MSD model were automatically
fitted to experimentally recorded trajectories by optimization
(Döllinger et al., 2002; Schwarz et al., 2008). Asymmetries in the

FIGURE 1
Schematic drawing for high-speed video (HSV) endoscopy of the vocal folds (VFs). By frame-wise segmentation, the glottal area between the two VFs
can be extracted. Trajectories (A = anterior, M = medial, and P = posterior) are the time-wise deflection of the VFs to the glottal midline
(Lohscheller et al., 2013).
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FIGURE 2
Schematic vocal fold (VF) models. Each VF is represented by multiple coupled masses, and the coupling springs between adjacent masses are not
shown. The system is oscillated by tracheal airflow (A) Two-mass model by Ishizaka and Flanagan (1972). (B) Six-mass model by Schwarz et al. (2008).

parameters of the fitted 2 MM have been shown to be indicative
of disordered voice and can be used to identify pathological
cases (Schwarz et al., 2006; Wurzbacher et al., 2006; Zhang et al.,
2018). Furthermore, coherence between longitudinal variation of
optimized 6 MM parameters and different pathologies has been
found (Schwarz et al., 2008).

In general, the optimization problem’s complexity vastly
depends on its search space dimension (Long et al., 2019), i.e.,
the non-fixed model parameters. The complexity scales with the
evaluation time underlying differential problems, as it is required to
solve the models’ differential equations not once, but many times, as
re-evaluation of the model is required. For the simplistic 2 MM, a
differential evolution approach for a 14-degrees-of-freedom (DOF)-
based optimization by Gómez et al. (2018) was reported to need
more than 100 kmodel evaluations to achieve convergence. Asmore
sophisticated VF models, like finite volume-based models, require
hours to days per evaluation (Falk et al., 2021), optimization of
complex models is computationally demanding. To avoid repeated
computational effort for optimization, it is apparent to train a
neural network (NN) as a fast evaluating surrogate, which requires
computing a large synthetic instance–solution dataset beforehand
and only once (Gómez et al., 2019). The idea is to learn complex
relations between samples by iteratively adapting trainable weights,
such that the surrogate NN generalizes to the core problem (Nielsen,
2015).

For time-series problems (Foumani et al., 2023), such as fitting
VF model parameters to given trajectories, recurrent neural
networks (RNNs) (Rumelhart et al., 1986) are commonly used,
as they do not require fixed length input (Fawaz et al., 2018). A

popular RNN variant for learning long sequences is long short-
term memory (Hochreiter and Schmidhuber, 1997), which was
trained by Gómez et al. (2019) on subglottal pressure prediction,
using a hidden size of 128. A drawback of RNNs is that they are
comparably slow in training (Fawaz et al., 2018), and long sequences
tend to cause exploding and vanishing gradients (Bengio et al.,
1994; Pascanu et al., 2012). The key improvement in convolutional
recurrent neural networks (CRNNs) (Zhou et al., 2015) over plain
RNN-based architectures is the incorporation of convolution layers
as initial feature compression before the data are processed by
a comparably slow RNN core unit. To fix long-term sequence
problems, attention-mechanisms (Bahdanau et al., 2014; Brauwers
and Frasincar, 2022) were introduced.

In addition to trajectory-based pressure estimation, feedforward
neural networks (FFNNs) are also investigated as an audio-
feature-based geometry predictor of a VF body-cover model
(Zhang, 2020). A similar approach was used by Ibarra et al.
(2021) for pressure prediction through neck-surface accelerometer
-obtained features.

We contribute to the state of the art by providing a
specially designed neural network (NN) for the trajectory-
based parameter prediction for a 6 MM. In particular, our
method is not solely trained on pressure estimation but on
full parameter inversion, in analogy to classical optimization
approaches (Döllinger et al., 2002; Gómez et al., 2018), through
which we state insights on NN-based learnability of 6 MM key
parameters. For synthetic data generation, we present a gamma
distribution-based rest position sampling strategy using copulas
(Nelsen, 2006).

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2024.1282574
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Donhauser et al. 10.3389/fphys.2024.1282574

2 Methods

In this section, the biomechanical 6 MM for VF modeling
by Schwarz et al. (2008) is introduced. The corresponding
inverse problem is formally stated as a differential equation-
constrained optimization problem. To overcome the comparably
large computational effort of directly solving the optimization, a
convolutional recurrent neural network (CRNN) is introduced as a
surrogate for the inverse problem.

2.1 One dimensional six-mass model

The 6 MM (Schwarz et al., 2008) represents each VF as a
longitudinal–vertical (cf. Figure 2)-oriented 3× 2 mesh of spring
interconnected masses. We simplified the original 6 MM, to a
dimensionality-reduced 1D variant, exploiting that major VF
motion happens in the medio-lateral direction (Döllinger et al.,
2005; Döllinger et al., 2016). Like in the 2 MM (Steinecke and
Herzel, 1995), VF motion is restricted to a single DOF, requiring
the state of the differential equation to be solely computed in lateral
coordinates.

To ease notation, we introduce masses m ∈ ℝ2×3×2>0 with
their associated lateral positions x ∈ ℝ2×3×2 as tensors. Temporal
derivatives of first and second order are denoted as ẋ and ẍ
respectively. In addition to the springmesh forces in the longitudinal
and vertical direction, given by Fv and Fl, respectively, the masses
are impacted by three lateral directed forces. The anchor force Fa

draws the masses to specified lateral rest positions xr ∈ ℝ2×3×2. The
collision force Fc is a push back force that handles VF overlapping,
and last, the Bernoulli airflow pressure-based driving force Fd,
pushing the glottis into open state, depends on the level of closure.
Formally, each force tensor F• ∈ (ℝ3)2×3×2 is a grid of three-
dimensional force vectors that act on the masses, and • ∈ {a,v,c, l}
is used as placeholder. Except for the driving force Fd, each tensor
component is based on damped linear springs (Eq. 1) with vectorial
deflection s ≔ (x,y,z)T ∈ ℝ3

Fk•,r• (s,ℓ•) ≔ −k• (‖s‖− ℓ•)(
s
‖s‖
)+ r•(

s
‖s‖
)
T
̇s( s
‖s‖
), (1)

with associated scalar-free elongation ℓ•, stiffness k•, and damping
factor r•. An explicit formulation of all forces can be found in
Supplementary Material. Friction is solely assumed for the anchor
force, i.e., rl, rv, rc = 0, and ℓa,ℓc = 0 is assumed for lateral springs.
Non-linear springs are assumed to increase the realism of Eq. 1:
for the anchor force Fa extended by a cubic term, i.e., multiplied
by (1+ ηx2) with η = 100 (Fulcher et al., 2006). For the vertical
and longitudinal coupling Fv,Fl, we used k• σ(x)(√x2 + ℓ2• − ℓ•) as
the lateral spring response, which is discussed in Section 4.4, and
σ(x) denotes the sigmoid function. The stiffness kl of a spring
between two masses is set proportionally (factor ξl = 0.2) to the
summed adjacent anchor stiffnesses ka, and likewise, the collision
spring stiffness is set to kc = ka ⋅ ξc with factor ξc = 1. In summary,
lateral motion can be stated as a second-order ordinary differential
equation (ODE) (Eq. 2):

F (x, ẋ) ≔ [Fa + Fv + Fc + Fd + F l]
x
=m⊙ ẍ, (2)

where [⋅]x denotes lateral component selection, and component-wise
multiplication is denoted as ⊙.

In analogy to the HSV camera perspective, the model’s
trajectories T(x) are defined as the minimal distance of each vertical
mass pair to the glottal midline in a lateral–longitudinal projection
(cf. Figure 1). Given a set of experimentally recorded trajectories
T exp, the most plausible model parameters (Eq. 3) can be defined
as the ones which best reproduce the observed trajectories. The
computed trajectories T(x) should therefore as closest possible
resemble the observations T exp:

q* = argmin
q∈Q
‖Texp −T (x)‖ s.t. (

ẍ

ẋ
) = (

F (x, ẋ) ⊘m

dx/dt
), (3)

where Q is a set of hyperparameters controlling the differential
equation’s initial values and constants, i.e., F(x, ẋ) and m depend
on q, and component-wise division is denoted as ⊘. Since ẍ
and ẋ are variables in an iterative scheme, the notation dx/dt is
used to emphasize the numerical computation of the latter one.
The problem itself is non-convex and requires global optimization
Döllinger et al. (2002). To our knowledge, no analytical solution of
second-order ODE has been found, such that each optimization step
enforces numeric reevaluation of the model. We chose Q ⊂ ℝ14>0 as
a multiplicative scaling factor set by splitting the six DOFs of the
2 MM, as defined by Gómez et al. (2018), into three longitudinal
segments: six reciprocal scaling factors m−1 for vertical mass pairs,
six anchor spring stiffnesses ka, subglottal pressure PS, and collision
force stiffness proportionality ξc.

2.2 Sampling procedure

By definition, q ∈Q is a positive vector, and the identity
vector q = 𝟙 corresponds to the model’s default values (Steinecke
and Herzel, 1995; Schwarz et al., 2008). To achieve reasonable
distribution symmetry to the default values, scaling within
boundaries (qmin,qmax) with less than some arbitrary factor λ ≥ 1
should be as likely as scaling bymore than λ−1.We therefore demand
ℙ(qi ≤ λ) = ℙ(qi ≥ λ

−1) for each component qi, which is satisfied
by log-uniform distributions with reciprocally inverse boundaries
(qmax = q

−1
min). Previous optimization methods (Döllinger et al.,

2002; Schwarz et al., 2008;Gómez et al., 2018) assumed ahypercubic
search space Q, which is, under consideration of the before
mentioned symmetry arguments, comparable to log-uniform
sampling of the vector component qi with probability (Eq. 4)

ℙ(qi) =
1

qi (log(qmax) − log(qmin))
, (4)

using lower and upper boundaries qmin ≔ 5−1 and qmax ≔ 5,
respectively. The distribution’s median is 1 and therefore
corresponds to the models default values, unlike the distribution’s
mean, which is (qmax − qmin)/ log (qmax ⋅ q

−1
min) ≈ 1.49. To relate the

models’ rest positions xr to the glottis geometry (Eq. 5) by a
simple computation available for both synthetic and experimental
trajectories, we assumed:

xr = 1
N
∑
t
T (x (t)) . (5)
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The rest positions xr are not known beforehand but must be
distributed like experimental trajectories Texp under the assumption
of Eq. 5. The gamma distribution Γ is commonly chosen for
modeling skewed data like Texp; therefore, we assume the rest
positions to be marginally gamma-distributed (Eq. 6):

σi ⋅ x
r
i,j ∼ Γ(αj,βj) + cj | σi ≔

{
{
{

−1, if i = 1

1, else,
(6)

where distribution shape αi, scale βi, and shift ci are estimated
experimentally. The auxiliary variable σi specifies the side-
dependent sign, where we chose left trajectories to be negative.

As the glottis shape is not arbitrary, the rest positions are
statistically dependent. In statistical modeling, copulas provide an
elegantway to compose dependent univariatemarginal distributions
into a joint multivariate distribution (Nelsen, 2006). We decided to
join the gamma-distributed marginals by a normal copula C (Eq. 7),
as samples will share the exact same covariance as the experimental
trajectory-wise means:

vec (xr) ∼ C (xr1,1,…,x
r
2,3; ̃ρ) ≔

≔N (N −1 (xr1,1) ,…,N
−1 (xr2,3) ; ̃ρ) , (7)

where vec(xr) denotes vectorization. N (•; ̃ρ) is the multivariate
normal cumulative distribution function (CDF) with zero mean
and covariance matrix ̃ρ≔ dI+ (1− d)ρ, the inversed standard
normal CDF is denoted as N −1(•), and I is the identity matrix.
The correlation matrix ρ ∈ ℝ6×6 was estimated for experimental
trajectories and is blended toward independence by a control
parameter d ∈ [0,1], where d = 0.5 was chosen to enlarge
sampling diversity.

2.3 Convolutional recurrent neural
network

By carrying out the sampling procedure, a dataset D ≔
{(T(x(i)),q(i)) | i = 1,…, |D|} is obtained. The trajectories T(x(i)) ∈
ℝ6×n, which are computed for the 6 MM’s ODE solution x(i) given
the i-th sample q(i) ∈ ℝ14>0 over n time steps, serve as synthetic
network input data. The associated label q(i) to be trained against
is continuous and strictly positive, such that its inference given
T(x(i)) may be arguably treated as a positive regression problem on
time-series data.

Each 6 MM configuration is simulated over n = 1000 time steps
of 0.25 ms physical time, such that each trajectory in the dataset is
250 ms in length.The first 75 ms are truncated, as we seek to train on
the non-transient phase. To avoid potential overfitting, the network
inputs are randomly chosen trajectory sub-sequences, of a length
of 512 time steps (128 ms), which are rerolled in every iteration
and degraded by 10% additive Gaussian noise. Furthermore, we
found it beneficial to zero-truncate the trajectories as prior input
modification, such that left trajectories are signed negative and right
trajectories positive.

To solve this time-wise trajectory-based regression problem, we
used the following attention-based (Bahdanau et al., 2014) CRNN
architecture shown in Figure 3. Each trajectory is compressed by
a small sub-CNN for each trajectory, a composite of four layers

altering convolutions and max pooling with kernel size 2. Both
convolutions have a kernel size of 3, the lower convolution has stride
3 and 10 channels and the upper one has stride 2 and five channels,
such that the sub-CNN effectively compresses the six trajectories
into a 21× (5 ⋅ 6) tensor. The particular architecture was loosely
motivated by classical CNNs (LeCun et al., 1998) andwas adapted to
moderate sequence length reduction. Each of the 21 features in the
temporally compressed sequence can be attributed to 24 time steps
(6 ms), respective 30 time steps (7.5 ms) without considering kernel
overlapping. Here, the temporal resolution was reduced toward the
lower wavelength’s magnitude, while the detail is preserved through
an increased channel amount. Since the signal is relatively smooth,
increasing the stride is generally preferred over that of kernel size.

Next, the compressed data are iterated through a two-layer
bidirectional gated recurrent unit (GRU) (Cho et al., 2014) with
a hidden size of 256. To incorporate prior knowledge on the
importance of trajectory means (cf. Eq. 5), the hidden state is
initialized with the trajectory means after being passed through a
fully connected (FC) layer and a rectified linear unit (ReLU). For
the decisionmaking on the network’s prediction q̂ ∈ ℝ14>0, several FC
layers are used to combine sequence-wise RNN output and hidden
state. An attention mechanism is supposed to ease decision making
on the signals’ long time dependencies. It consists of an FC layer with
target length 16 applied to every GRU iteration’s output, such that a
16× 30 tensor is obtained, which is flattened and again processed by
another FC layer with target length 16. Similarly, the top GRU layer’s
last hidden state is processed by a single FC layer with target size 16
and is processed to a tensor of size dim(Q) by an FC layer after being
merged with the sequential attention tensor. Subsequent FC layers
are separated through ReLUs. Last, a softmax layer is incorporated
to ensure prediction positivity.

Root mean square error (RMSE) loss is commonly used for
regression problems, which are defined on an entire real vector space
including negative numbers, but in our case, qi is a strictly positive
multiplicative quantity. The standard regression case is obtained by
logarithmization, and for this reason, root mean square logarithmic
error (RMSLE) loss (Eq. 8) was used, as a natural adaption to RSME:

RMSLE = √ 1
N

N

∑
i=1
(log(qi) − log(q̂i))

2 (8)

2.4 Setup

The 6 MM is implemented in Julia 1.8 (Bezanson et al.,
2014), which offers a good performance–convenience trade-off
(Churavy et al., 2022). To solve the ODE, the classical fourth-
order Runge–Kutta method is used with time step 0.25 ms using
double precision. The NN is written in PyTorch 1.13 (Paszke et al.,
2019) under Python 3.8 (Van Rossum and Drake, 2009), and single
precision was used to speed up computations.

Adaptive momentum (Kingma and Ba, 2014) was used to train
the network with an exponential decay of learning rate with base
0.9 and initial value 5 ⋅ 10−3. Early stopping with a patience of
five epochs is used as convergence criteria. A batch size of 512
was used. We computed datasets of varying sizes between 104

(10 k) and 106 (1 M) samples by evaluating the 6 MM (Eq. 2) for
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FIGURE 3
Convolutional recurrent neural network (CRNN) architecture for inverse six-mass model (6 MM) parameter estimation. Convolutional operations in the
lower layers are performed trajectory-wise, before the joint sequence is iterated through a bidirectional gated recurrent unit (GRU). Fully connected
(FC) layers with rectifier linear unit (ReLU) activation functions are used as top layers.

randomly sampled 6 MM parameters q(i) and rest positions (xr)(i).
A fraction of 10% was split from the obtained 6 MM samples as
the validation dataset. As non-transient 6 MM configurations are
not accounted in the sampling procedure, we excluded samples
with vanishing trajectory oscillation, i.e., trajectories with standard
deviation std(T(x(i))) < 10−3, effectively reducing the training data
to 70% of the generated samples.

All computations were executed on an Intel i9-11900 CPU with
64 GB RAM and an Nvidia RTX 3070 GPU. The model runs on our
machine with a single core speed of approximately 10.5 GFlop/s.
Simulating 6 MM-based VFmotion for physical 250 ms took 330 μs
on our hardware. Randomized sampling of 10 k 6 MM trajectories
took about 7.2 s with a two-fold multithreading speed up using
eight threads.

Testing data for this work were obtained by the experimental
setup of Birk et al. (2017a) and essentially contain HSV recordings
(4000 FPS) and subglottal pressure measurements for porcine
larynges that have been tested under varying air throughput and
different pre-phonatory configurations. Experimental trajectories
Texp were obtained from the HSV recordings and were segmented
with the software Glottis Analysis Tools (Kist et al., 2021). Six

larynges, with 288 recordings in total, were selected based
on the recording quality by Gómez et al. (2018). Observed
subglottal pressure values range from 459 Pa to 1494 Pa and are
approximately (Lilliefors test, p = 0.946) normal distributed to
PS ∼N (997 Pa,227 Pa), and the sensor’s accuracy was about 35 Pa
(Gómez et al., 2019). The pre-phonatory configurations include
symmetric (Birk et al., 2017b) and asymmetric (Semmler et al.,
2021) arytenoid torques (5–25 m Nm). Furthermore, the rest
positions were affected by differing posterior gaps used in the
setup: in 140 recordings, a 1 mm metal shim was inserted between
arytenoid cartilages; in 95 recordings, a 2 mm shim was used, and
the remaining 53 recordings were unmodified. No experimental
estimation of tissue characteristics like mass and stiffness was
performed in the setup.

Calibration to metric units was done implicitly by scaling
the recorded anterior–posterior distance to the VF elongation,
which was set to 4 ⋅ ℓl = 2 cm to match the porcine testing
data. The fixed ends of the longitudinal anchor springs were
(laterally) located at ±0.05 mm in the posterior position and were
0 in the anterior position. For the remaining model, parameters
were set to kv = 1 mm, ra = 0.0002/3 Nsm

−1, and ℓv = 2 mm.
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FIGURE 4
Statistical analysis for time-wise averaged experimental trajectories (A
= anterior, M = medial, and P = posterior). The fitted gamma
distributions Γ(α,β)+c match the histograms sufficiently.

Non-zero initial deflections x(t) = ±1 mm were assumed for the
lower masses.

2.5 Glottal geometry fitting

For the sampling procedure (cf. Section 2.2), gamma-distributed
rest position marginals were used. As can be seen in Figure 4,
the averaged experimental trajectory distribution shows skewness
of different magnitude: moderate skewness was observed in the
posterior direction, 0.71; shrinking to slight medial skewness,
0.30; and vanishingly small skewness −0.07 in the anterior
direction. To suppress undesired lateral asymmetry observations
by the experimental setup, left and right trajectories are not
distinguished, i.e., computations were performed on (2 ⋅ 288) × 3
positively oriented trajectories. In every case, gamma distribution
Γ(α,β) + c fitting was acceptable for our purpose, and exact fitting
parameters are found in Table 1. The fitted distribution’s skewness
is most prominent in posterior positions and decreases for larger
shape parameters α toward the anterior direction, such that the
distribution’s Gaussianity is increased. Larger skewness in the
posterior direction should be partially attributed to the different
pre-phonatory configurations in the experimental setup, where a
posterior gap was induced by a metal shim.

In addition to skewness, the experimental (signed) trajectories
show statistical dependencies, visualized as the correlationmatrix in
Figure 5. The medial trajectory mean correlation between 0.31 and
0.63 to the anterior and posterior direction was observed for both
VF sides, while opposite trajectories are anti-correlated with values
ranging from −0.2 for the anterior to −0.8 for the posterior direction
as expected. Expecting a side-wise block form, the correlationmatrix
shows an anomaly involving the left anterior. The left anterior mean
correlates to the opposite posterior with 0.46 but anti-correlates
to the left posterior with −0.39. In summary, many rest positions

TABLE 1 Gamma distribution Γ(α, β)+ c fitting parameters with shape α,
rate β, and shift c for experimental trajectories. The fitted distributions
(A = anterior, M = medial, and P = posterior) are used to sample the
model’s resting positions for the synthetic training data.

α β c

P 5.59 ⋅ 100 7.96 ⋅ 10−3 −1.66 ⋅ 10−4

M 2.38 ⋅ 101 1.70 ⋅ 10−3 −1.11 ⋅ 10−2

A 1.45 ⋅ 103 2.05 ⋅ 10−4 −2.76 ⋅ 10−1

FIGURE 5
Correlation matrix ρ of the time-wise averaged experimental
trajectories. Off-diagonal non-zero elements imply statistical
dependency in the data, and negative values indicate anti-correlation.

moderately to strongly correlate and anti-correlate to the opposing
side in an expected way, and the left anterior is off.

3 Results

In the following section, the results on the network’s
performance against synthetic and experimental data are presented.
Furthermore, the network’s predictive capabilities on different
parameters are analyzed.

3.1 Parameter learning

To judge the CRNN’s ability to learn the model’s VF kinematics,
we performed five-fold training of the architecture on 6 MM
parameter reproduction for each of the 6 MM datasets, excluding
about 23% non-oscillating samples. In Figure 6, RMSLE-based
validation loss curves for different dataset sizes are shown.
Tendential, smaller datasets required more than 40 epochs to
converge (early stopping with a patience of five epochs, cf.
Section 2.4), whereas larger datasets converged in around 20 epochs,
and the exact values can be found in Table 2. An increased training
data amount leads to epoch-wise faster validation loss reduction
as the network iterates more samples per epoch. By comparing
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FIGURE 6
Root mean squared logarithmic error (RMSLE)-based loss curves (less is better) for the presented convolutional recurrent neural network (CRNN),
trained on different amounts of six-mass model (6 MM) samples. For each training dataset, five CRNNs were trained. Iterated samples are computed as
the amount of training data times epochs trained. Standard deviation is indicated by the translucent area. (A) Epoch-wise training loss. (B)
Computational effort against training loss. (C) Epoch-wise validation loss. (D) Computational effort against validation loss.

validation loss against the total number of iterated samples, it can
be seen that less samples are not sufficient to reduce the validation
loss to a magnitude comparable with that of larger training sets.
The training loss was about 2%–15% lower than the validation
loss for 1 M and 10 k samples, respectively. For all sampling sizes,
each run whose validation loss was worse by more than 10% than
the best run was excluded. A total of six subperformant candidate
networks, which converged to significantly worse validation loss
values, were excluded from further analysis. The affected runs
were not representative, i.e., the convergence problems did not
affect all tested sampling sizes equally, and including networks with
convergence problems was found obstructive for clear trends in the
following evaluation.

Even though RMSLE validation loss equally weights each
component q(i)j of the label vector q(i) and all components are
sampled independently and identically distributed, we observed
significant differences in the prediction’s MAE |q(i)j − q̂

(i)
j | shown in

Table 2. Each quantity besides the collision force proportionality ξc
was continuously improved by increasing the amount of synthetic
data. The subglottal pressure PS was predicted most accurately,
and stiffness ka was learned slightly better than reciprocal mass
m−1 in most cases, while ξc was the least learnable parameter
in every scenario. An assessment on optimal statistical guessing
can be found in Section 4.3. For each parameter, a unitless
value of 1.0 corresponds to the model’s default value in real
units. The corresponding metric MAEs and sampling interval
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TABLE 2 Mean absolute error (MAE) for each predicted six-mass model (6 MM) parameter on synthetic validation data. Validation loss-wise
subperformant networks were excluded. Optimal statistical guessing results in a 0.994 MAE.

6 MM samples 10 k 20 k 50 k 100 k 200 k 500 k 1 M

Training data 6920 13,872 34,773 69,633 139,202 348,016 695,747

Epochs 45.6 ± 7.0 40.7 ± 5.5 32.0 ± 4.9 27.6 ± 4.6 24.3 ± 7.1 20.8 ± 7.0 18.6 ± 3.4

Validation loss 0.144 ± 0.001 0.113 ± 0.004 0.094 ± 0.003 0.080 ± 0.001 0.072 ± 0.001 0.063 ± 0.001 0.062 ± 0.003

m−1 Left P 0.840 ± 0.036 0.743 ± 0.052 0.611 ± 0.024 0.452 ± 0.011 0.377 ± 0.034 0.299 ± 0.017 0.276 ± 0.021

M 0.883 ± 0.022 0.847 ± 0.084 0.612 ± 0.035 0.535 ± 0.024 0.462 ± 0.017 0.397 ± 0.018 0.343 ± 0.012

A 0.985 ± 0.026 0.753 ± 0.076 0.644 ± 0.028 0.517 ± 0.013 0.443 ± 0.021 0.366 ± 0.018 0.335 ± 0.024

Right P 0.916 ± 0.047 0.815 ± 0.026 0.669 ± 0.027 0.537 ± 0.014 0.487 ± 0.016 0.399 ± 0.023 0.372 ± 0.025

M 0.862 ± 0.046 0.779 ± 0.053 0.610 ± 0.021 0.525 ± 0.018 0.463 ± 0.018 0.395 ± 0.018 0.342 ± 0.015

A 0.895 ± 0.039 0.783 ± 0.160 0.616 ± 0.014 0.516 ± 0.010 0.435 ± 0.019 0.369 ± 0.020 0.334 ± 0.018

k Left P 0.683 ± 0.074 0.539 ± 0.059 0.478 ± 0.013 0.364 ± 0.015 0.311 ± 0.030 0.246 ± 0.013 0.234 ± 0.017

M 0.682 ± 0.051 0.557 ± 0.114 0.483 ± 0.017 0.433 ± 0.010 0.381 ± 0.008 0.324 ± 0.013 0.282 ± 0.006

A 0.709 ± 0.023 0.557 ± 0.069 0.476 ± 0.023 0.406 ± 0.010 0.344 ± 0.017 0.299 ± 0.015 0.271 ± 0.018

Right P 0.761 ± 0.119 0.673 ± 0.058 0.523 ± 0.034 0.421 ± 0.019 0.368 ± 0.016 0.313 ± 0.024 0.292 ± 0.020

M 0.760 ± 0.132 0.640 ± 0.088 0.508 ± 0.027 0.419 ± 0.016 0.373 ± 0.014 0.324 ± 0.014 0.287 ± 0.010

A 0.605 ± 0.013 0.537 ± 0.081 0.484 ± 0.021 0.422 ± 0.004 0.350 ± 0.016 0.302 ± 0.015 0.276 ± 0.018

PS 0.322 ± 0.013 0.263 ± 0.033 0.185 ± 0.009 0.148 ± 0.010 0.120 ± 0.003 0.093 ± 0.005 0.072 ± 0.004

ξc 1.019 ± 0.012 0.932 ± 0.068 0.995 ± 0.009 0.953 ± 0.008 0.937 ± 0.058 0.834 ± 0.007 0.951 ± 0.098

Best values are indicated bold.

boundaries for 1 M samples are given in Table 3, including
general model specifications. Changing the hypercube size of Q
did not improve the results; for comparison purposes, equivalent
boundaries were preferred.

The learning progress of each quantity qi is representatively
visualized for 50 k and 500 k samples in Figure 7. Subglottal pressure
PS already shows substantial improvements after the first few epochs,
even for the comparably small 50 k sample dataset, the MAE was
reduced to roughly 0.4 within two epochs and again halved within
40 epochs, while stiffness and reciprocal masses spread above 0.47.
The collision force proportionality ξc did not show convergence at
all for 50 k samples, and each other quantity was learned within few
epochs using 500 k to 1 M samples, with up to 50% improvement
over 50 k samples.

3.2 Experimental data testing

Both the synthetic training and validation data share the same
characteristics, as they were generated by the same procedure.
On the contrary, our testing data stem from the ex vivo porcine
experiments described in Section 2.4 and therefore characteristically
differ from the synthetic data. By this means, the networks’

predictive capabilities on synthetic data cannot directly be
transferred to experimental data, such that better accuracy on
synthetic data does not necessarily imply an improvement in
experimental data.

Validation loss is a measure for the network’s predictive
performance on validation data; however, there is no equivalent
metric on experimental data. Instead, we judge the prediction by the
MAEof three observablemeasures: the subglottal pressurePS, which
was directly measured by a pressure sensor below the larynx, as well
as fundamental frequency f0 and amplitude for each HSV-recorded
trajectory. For simplicity, f0 > 50 Hz is estimated as the maximum
of a reciprocally scaled (overtone suppression) Fourier spectrum,
and the amplitude is defined as max(Ti,j(x)). If a sole amplitude or
frequency is stated, the six trajectories’ estimates were averaged.

Results on the experimental data, using the candidate networks
from Section 3.1, are shown in Table 4. On average, 10 k 6 MM
samples performed the worst for all metrics, and 50 k samples
were slightly best for f0 and amplitude estimation, but there is no
clear preference. The most accurate PS predictions were achieved
by 100 k to 1 M samples. Mean absolute percentage error (MAPE)
comparison shows that f0 was generally estimated more accurately
than PS, while the amplitude was the worst estimate for 100 k and
above samples. The subglottal pressure sensor accuracy was 35 Pa,
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TABLE 3 Model specifications in metric units and mean absolute error (MAE) for predicted six-mass model (6 MM) parameters on synthetic validation
data. The averaged MAEs were obtained by evaluating the predicted 6 MMs of all networks trained with 1 M samples. Physical specifications for mass
and stiffness vary vertically (B = bottom; T = top). The average stiffness of two adjacent anchor springs is denoted as 2k̄a.

qi m ka PS ξc kc ξl kl kv ra ℓl ℓv

[g] [Nm−1] [Pa] [Nm−1] [Nm−1] [Nm−1] [Nsm−1] [cm] [cm]

Default B 1 0.125/3 80/3 800 1 80ξc 0.2 2k̄aξl 0.1 0.0002/3 0.5 0.2

T 0.025/3 8/3 8ξc

min B 0.2 0.00833 5.33 160 0.2

T 0.00166 0.533

max B 5 0.208 133 4,000 5.0

T 0.0416 13.3

Mean B 1.49 0.0621 39.8 1200 1.49

T 0.0124 3.98

MAE B 0.333 0.0121 7.67 57.5 0.951 79.5 2.02

T 0.00242 0.767 7.95 0.202

FIGURE 7
Validation data-based learnability of each six-mass model (6 MM) parameter qi as mean absolute error (MAE, lower is better) over the training progress
of five networks. Each error is stochastically decreased by training more epochs, and the translucent area indicates standard deviation. Each vocal fold
(VF) is divided longitudinally (A = anterior, M = medial, and P = posterior). (A) Training with 50 k 6 MM samples, excluding one validation loss-wise
subperformant network. (B) Training with 500 k 6 MM samples.

the measurement uncertainty is negligible for f0, and the amplitude
due to segmentation is very less, such that each reported error is
significantly larger than the measurement uncertainty.

The transferability of synthetic data results to the experimental
data is visualized for observable prediction quality estimates in
Figure 8, where each network’s prediction accuracy on synthetic

trajectories is compared to the network’s corresponding accuracy on
experimental trajectories. High characteristic similarity of synthetic
and experimental trajectories is expected to result in approximately
equivalent performance on both kinds. Training with an increased
6 MM sample amount generally reduced the synthetic errors for
each quantity. Increased PS accuracy on synthetic data tendentially
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TABLE 4 Mean absolute error (MAE) and mean absolute percentage error (MAPE) for averaged predictions on experimental data. Validation loss-wise
subperformant networks were excluded.

MAE MAPE

6 MM
samples

PS[Pa] f0[Hz] Amplitude
[mm]

PS f0 Amplitude

10 k 293 ± 60 27.3 ± 7.8 0.156 ± 0.006 30.4% ± 6.6% 19.3% ± 4.2% 23.3% ± 0.9%

20 k 238 ± 66 15.8 ± 2.7 0.145 ± 0.005 25.2% ± 7.3% 11.5% ± 1.7% 22.1% ± 0.6%

50 k 188 ± 21 14.8 ± 2.0 0.132 ± 0.004 19.2% ± 2.2% 10.1% ± 1.2% 20.5% ± 0.6%

100 k 158 ± 13 17.1 ± 1.7 0.139 ± 0.004 16.6% ± 1.4% 11.1% ± 1.0% 22.0% ± 0.7%

200 k 150 ± 8 17.5 ± 3.0 0.141 ± 0.003 15.7% ± 0.7% 11.6% ± 1.8% 22.7% ± 0.7%

500 k 155 ± 30 15.4 ± 1.0 0.147 ± 0.003 16.3% ± 3.0% 10.1% ± 0.4% 23.8% ± 0.5%

1 M 164 ± 13 17.2 ± 1.4 0.147 ± 0.006 16.7% ± 1.2% 11.1% ± 1.0% 23.7% ± 0.9%

Best values are indicated bold.

FIGURE 8
Prediction mean absolute error (MAE) on experimental and synthetic data (lower is better) for five independently trained networks for each dataset size,
excluding validation loss-wise subperformant runs. (A) Subglottal pressure PS. (B) Fundamental frequency f0. (C) Amplitude.

improved the accuracy on experimental data, except for networks
trained with 1M samples and one 500 k run.The largest discrepancy
was observed for 1 M samples, where the experimental data MAE
was about threefold the synthetic data MAE. For the fundamental
frequency and amplitude predictions of networks trained with
up to 50 k samples, synthetic data improvements were roughly
transferable to those of the experimental data. In both cases, training
with more 100 k samples worsened the experimental accuracy;
however, the MAE was better than on synthetic data. While higher
synthetic MAEs are irritating in the first place, more trajectory
varieties must be accounted for the synthetic data due to the
sampling procedure’s broad mass–stiffness combination variety.
Each observed trend also appears if the MAPE is considered instead
of MAE.

On the experimental ground truth, the best subglottal pressure
predictions (PS = 133 Pa)were achieved by a candidate NN that was
trained for 24 epochs using 500 k 6 MM samples. The predictions
are scattered against the ground truth in Figure 9, and the network

accuracy on experimental data can be found in Table 5. A 76.6%
correlation between prediction and ground truth was achieved
for the subglottal pressure estimate. Low fundamental frequency
predictions show a good correlation, while high fundamental
frequencies (measured for the 6th larynx) were underestimated
for medial and posterior positions. For about 10 samples, the
frequencies were mispredicted completely. Amplitude predictions
concentrate along the 1:1 matching line with moderate scattering,
but small amplitudes were overestimated. Estimations for different
experiments with the same larynx were adjacent frequently, which,
for example, can be seen in the left anterior predictions for larynx
4. A visual impression on exemplary trajectory fitting using the best
candidate network is given in Figure 10.Themedial trajectories were
estimated most closely with good f0 accuracy. Characteristically,
anterior trajectories were fitted at a desirable level, and similarly for
the posterior trajectories, the phase does not match. Experimental
and fitted posterior trajectories both show incomplete glottis closure
of the same level.
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FIGURE 9
Prediction vs. ground truth correlation analysis for subglottal pressure, fundamental frequency, and amplitude given the subglottal pressure-wise best
network. Trajectories (A = anterior, M = medial, and P = posterior) were obtained by evaluating the 6 MM with the predicted parameters. The dashed 1:1
line indicates perfect matching. (A) Subglottal pressure PS. (B) Trajectory fundamental frequencies f0. (C) Trajectory amplitudes.

TABLE 5 Best-case mean absolute error (MAE) and mean absolute percentage error (MAPE) for the predictions on experimental data using a network
trained with 500 k samples for 24 epochs.

MAE MAPE

PS[Pa] f0[Hz] Amplitude
[mm]

PS f0 Amplitude

Left P 14.9 ± 16.4 0.162 ± 0.091 9.1% ± 7.2% 19.8% ± 13.6%

M 14.6 ± 19.2 0.098 ± 0.082 8.6% ± 7.7% 12.4% ± 11.6%

A 17.3 ± 19.7 0.156 ± 0.143 11.4% ± 9.4% 40.5% ± 73.4%

Right P 16.4 ± 25.0 0.201 ± 0.109 9.9% ± 13.0% 28.9% ± 21.8%

M 14.5 ± 19.5 0.127 ± 0.087 8.9% ± 11.1% 17.6% ± 16.2%

A 17.4 ± 20.2 0.120 ± 0.104 11.7% ± 11.9% 18.9% ± 21.2%

Average 133 ± 97 15.9 ± 20.2 0.144 ± 0.110 13.9% ± 11.3% 9.9% ± 10.4% 23.0% ± 35.1%

4 Discussion

In this section, the CRNN’s accuracy on synthetic and
experimental data is compared to statistic guessing and related
work. In addition to prediction results, the 6 MM’s computational
performance and rest-position sampling are discussed. Lastly, a brief
summary on modeling limitations and an outlook on future work
are given.

4.1 Execution speed

Schwarz et al. (2008) reported a computational real-time ratio
of almost 1:1, i.e., simulating their C# 6 MM for 1 s physical time
with 0.25 ms time step takes 1s on an Intel Pentium 4 based setup. By
implementing the simplified 6 MM in a fast executing programming
language, a more than 750-fold single-core speedup was realized on
a modern Intel i9-11900 processor. The Julia 6 MM also surpassed

the 100:1 real-time ratio, reported for the less complex 2 MM
by Gómez et al. (2019) using an Intel i5-4590 processor. With
consideration of different processor single-core capabilities, the
presented Julia 6 MM remains the fastest. Easing 6 MM computing
time to fractions of milliseconds, the computational necessity to use
less physiological models for speed becomes obsolete. For efficient
trajectory-based training, we found CRNN-based architectures
beneficial over plain RNNs, as sequences are compressed by
computationally superior convolution operations.

4.2 Rest-position geometry

During this work, we found constant spring resting positions
xr in synthetic training data generation to be vastly obstructive
for realistic model predictions. When using trajectory-unspecific
xr, we concluded that the network learned to exploit the damping
relation r

2√mk
(harmonic oscillator) to compensate the incorrect
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FIGURE 10
Exemplary trajectory fittings for a single recording. The fitted trajectories have been obtained by simulating the 6 MM with the estimated model
parameters of subglottal pressure-wise best candidate network. (A) Posterior. (B) Medial. (C) Anterior.

glottis geometry. By incorporating randomized rest positions into
our sampling procedure, we enabled the network to automatically
adapt to different values. To encounter dependencies between the
rest positions, copulas were chosen as the theoretical construct to
join marginals. However, the benefit over training with assumed
independence was not significant in our experiments. A possible
explanation is that the CRNN generalizes equivalently well in
both cases.

4.3 Neural network-based predictions

For synthetic validation data, the model’s learnability by a NN
can be judged by comparison against the optimal statistical guess
(Eqs 9–12) as trivial lower bound prediction. For a log-uniform
distributed random variable q on positive interval (a,b), the MAE
of a statistical guess u ∈ (a,b) is

𝔼[|q− u|] = ∫
b

a
|q− u| 1

q log( b
a
)
dq (9)

= ∫
b

u

q− u

q log( b
a
)
dq+∫

a

u

q− u

q log( b
a
)
dq, (10)

= ([q− u log (q)]bu + [q− u log (q)]au)
1

log( b
a
)
, (11)

= (b+ a+ u(log( u
2

ab
)− 2)) 1

log( b
a
)
. (12)

The optimal statistical guess is the distribution median (Lee,
1995), i.e., u* = √qminqmax = 1 with 𝔼[|q− u*|] ≈ 0.994. Except for
the collision force proportionality ξc, the network’s predictions were
substantial improvements in each case. Subglottal pressure was the
most learnable variable, which is in line with the observations
on synthetic data by Zhang (2020). Using a feedforward neural
network (FFNN) featuring three hidden layers and 150 neurons
each, trained on biomechanical body cover VF model features with
PS interval 50–2400 Pa, they achieved 0.206 MAE (137.3 Pa) on
synthetic validation data. Despite differences in the approach, the

value is comparable to our unitless 0.185 MAE (148 Pa) for 50 k
6 MM samples and is surpassed for 1M samples with 57.5 Pa.

As expected, by retraining the CRNN architecture with varying
dataset sizes between 10 k and 1 M, we found that the predictions
on the synthetic data were continuously improved by increasing
the training data amount (cf. Table 2). Testing multiple randomly
trained candidate NNs on experimental data was necessary, as
small validation loss values did not guarantee PS error reduction.
Likely, the lack of improvements on experimental data in Table 4,
in contrast to those in Table 2, is due to model–reality discrepancy,
such that further prediction improvements on the synthetic model
becomemeaningless for experimental data beyond a certain training
effort. In some cases, the overconfidence in the synthetic model by
training too many epochs even lead to worse subglottal pressure
prediction on the experimental data, as can be seen in Figure 8. In
the much different setup of Ibarra et al. (2021), who used a neck-
surface vibrometer to predict subglottal pressure for data from a
human in vivo study, similarmodel–reality divergence was reported.
Their best predictions on experimental data (191 Pa MAE) were
realized by a minimal FFNN with two hidden layers and solely
four neurons each, while larger networks, which more than halved
the MAE on synthetic data, performed significantly worse on real
data. Caution is necessary for a direct comparison to the presented
approach, as the 6 MM and related models neglect coupling effects
of the vocal tract and clinical limitations like varying camera angles
and video calibrations.

For the experimental data, there was no single best candidate
network which performed optimally on metrics (PS, f0, and
amplitude). One of the best-case NNs that we found achieved
an MAE of 133 Pa on experimental data. Considering an
average 74.4 Pa MAE using 500 k samples for validation data
again highlights limitations in the 6 MM’s realism. In the
288 ex vivo porcine recording dataset, our 133 Pa MAE is a
substantial improvement to 2 MM pressure estimation error using
an RNN-based approach by Gómez et al. (2019) with 192 Pa
MAE and to 172 Pa MAE for their preceding optimization
approach (Gómez et al., 2018). For a single excised human
larynx, Zhang (2020) reported slightly better 115 Pa; however,
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for meaningful comparison, re-evaluation on the same dataset
would be needed.

For their 2 MM optimization approach, Gómez et al. (2018)
reported an amplitude MAE of 0.08 mm and 0.02 Hz MAE
for fundamental frequency. The amplitude error is slightly
better than the 0.09 mm− 0.13 mm for medial trajectories
found by our approach. While the optimization’s objective
primarily targets the fundamental frequency, the NN only
indirectly learns 6 MM oscillation properties, such that
frequency and phase prediction are significantly better using
optimization.

4.4 Modeling limitations

Schwarz et al. (2008) defined the 6 MM’s free spring elongation
ℓ• as the distance between resting positions, while Steinecke
and Herzel (1995) indirectly assumed ℓ• = 0 for their 2 MM.
With the 6 MM definition, the lateral coupling force component
between masses with unidirectional movement freedom and
distance ℓ• becomes [F•]x = (1−

ℓ•
√x2+ℓ2•
)k•x, compared to [F•]x = k•x

for ℓ• = 0 in the 2 MM. Among various formulations tried, our
approach worked best by applying the entire coupling force ‖F•‖ =
k•(√x2 + ℓ2• − ℓ•) laterally. Whether this should be understood as
force-wise change of direction or the formula better resembles
the tissue with ℓ• = 0 could not be answered within the scope of
this work.

Asmentioned in the introduction, the 6 MM and relatedmodels
do not account for acoustic coupling with the vocal tract. In
addition, reality aspects like non-orthogonal camera angles, non-
steady phonation, calibration of glottis length, and segmentation
problems due to insufficient illuminationmust be taken into account
before a clinical application of the method becomes possible. Even
though the results on the tested porcine larynges were desirable,
the CRNN is sensitive to outliers like most neural networks. Hence,
each aspect could add untrained particularities to the trajectories,
which could in the worst case significantly worsen predictions.
The stability of the method can likely be increased by averaging
multiple runs or by directly incorporating uncertainty with Bayesian
deep learning.

4.5 Conclusion and future work

By employing a state-of-the-art CRNN architecture, we were
able to substantially improve the subglottal pressure prediction
results of Gómez et al. (2019). Through further prediction of
mass and stiffness, we were able to indirectly predict trajectories,
which we judged by frequency and amplitude, through 6 MM
re-evaluation. Methodically, this brings NN-based predictions
closer to optimization, which is necessary for future combined
approaches and helpful for qualitative judgment against
optimization-based approaches. By stating detailed results on
differing parameter learnability, and the training effort-based
prediction error given experimental data, we contributed VF-
specific knowledge on stochastic training effects and model–reality
discrepancy.
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