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Introduction: Early predictive pathological complete response (pCR) is beneficial
for optimizing neoadjuvant chemotherapy (NAC) strategies for breast cancer. The
hematoxylin and eosin (HE)-stained slices of biopsy tissues contain a large
amount of information on tumor epithelial cells and stromal. The fusion of
pathological image features and clinicopathological features is expected to
build a model to predict pCR of NAC in breast cancer.

Methods:We retrospectively collected a total of 440 breast cancer patients from
three hospitals who underwent NAC. HE-stained slices of biopsy tissues were
scanned to form whole-slide images (WSIs), and pathological images of
representative regions of interest (ROI) of each WSI were selected at different
magnifications. Based on several different deep learning models, we propose a
novel feature extraction method on pathological images with different
magnifications. Further, fused with clinicopathological features, a multimodal
breast cancer NAC pCR prediction model based on a support vector machine
(SVM) classifier was developed and validated with two additional validation
cohorts (VCs).

Results: Through experimental validation of several different deep learning
models, we found that the breast cancer pCR prediction model based on the
SVM classifier, which uses the VGG16model for feature extraction of pathological
images at ×20magnification, has the best prediction efficacy. The area under the
curve (AUC) of deep learning pathological model (DPM) were 0.79, 0.73, and
0.71 for TC, VC1, and VC2, respectively, all of which exceeded 0.70. The AUCs of
clinical model (CM), a clinical prediction model established by using
clinicopathological features, were 0.79 for TC, 0.73 for VC1, and 0.71 for VC2,
respectively. The multimodal deep learning clinicopathological model (DPCM)
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established by fusing pathological images and clinicopathological features
improved the AUC of TC from 0.79 to 0.84. The AUC of VC2 improved
from 0.71 to 0.78.

Conclusion:Our study reveals that pathological images of HE-stained slices of pre-
NAC biopsy tissues can be used to build a pCR prediction model. Combining
pathological images and clinicopathological features can further enhance the
predictive efficacy of the model.

KEYWORDS

breast cancer, deep learning, neoadjuvant chemotherapy, pathological complete
response, pathological images

1 Introduction

Breast cancer is the most prevalent malignancy worldwide and
the leading cause of cancer-related death (Torre et al., 2017). For
patients with locally advanced breast cancer or some large operable
tumors, neoadjuvant chemotherapy (NAC) is a standard-of-care
treatment option (Derks and van de Velde, 2018). According to
literature (von Minckwitz et al., 2013), NAC is used to reduce tumor
burden and increase breast conservation rates, as well as in vivo
evaluation of the treatment efficacy of different treatment options.
Patients who obtain tumor pathological complete response (pCR)
after NAC have a better prognosis than those who do not, also
known as non-pCR patients (Cortazar et al., 2014). However, breast
cancer is highly heterogeneous and treatment protocols developed
by relying solely on molecular typing still have major limitations
(Glaeser et al., 2019). Therefore, early and accurate prediction of the
efficacy of NAC for breast cancer is important to optimize
individualized treatment strategies.

Currently, several clinicopathological features and biomolecular
markers, including tumor size (Goorts et al., 2017), histological
grading (Alba et al., 2016), Ki67 (Alba et al., 2016), immunochemical
(IHC)-based molecular typing (Haque et al., 2018) and stromal
tumor-infiltrating lymphocytes (sTILs) are frequently used to
predict pCR (Ali et al., 2017; Denkert et al., 2018). However,
these simple parameters are not accurate enough to predict NAC
efficacy in all breast cancers. Besides, some imaging modalities, such
as ultrasound (Jiang et al., 2021), magnetic resonance imaging (MRI)
(Cain et al., 2019), and positron emission tomography-computed
tomography (PET-CT) (Lee et al., 2019), have been used to predict
NAC efficacy, but repeated imaging examinations can lead to
additional financial expenses, especially for MRI and PET-CT.
Therefore, there is still an urgent need to develop more reliable
and inexpensive methods for early prediction of pCR in
breast cancer NAC.

Pathological images provide information on various tumor
phenotypes and also reflect underlying molecular processes and
disease progression, which can provide intrinsic disease information
to the clinic. Since human assessment of histological images is
mainly based on visual examination by pathologists, the complex
and rich information from histological images is difficult to fully
utilize. Deep learning (DL) techniques can assist in solving this
problem by integrating a large amount of information in complex
images (Echle et al., 2021). Recent studies have found that the
combination of digital pathology and artificial intelligence (AI)
techniques enables the extraction of hidden and quantitative

information from histological images, potentially providing
information for predicting the therapeutic effect (Acs et al.,
2020). In particular, convolutional neural networks (CNN) can
efficiently perform difficult visual tasks by learning features from
training data (Li et al., 2022b). Currently, DL-based image
processing and analysis have been attempted for performing
tumor cell identification (Ehteshami Bejnordi et al., 2017),
histological grading (Bulten et al., 2020), and
immunohistochemical scoring (Akbar et al., 2015), demonstrating
considerable application promise. Several studies have shown that it
is feasible to develop new biomarkers for predicting anti-tumor
treatment efficacy and patient prognosis using medical picture-
based DL methods (Beck et al., 2011; Bhargava et al., 2020;
Zhang et al., 2020). However, there are fewer studies using
hematoxylin and eosin (HE) -stained histological images to
predict the efficacy of NAC in breast cancer, a research area that
we consider worthy to be explored.

Currently, HE-stained tissue slices can be digitally scanned to
form whole-slide images (WSIs). Each WSI contains both tumor
cellular and stromal areas that are diagnostically helpful, as well as
areas of tumor necrosis and blank areas that may be confusing, and
the former are the areas that we can use and need to focus on. In
addition, pathologists always need to switch between different
magnifications to view pathological images because the
combination of different magnification fields provides more
comprehensive diagnostic information.

In this multicenter retrospective study, firstly, based on several
different deep learning models, a novel feature extraction method on
pathological images with different magnifications was proposed.
Furthermore, based on the SVM classifier, a deep learning
pathological model (DPM) to predict NAC pCR in breast cancer
was built. In addition, a clinical model (CM) based on
clinicopathological features was established. Finally, the
prediction efficacy of the multimodal deep learning
clinicopathological model (DPCM) was assessed.

2 Materials and methods

2.1 Patients

Our patients were retrospectively recruited from three hospitals:
Cancer Hospital of Shantou University Medical College, Shantou
Central Hospital, and Yat-sen Memorial Hospital of Sun Yat-sen
University. According to the inclusion and exclusion criteria,
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129 patients were excluded from 569 patients, and a total of
440 patients who received NAC between December 2016 and
July 2021 were recruited. Among them, 261 patients were
enrolled from the Cancer Hospital of Shantou University Medical
College, which had the largest number of enrollments and served as
the training cohort (TC). Shantou Central Hospital and Yat-sen

Memorial Hospital of Sun Yat-sen University enrolled 107 and
72 patients, respectively, as validation cohort 1 (VC1) and validation
cohort 2 (VC2). The detailed recruitment flow chart is shown in
Figure 1. Patient inclusion criteria were as follows: 1. Female patients
with primary invasive ductal carcinoma (IDC) of the breast
diagnosed by core needle biopsy; 2. Patients received a complete

FIGURE 1
Flowchart of patient enrollment. A total of 440 patients with WSI were enrolled from three hospitals.
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NAC regimen in parallel with surgical treatment and pathological
assessment of NAC efficacy; 3. Patients with digitized HE-stained
tissue slices are available. Exclusion criteria were as follows: 1.
Patients received non-standard treatment regimens, mainly
patients with human epidermal growth factor receptor 2 (Her-2)

positive tumors but not treated with trastuzumab; 2. Diagnosis of
bilateral or multifocal invasive breast cancer, or invasive breast
cancer of special type; 3. Patients with poor quality of WSIs. Our
project was approved by the Medical Ethics Committee of Cancer
Hospital of Shantou University Medical College (Approval number:

FIGURE 2
The implementation framework structure of pCR prediction model. (A). Transfer learning based feature extraction for pathological images (TLFEPI
Module): ROIs selected from each WSI under different magnifications were feature extracted using transfer learning. (B). Clinicopathological feature
extraction (CPFE Module): The clinicopathological features were analyzed by univariate analysis and logistics regression analysis. (C). SVM-based
multimodal feature pCR predictionmodel (SMFPMModule): Feature fusion of pathological images and clinicopathology features, using SVM support
vector machine classification to construct a multimodal feature pCR prediction model. pCR: pathologic complete response.
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2022125) and followed the Declaration of Helsinki before the tissue
samples were used exclusively for scientific research. The medical
ethics committee waived the need to obtain informed consent from
participants.

2.2 NAC pCR prediction model for breast
cancer based on multimodal features

For patients who met the inclusion criteria, the selected ROIs
from each WSI at different magnifications were first subjected to
feature extraction using a transfer learning model. Then the
clinicopathological features were analyzed using statistical
methods. Finally, the multimodal feature pCR prediction model
is constructed by combining pathological image features and
clinicopathological features. The implementation framework
structure is shown in Figure 2.

In TLFEPI (Transfer learning-based feature extraction for
pathological images) Module, the eligible HE-stained tissue slices
were digitally scanned at ×40 magnification to form WSIs.
Screenshots of five regions of interest (ROI) from each WSI were
taken with a fixed screenshot size setting of 512×512 pixels at
different magnifications (×4, 10X, 20X, 40X) of the field of the
view. The ROIs were selected jointly by a breast surgeon (HCZ) and
a pathologist (WLW) with more than 10 years of working
experience. Both of these two researchers were unaware of the
pCR status of patients. The following criteria were used for ROIs
selection: 1. Excluding tumor necrosis area, cell overlap area, blank
or margin area; 2. The ROIs need to contain both tumor and stromal
areas, with the tumor area accounting for more than 50% of the total
area. Representative ROIs with different magnifications are shown
in Figure 3.

As mentioned above, each WSI selects 5 ROIs at different
magnifications. Taking 4X multiples as an example, a total of
1305 ROIs were selected from 261 patients in TC, of which
75 patients received pCR, and a total of 375 ROIs were selected.
The remaining 186 patients received non-pCR, and a total of
930 ROIs were selected. To avoid overfitting due to the small
amount of data, we performed data enhancement operations on
all ROIs under 4X multiples, such as rotation and inversion, and
expanded the number of ROIs to 5790, among which the ROIs for

pCR patients was 3000, and that for non-pCR patients was 2790.
Using the same method, the ROI under 10X, 20X, and 40X
multiples is also expanded to 5790. Therefore, the pathological
image data sets under four multiples of 4X, 10X, 20X, and 40X were
constructed.

On this basis, we first selected two classification models,
VGG16 and ResNet50, as the benchmark models, and trained
and tested them on different magnifications and mix
magnifications pathological image datasets of TC respectively
through the transfer learning. The experimental results show that
the ×20 magnification pathological images of TC have the best
prediction efficacy in both VGG16 and ResNet50 classification
models. Then, we trained and tested TC 20X-multiple
pathological images using different series of VGG, ResNet,
ResNeSt, and DenseNet models, and the experimental results
showed that the VGG16 model had the best prediction efficacy.
Therefore, in this study, the VGG16 model is used as an image
feature extractor for extracting features from ×20-magnification
pathological images to construct a deep learning model (DPM)
for predicting pCR of NAC in breast cancer. Then, we validate the
prediction efficacy of the DPM using the ROIs selected by VC1 and
VC2 at ×20 magnification.

In CPFE (Clinicopathological feature statistical analysis)
Module, we collected 7 important clinicopathological indicators,
including age at diagnosis, clinical T stage, clinical N stage,
estrogen receptor (ER), progesterone receptor (PR), Her-2, and
Ki67. ER, PR, Her-2 status and Ki67 expression were assessed by
IHC. ER/PR positivity was defined as no less than 1% of tumor cells
with positive nuclear staining (Allison et al., 2020). Regarding
Ki67, samples were divided into a high expression group (≥20%)
and a low expression group (<20%) (Goldhirsch et al., 2013). Her-2
positivity was defined as IHC (3+) and/or amplification by
fluorescence in situ hybridization (FISH), and Her-2 negativity
was defined as IHC (0/1+) and/or non-amplification by
FISH(Wolff et al., 2018). In this study, pCR was defined as
ypT0/isypN0 (breast and nodes without residual invasive
disease) (Cortazar et al., 2014). Through univariate analysis and
logistic regression analysis of clinicopathological features of TC,
we constructed a clinicopathological features-based prediction
model (CM). We validated CM using clinicopathological
features of VC1 and VC2.

FIGURE 3
Representative ROIs in different magnifications. (A) ×.4 magnification (B) ×.10 magnification (C) ×.20 magnification (D) ×.40 magnification.
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In SMFPM (SVM-based multimodal feature prediction model)
Module, firstly, we used the VGG16 transfer learning model for
feature extraction on ×20 magnification pathological images. The
specific method is as follows: The weights in the VGG16 model,
which has been trained on the ImageNet dataset, are transferred
into the 13-layer convolutional layer of the feature extraction
model. Fine-tune the parameters of the fully connected layer
based on the pCR and non-pCR data. After completing the
fine-tuned training, the 13-layer convolutional layer was used as
a feature extraction network to obtain a 512-dimensional
pathology slice image feature vector. Dimensionality reduction
is achieved by a fully connected layer with 7 channels.
Subsequently, the pathological image features and
clinicopathology text features are fused into multimodal
features, which are inputted into the SVM classifier. Finally, a
multimodal features pCR prediction model (DPCM) was
constructed. The specific flowchart is shown in Figure 4. The
experimental results show that the combination of pathological
image features and text features has better prediction performance
than single pathological image features or clinicopathology
text features.

2.3 Statistical methods

In this study, age at diagnosis was a continuous variable, and
other clinicopathological features were categorical variables.
Continuous variables were described as medians and interquartile
range, and categorical variables were described as percentages. All
statistical analyses were two-sided, and p values of less than
0.05 indicate statistical significance. Predictive performance was
assessed by area under the receiver operating characteristic
(ROC) curve (AUC). The accuracy, sensitivity, specificity, and
F1 score of the models were calculated.

2.4 Software and parameters

2.4.1 WSI acquisition and screenshot software
parameters

HE-stained tissue slices from patients enrolled in TC and
VC2 were scanned to form WSIs with KF-PRO-020-HI produced
by Jiangfeng, which has a spatial resolution of 0.25 MPP and a scan
magnification of ×40. HE-stained slices of biopsy tissue from
patients enrolled in VC1 were scanned to form WSIs with a
Panoramic 250Flash II manufactured by 3DHISTECH, Hungary,
with a spatial resolution of 0.25 MPP and a scan magnification
of ×40. We browsed WSIs with K-viewer (1.7.0.29) developed by
K-Tron International, which supports viewing WSIs in different
multiples. Take a screenshot with FSCapture software. Set the
screenshot size to 512 × 512 pixels, image resolution to 96DPI,
and output to JPG format.

2.4.2 Statistical analyses software and deep
learning runtime environment

Statistical analyses were performed in Python 3.8.2. The DL-
model and code were implemented based on Pytorch and Python
3.8.2. Deep learning server operation using an i7-11700k processor
and an NVIDIA RTX3090 24 GB graphics card. The model is
parameter optimized using SGD with a learning rate of 1e-3, a
weight decay factor of 5e-4, and a learning momentum of 0.9, with a
maximum of 200 training rounds.

3 Result

3.1 Patient characteristics

The clinicopathological features of the patients are summarized
in Table 1. As shown in Table 1, for TC, VC1, and VC2, the median

FIGURE 4
Breast cancer pCR predictionmodel based onmultimodal features and SVM classifier. The VGG16 deep learning model was used to extract features
from 20X pathological images. The weights in the VGG16 model, which has been trained on the ImageNet dataset, are transferred into the 13-layer
convolutional layer of the feature extraction model. Fine-tune the parameters of the fully-connected layer based on the pCR and non-pCR data. After
completing the fine-tuned training, the 13-layer convolutional layer was used as a feature extraction network to obtain a 512-dimensional pathology
slice image feature vector. Dimensionality reduction is achieved by a fully connected layer with 7 channels. Then the pathological image features and
clinicopathology text features are fused intomultimodal features, whichwere inputted into a radial basis function based support vectormachine (SVM) for
pCR prediction.
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age of patients was 52, 50, and 44.5, respectively. ER positivity rates
were 60.1%, 69.2%, and 81.9%, respectively. Her-2 positivity rates
were 40.2%, 60.7%, and 33.3%, respectively. The proportion of
patients with Ki67 high expression was 77.8%, 88.8%, and 73.6%,
respectively. The pCR rates were 28.7%, 36.4%, and 13.9%,
respectively.

3.2 Performance of different magnification
ROIs in each deep learning model in training
cohort (TC)

In TC, there are 4 different magnifications (×4, 10X, ×20, ×40)
and mix magnifications, each with 5970 ROIs. These ROIs were pre-
trained by the ImageNet dataset with transfer learning. The
accuracy, sensitivity, specificity, and F1 score of the two
benchmark models, VGG16 and ResNet50, in pCR prediction,
are shown in Table 2. In both benchmark models, models
generated from ×20 magnification pathological images
(×20 model) demonstrated the best performance in pCR

prediction compared to models generated from images with
other magnification. The accuracy, specificity, sensitivity, and
F1 scores of the VGG16 model (20X model) in pCR prediction
were 0.7487, 0.7294, 0.7642 and 0.7714, respectively. The accuracy,
specificity, sensitivity, and F1 scores of the ResNet50 model (20X
model) were 0.7173, 0.7284, 0.7264, and 0.7353, respectively. The
pCR predictive performance of the VGG, ResNet, ResNeSt, and
DenseNet series models using ×20 magnification pathological
images from TC are shown in Table 3. As shown in Table 3, in
general, the VGG16 model demonstrated the overall best
performance, with accuracy, specificity, sensitivity, and F1 score
in pCR prediction being 0.7765, 0.7385, 0.7651, and 0.7745,
respectively.

3.3 PCR prediction performance of
different models

The AUCs of the DPM in pCR prediction were 0.79, 0.73, and
0.71 in TC, VC1 and VC2, respectively. CM demonstrated similar

TABLE 1 Clinical characteristics of patients in the training cohort and validation cohorts.

Characteristic Training cohort Validation cohort 1 Validation cohort 2

N = 261 N = 107 N = 72

Age (years) Median (IQR) 52 (46–58) 50 (42.5–56) 44.5 (40.75–52.25)

ER status (%)

Positive 157 (60.1) 74 (69.2) 59 (81.9)

Negative 104 (39.9) 33 (30.8) 13 (18.1)

PR status (%)

Positive 125 (47.9) 64 (59.8) 40 (55.6)

Negative 136 (52.1) 43 (40.2) 32 (44.4)

Her-2 status (%)

Positive 105 (40.2) 65 (60.7) 24 (33.3)

Negative 156 (59.8) 42 (39.3) 48 (66.7)

Ki-67 index (%)

≥20% 203 (77.8) 95 (88.8) 53 (73.6)

<20% 58 (22.2) 12 (11.2) 19 (26.4)

cT stage (%)

cT1-T2 104 (39.9) 52 (48.6) 41 (56.9)

cT3-T4 157 (60.1) 55 (51.4) 31 (43.1)

cN stage (%)

cN0-N1 109 (41.8) 50 (46.7) 21 (29.2)

cN2-N3 152 (58.2) 57 (53.3) 51 (70.8)

NAC efficacy (%)

pCR 75 (28.7) 39 (36.4) 10 (13.9)

Non-pCR 186 (71.3) 68 (63.6) 62 (86.1)

ER, estrogen receptor; PR, progesterone receptor; Her-2, human epidermal growth factor receptor 2; pCR, pathological complete response.
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predictive performance, with AUCs of 0.79, 0.78, and 0.74 in TC,
VC1 and VC2, respectively. Notably, the combined model DPCM
provided more satisfactory predictive efficacy. In TC and VC2, the

AUCs of DPCMwere 0.84 and 0.78, respectively, higher than that of
the other two models. The predictive performance of the three
models is shown in Figure 5 and Table 4.

TABLE 2 Comparison of classification results with different magnification ROIs in training cohort (TC).

Models Multiples Accuracy Specificity Sensitivity F1 score

VGG16 4X 0.6178 0.6706 0.5755 0.6456

10X 0.7016 0.6118 0.7736 0.7421

20X 0.7487 0.7294 0.7642 0.7714

40X 0.6387 0.5882 0.6792 0.6761

MIX 0.6803 0.6752 0.6645 0.7032

ResNet50 4X 0.5916 0.3412 0.7925 0.6829

10X 0.6754 0.6353 0.7075 0.7075

20X 0.7173 0.7284 0.7264 0.7353

40X 0.6440 0.5412 0.6792 0.6761

MIX 0.6705 0.5844 0.7038 0.7057

ROI, regions of interest.

TABLE 3 Comparison of the results of 20X ROIs in different classification models in training cohort (TC).

Models Accuracy Specificity Sensitivity F1 score

VGG16 0.7765 0.7385 0.7651 0.7745

VGG19 0.7472 0.7456 0.7482 0.7503

ResNet50 0.7216 0.7156 0.7265 0.7324

ResNet101 0.7069 0.7264 0.7463 0.7131

ResNest50 0.7364 0.7530 0.7291 0.7382

ResNest101 0.7142 0.7135 0.7160 0.7213

DenseNet121 0.7179 0.6814 0.7177 0.7020

DenseNet161 0.7032 0.6732 0.6761 0.6938

FIGURE 5
The ROC curve for pCR prediction performance in the (A) DPM, (B) CM, and (C) DPCM among all cohorts. AUC: area under the receiver operating
characteristic. CM: clinical model. DPCM: deep learning clinicopathological model. DPM: deep learning pathological model. ROC: receiver operating
characteristic.
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After calculation, in DPCM, the optimal cutoff for TC is 0.77,
and when the optimal cutoff is obtained, the accuracy, specificity,
and sensitivity of the model are 0.73, 0.79, and 0.66, respectively.
When this cutoff is applied to VC1 and VC2, the accuracy,
specificity, and sensitivity of VC1 are 0.71, 0.76, and 0.63,
respectively; and that of VC2 is 0.70, 0.75, and 0.62, respectively.
The results are shown in Table 5.

In addition to comparing AUC results, we added two indices,
the net reclassification index (NRI) and the integrated
discriminant improvement (IDI), to further evaluate the model
performance of DPCM and DPM. Compared with DPM, the NRI
values of TC, VC1, and VC2 in DPCM are 0.054, 0.019, and 0.061,
respectively, and the IDI values are 0.042, 0.014, and 0.057,
respectively, and the computational results show that the
predictive effectiveness of DPCM has a small improvement
compared with DPM.

3.4 PCR prediction performance of DPM and
DPCM in different molecular subtypes in
validation cohorts (VCs)

The AUCs of the DPM in HR (hormone receptor) positive and
Her2 negative, Her2 overexpressing, and TNBC (triple-negative
breast cancer) were 0.82, 0.72, and 0.66, respectively. The AUCs
of the DPCM in HR positive and Her2 negative,
Her2 overexpressing, and TNBC were 0.84, 0.78, and 0.70,
respectively. The results are shown in Figure 6 and Table 6.

4 Discussion

In this study, we found that pathological images of HE-
stained slices of pre-NAC biopsy tissues could be used for
building models to predict the treatment efficacy of NAC in
breast cancer. VGG16 model generated from ROIs
of ×20 magnification demonstrated the best predictive
performance compared with models generated from ROIs of

other magnification. The combined model had superior
predictive efficacy than the deep learning model or the
clinicopathological model.

HE-staining pathological images contain a large amount of
information about tumor epithelial cells and stromal. Prediction
of anti-tumor treatment efficacy and prognosis using deep learning
features provided by pathological images has been attempted in liver
cancer (Saillard et al., 2020), malignant mesothelioma (Courtiol
et al., 2019), and rectal cancer (Shao et al., 2020). However, limited
similar studies have been performed on breast cancer. This study
showed that deep learning features from pathological images were
predictive of NAC efficacy in breast cancer. Our results show that
the model included only DL-features of pathological images had an
AUC of 0.79 in the TC and 0.73 and 0.71 in the two external VCs,
respectively. These results are similar to results from a recent study,
in which the AUC was 0.72 in predicting pCR using a DP features-
based model (Li et al., 2022a).

In this study, we used screenshot software to select the ROIs
from HE-staining pathological images at different
magnifications (×4, 10X, 20X, 40x), all with a screenshot size
of 512 × 512 pixels. The results showed that the DL-features
from ×20 magnification images achieved the best performance
in predicting pCR. The lower predictive efficacy of pathology
images under ×4 and ×10 magnification field of view may
be because the screenshot software used in this study
limited the pixel size of ROIs. Although the ROIs selected
at ×4 and ×10 magnification covered more tumor cells and
stromal, the ROIs were not clear enough for feature
extraction. ×40 magnification images provide better observation of
tumor cell morphology and even nucleus division, but
the ×512512 pixel size image contains fewer tumor cells, which is
not conducive to the observation of tumor cell arrangement. In
contrast, ×20 magnification pathological images include more tumor
cells and stromal at the same figure, providing more adequate
information on tumor morphological features and sTILs. A study by
Dmitrii Bychkov et al. showed that the tumor morphological features
can be used to predict the efficacy of NAC in Her-2 overexpressing
breast cancer, also. (Bychkov et al., 2021). As for the predictive value of
sTILs on the treatment efficacy of NAC in breast cancer, it also has been
confirmed in many studies (Hwang et al., 2019; Ochi et al., 2019; Sun
et al., 2021). Therefore, in this study, ×20 magnification pathological
images had the best pCR prediction efficacy is possessed
interpretability.

In this study, we used multiple deep learning models for feature
extraction and found that the classification metrics of the VGG
model are significantly better than ResNet, ResNest, and DenseNet.
This is due to the fact that the pre-trained models are generally

TABLE 4 pCR prediction performance of different models.

Cohort DPM AUC (95%CI) CM AUC (95%CI) DPCM AUC (95%CI)

Training Cohort 0.79 (0.74–0.82) 0.79 (0.73–0.85) 0.84 (0.80–0.87)

Validation Cohort 1 0.73 (0.70–0.76) 0.78 (0.69–0.87) 0.76 (0.74–0.79)

Validation Cohort 2 0.71 (0.67–0.75) 0.74 (0.57–0.87) 0.78 (0.75–0.81)

pCR, pathological complete response; DPM, deep learning pathological model; CM, clinical model; DPCM, deep learning pathological clinical model; AUC, area under the curve; CI, confidence

interval.

TABLE 5 pCR prediction performance of DPCM in the optimal cutoff value.

Cohort Accuracy Specificity Sensitivity

Training Cohort 0.73 0.79 0.66

Validation Cohort 1 0.71 0.76 0.63

Validation Cohort 2 0.70 0.75 0.62

pCR, pathological complete response; DPCM, deep learning pathological clinical model.
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obtained by training with color natural image data from ImageNet.
Since color natural images are complex and have higher dimensional
features, the use of deep convolutional neural networks such as
ResNet, ResNest, and DenseNet to extract features, better results can
be obtained. Whereas compared to color natural images, pathology
images are simpler and do not have very complex features,
extracting features using the deeper number of layers and
complex structure of pre-trained models such as ResNet,
ResNest, and DenseNet will result in overfitting of features. On
the contrary VGGmodel with a simple structure and low number of
network layers is suitable for feature extraction from pathology slice
images (Chen et al., 2022). Therefore, VGG16 and
VGG19 outperform ResNet, ResNest, and DenseNet in the
problem of classification of pathology images. And VGG16 has
fewer layers compared to VGG19, so VGG16 has better classification
results. In this study, the accuracy, specificity, and sensitivity of the

model were 0.73, 0.79, and 0.66, respectively, when VGG16 achieved
optimal cutoff in DPCM. So far, to the best of our knowledge, no
attempt has been made in other studies to evaluate the predictive
performance of multiple models in a single study. Therefore, the
results from this study are more reliable.

In addition to utilizing information from pathological images, it
is also common to use important clinicopathological features, such
as T-stage, N-stage, ER, PR, Her-2, Ki-67, and molecular typing, to
build models for predicting pCR. In a study by Qian et al., the clinical
model, including pre-NAC T-stage, ER, Her2, and Ki-67,
demonstrated good performance in predicting pCR in breast
cancer with an AUC of 0.79 in TC (Qian et al., 2022). This
result is close to our CM. However, it needs to be discussed that
after fusing pathological image features and clinicopathological
features, the predictive efficacy of DPCM was improved in TC
and VC2 compared to both DPM and CM. On the contrary, in
VC1, the predictive efficacy of DPCM was not as good as CM. We
analyze that this may be due to the following two reasons. 1. There
are only seven clinicopathological features included in this study,
and they are affected by the uneven enrollment ratio of different
subtypes in different centers, which may result in large fluctuations
in the prediction efficacy of CM in different centers. 2. Pathological
image and clinicopathological features provide different amounts of
effective information. Compared to clinicopathological features,
deep learning extracts features from pathological images with
higher dimensionality and more effective information, which
plays a more important role in the robustness and accuracy of
the model.

TABLE 6 pCR prediction performance of DPM and DPCM in different
molecular subtypes in validation cohorts.

Subtypes DPM AUC DPCM AUC

HR+ and Her2- 0.82 0.84

Her2+ 0.72 0.78

TNBC 0.66 0.70

pCR, pathological complete response; AUC, area under the receiver operating

characteristic; DPM, deep learning pathological model; DPCM, deep learning

clinicopathological model; HR, hormone receptor; Her2 human epidermal growth factor

receptor 2; TNBC, triple-negative breast cancer.

FIGURE 6
The ROC curve for pCR prediction performance of DPM and DPCM in different molecular subtypes in validation cohorts. The ROC curve for pCR
prediction performance of DPM in (A). HR+ and Her2-, (B). Her2+, (C). TNBC. The ROC curve for pCR prediction performance of DPCM in (D). HR+ and
Her2-, (E). Her2+, (F). TNBC. ROC: receiver operating characteristic. AUC: area under the receiver operating characteristic. DPM: deep learning
pathological model. DPCM: deep learning clinicopathological model. HR: hormone receptor. Her2: human epidermal growth factor receptor 2.
TNBC: triple-negative breast cancer.
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Using the predictive model, we can obtain a predicted
probability of pCR after NAC for breast cancer, and there is a
certain difference between this probability and the pathological
results of undergoing surgery after NAC, i.e., the gold standard,
which will lead to a certain degree of uncertainty when the predictive
model is applied. The estimation of model uncertainty depends on
many factors. Primarily, pathologic images and clinicopathologic
parameters alone provide only limited information in predicting
pCR. If multimodal data are added, such as ultrasound (Cui et al.,
2021), CT (Moghadas-Dastjerdi et al., 2021), MRI (Huang et al.,
2023; Shi et al., 2023), PET-CT (Yang et al., 2022) examination data,
or even genetic testing data, the predictive efficacy of the model can
be further improved and the uncertainty of model application can be
reduced. Secondly, the number of enrolled cases and the number of
clinicopathologic features also affect the uncertainty of model
application. In recent relative research, many techniques such as
radiomics or genomics have also been explored for NAC efficacy
prediction. For example, multi-landscape histology techniques were
used to build an NAC efficacy prediction model by whole-genome
sequencing of puncture tissues from 168 breast cancers. External
validation of the model in 75 patients showed good predictive
performance with an AUC of 0.87 (Sammut et al., 2022). This
approach takes full advantage of the information provided by the
tumor ecosystem for efficacy prediction. However, whole genome
sequencing is very expensive and therefore difficult to apply
universally in clinical practice. In another study, the combination
of clinicopathological features and MRI signatures before and after
NAC has also been used to predict NAC efficacy with an AUC of
0.90 (Kim and Cho, 2021). Despite the good performance in
treatment efficacy prediction, these models have drawbacks, such
as the need for repeated examinations at different time points during
the treatment course. This will result in more medical costs and
cannot truly achieve early prediction. In contrast, pretreatment
tissue biopsy is a routine procedure in the diagnosis and
treatment of breast cancer, the model built in this study does not
add additional workload and cost and holds the promise for early
treatment efficacy. Therefore, it is still worthwhile to continue
exploring how to balance the uncertainty, practicality, and
economics of predictive modeling applications.

Our study has some limitations. First, breast cancer is highly
heterogeneous. The pathological information provided by core
needle biopsy is not fully representative of the entire tumor.
Nevertheless, the overall predictive accuracy of our DPM model
is quite good as demonstrated in this study, and will even be better
when combined with the clinicopathological model. Second, this is a
retrospective study with a small patient size. The uneven distribution
of molecular subtypes in the three centers may have affected the
results. From the above results, it can be seen that the efficacy of
DPM and DPCM in predicting pCR was better than the other two
subtypes in the HR + Her2-subtype. We analyzed that it might be
due to the difference in the number of cases enrolled in the three
subtypes when the model training was performed in this study, with
the HR + Her2-subtype enrolled in the largest number of cases and
the TNBC subtype enrolled in the smallest number of cases. In.

TC, the proportion of patients with HR + Her2-,
Her2 overexpressing, and TNBC subtypes was 46.6%, 36.1%, and
17.3%, respectively. The information extracted from the cases of
different subtypes during the training of the model varied, thus

leading to different predictive efficacy of the model when tested on
cases of different subtypes. In the future, we will analyze the predictive
efficacy of the model in cases of different subtypes again when more
cases are collected and the number of cases enrolled in different
subtypes is more balanced. Third, the method of selecting ROIs in this
study is not fully automated and may lead to subjective differences.
However, this study has a clear definition of how to select ROIs, and
the entire process of selecting ROIs involved a breast surgeon and a
pathologist to ensure that the selection was done strictly according to
the definition. In addition, we selected 5 ROIs from each WSI, which
allows ROIs to be better representative of WSIs and minimizes
subjective differences in manual screening. In similar studies
published so far, although ROIs can be selected automatically, the
preliminary stage of model building requires manual patch type
delineation or cell labeling, both of which are labor-intensive and
inherently subjective differences. For example, in the study of Li et al.
(Li et al., 2022a), a large number of patches needed to be manually
classified in the preliminary stage to train the model and construct the
patch classifier, which was used to predict pCR with an AUC of 0.72.
In the study of Li et al. (Li et al., 2021), the tumor epithelial region
needed to be manually labeled in the preliminary stage to train the
model, which was used to predict pCR with an AUC of 0.847. From
the results of this study, the AUC of the training group was 0.79, and
the prediction efficacy was close to these two studies. Therefore, the
use of non-automatic selection of ROIs in this study did not have a
significant impact on the predictive performance of the model. In the
future, we will conduct more in-depth research on how to select ROIs
accurately and efficiently.

5 Conclusion

Our study demonstrates that DL-features fromHE-stained slices
of pre-NAC biopsy tissues could potentially predict pCR in patients
with breast cancer. Combination with clinicopathological features
will further improve the predictive efficacy.
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