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Photoplethysmogram beat
detection using Symmetric
Projection Attractor
Reconstruction

Callum Pettit1, Peter H. Charlton2 and Philip J. Aston1*
1Department of Mathematics, University of Surrey, Guildford, United Kingdom, 2Department of Public
Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

Many methods have been proposed to detect beats in photoplethysmogram
(PPG) signals. We present a novel method which uses the Symmetric Projection
Attractor Reconstruction (SPAR) method to generate an attractor in a two
dimensional phase space from the PPG signal. We can then define a line through
the origin of this phase space to be a Poincaré section, as is commonly used in
dynamical systems. Beats are detected when the attractor trajectory crosses the
Poincaré section. By considering baseline drift, we define an optimal Poincaré
section to use. The performance of this method was assessed using the WESAD
dataset, achieving median F1 scores of 74.3% in the Baseline phase, 63.0% during
Stress, 93.6% during Amusement, and 97.7% duringMeditation. Performancewas
better than an earlier version of the method, and comparable to one of the
best algorithms identified in a recent benchmarking study of 15 beat detection
algorithms. In addition, our method performed better than two others in the
accuracy of the inter-beat intervals for two resting subjects.

KEYWORDS

photoplethysmography, beat detection, symmetric projection attractor reconstruction,
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1 Introduction

Photoplethysmogram (PPG) signals are now widely measured both by consumer
smartwatches and by clinical pulse oximeters for unobtrusive physiological monitoring. A
key step in many PPG signal processing tasks is detecting heartbeats in the PPG signal:
this can form the basis for heart rate monitoring; it is fundamental to extracting inter-
beat intervals (IBIs) from which to assess autonomic function through pulse rate variability
analysis (Mejía-Mejía et al., 2020); and is often a precursor to estimating blood pressure
from PPG pulse wave morphology (Mejía-Mejía et al., 2022). Therefore, accurate PPG beat
detection algorithms are of the utmost importance in the field.

Beat detection in photoplethysmogram (PPG) signals is not a straightforward task.
First, PPG signals are highly susceptible to noise and in particular motion artifact.
Second, PPG signals do not exhibit a prominent feature indicating a heartbeat, in
contrast to electrocardiogram (ECG) signals which contain a high-frequency R-wave each
heartbeat. Third, the morphology of PPG signals can vary from one beat to the next.
PPG beats are commonly detected using some form of either peak or trough detection
(Charlton et al., 2022). However, peaks or troughs in the PPG are not always clearly defined,
particularly in the presence of noise. Furthermore, PPG signals sometimes exhibit two peaks
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FIGURE 1
A PPG signal for subject S4 with double peaks.

per heartbeat, with the first being the highest for some
beats and the second being the highest for other beats
(see Figure 1), which can introduce timing errors into
beat detection.

In this study we propose a novel beat detection algorithm
for PPG signals based on the generation of Symmetric Projection
Attractor Reconstruction (SPAR) attractors (Aston et al., 2018;
Lyle and Aston, 2021). The SPAR method derives attractors
from signals using a number of equally spaced points running
through the signal to generate a bounded attractor in a two-
dimensional phase space. In this work, we use a SPAR attractor
as previously defined and combine it with the concept of a
Poincaré section, a line which cuts through the attractor that is
a concept borrowed from dynamical systems theory (Wiggins,
2003), to detect beats from SPAR attractors. The beat detection
algorithm presented in this paper has been refined since an early
version of the method was presented in Charlton et al. (2022).
Thus, we present new results on the performance of the SPAR beat
detector and compare its performance with the best methods in
Charlton et al. (2022).

Our novel beat detection algorithm may be applied not only
in heart rate monitoring, but also for applications requiring
accurate inter-beat interval estimation such as heart rhythm
assessment, heart rate variability analysis, and stress monitoring.
The algorithm may be particularly useful for wearable devices
such as smartwatches, smart rings, and earbuds, due to
its low computational complexity and its ability to handle
baseline wander.

Heart Rate Variability (HRV) analysis (Acharya et al., 2006)
consists of deriving a range of useful measures from the IBIs,
which are obtained from the distances between successive R peaks
of an ECG signal. Similarly, Pulse Rate Variability (PRV) (Mejía-
Mejía et al., 2020) performs a similar analysis using the IBIs derived
from a PPG signal. It has been concluded that PRV is a valid
surrogate for HRV for healthy, resting subjects (Mejía-Mejía et al.,
2020).Thus, we also compare the accuracy of the SPAR beat detector
IBIs and two other PPG beat detection algorithm IBIs against the
ECG RR intervals for two resting subjects which have no artefacts in
their PPG signals.

2 Methods

2.1 Dataset

The dataset used in this study was the Wearable Stress and
Affect Detection (WESAD) dataset from the UC Irvine Machine
Learning Repository (Schmidt et al., 2018). This dataset includes:
i) PPG signals recorded from an Empatica E4 wrist-worn device
at a sampling frequency of 64Hz; and ii) ECG signals recorded
simultaneously from a RespiBAN chest-worn device at 700Hz. For
each of the 15 subjects there is around 100 min of data. Each subject
followed a protocol including five phases: Baseline, Amusement,
Stress, Meditation 1, and Meditation 2. We considered all phases in
our analysis.

2.2 Symmetric Projection Attractor
Reconstruction

The Symmetric Projection Attractor Reconstruction (SPAR)
method converts the PPG signal, which is measured over time,
into an attractor in a bounded domain, by plotting its trajectory
in three-dimensional phase space and then projecting it onto a
particular plane, as described in Aston et al. (2018). The process
of obtaining an attractor from a PPG signal is summarised
in Figure 2, and the remainder of this section provides further
mathematical details.

Using Takens’ method for reconstructing attractors using time
delay coordinates (Takens, 1981), an attractor can be reconstructed
in anN-dimensional phase space from a single signal x(t) by using a
vector of delay coordinates given by

[x (t) ,x (t− τ) ,x (t− 2τ) ,…,x (t− (N− 1)τ)]

where τ > 0 is a fixed delay and N ≥ 2 is the embedding
dimension. The embedding dimension was initially chosen as
N = 3 for ease of visualisation in Aston et al. (2018) although
this was later generalised to any embedding dimension N ≥ 3 in
Lyle and Aston (2021).

For the case N = 3, we define the new variables

y (t) = x (t− τ) , z (t) = x (t− 2τ)

where the time delay τ is chosen to be one-third of the average cycle
length (Aston et al., 2018). The trajectory can then be plotted in a
three-dimensional phase space as shown in Figure 2B. Projecting
the three-dimensional attractor onto a plane perpendicular to the
vector (1,1,1) reduces the effect of baseline wander and gives a
two-dimensional attractor with approximate three-fold rotational
symmetry (Aston et al., 2018). For this, we define the new variables

u = 1
3 (x+ y+ z)

v = 1
√6
(x+ y− 2z)

w = 1
√2
(x− y)

and then the (v,w) plane is perpendicular to the vector (1,1,1),
(Aston et al., 2018). The resulting attractor in the (v,w) plane is
shown in Figure 2C where the trajectory runs in a clockwise
direction and each loop of the attractor corresponds to one cycle of
the PPG data.
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FIGURE 2
The steps used to generate a two-dimensional attractor using the SPAR method. The data is 420–430 s of subject 13. (A) A sample of PPG signal; (B)
The trajectory plotted in three dimensional phase space; (C) The corresponding attractor in the (v,w) plane.

2.3 Using a Poincaré section for beat
detection

In dynamical systems, described by a system of ordinary
differential equations, a Poincaré section that intersects the
flow in phase space transversely can be used to convert
a continuous dynamical system into a discrete dynamical
system (Wiggins, 2003). Here we are working with data,
not a dynamical system, but we similarly define a Poincaré
section that intersects our attractor as a means of detecting
individual beats. The section should be transversal to the
flow ideally, which of course can never be guaranteed for
data-defined trajectories. Due to the approximate three-fold
symmetry of the attractor, there are three natural choices of the
Poincaré section, as shown by the black, red and green lines in
Figure 3A.

In practice, we define a fixed Poincaré section by the horizontal
line w = 0, v > 0 and rotate the attractor appropriately. The
timestamps at which the section is crossed are found by checking
the conditions wi > 0 and wi+1 < 0. Note that these conditions also
specify the direction of crossing, namely, from above to below the
line.When these conditions are satisfied, linear interpolation is used
to find the time t* of the crossing more accurately and then the
further condition v (t*) > 0 is also checked. If required, IBIs can
be obtained by finding the difference between consecutive times at
which the attractor intersects a particular Poincaré section.

2.4 Varying the embedding dimension N

The description of the SPAR method for generating attractors
(in Section 2.2) considered an embedding dimension N = 3. More
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FIGURE 3
The (A) N = 3 and (B) N = 4 attractors and chosen Poincaré sections.

generally, the embedding dimension can be set to any integer
N ≥ 3. Lyle and Aston (2021) showed how to generate similar
two-dimensional attractors (vN,k,wN,k), but with multiple attractors
for each dimension N > 4 which we call projections, indexed by
k = 1,… ,⌊(N− 1)/2⌋. The (N,k) attractor has an approximate m-
fold rotational symmetry where m = N/gcd(N,k). The attractor for
the PPG signal shown in Figure 2A for N = 4 is shown in Figure 3B
and for N = 5,7,9 is shown in Figure 4, all with projection k = 1.
We investigated using higher projections k > 1 but found that they
were not suitable as the attractors were more variable in these
cases. Therefore all of our examples use projection k = 1. Similarly
to the N = 3 case, we used 4 equally spaced Poincaré sections in
approximately the middle of each side of the N = 4 attractor, as
shown in Figure 3B, to give multiple estimates for individual beats
and IBIs.

For higher dimensions, the attractors become more circular in
nature (Lyle and Aston, 2021) which is an advantage. However,
if N is too large, there may be very few data points between
each of the delay coordinates if the sampling frequency of
the data is relatively low and so there may be a mismatch
between the expected positions of the delay coordinates and data
points available.

2.5 Finding the optimal Poincaré section

We now consider whether there is an angle for the Poincaré
section that consistently gives the best accuracy. An example when
finding the errors for the section at all possible angles for the N = 3
attractor is shown in Figure 5, where the distance from the centre of
the plot indicates the mean absolute error. As might be expected,
the errors are high if the section is positioned at the corners of
the attractor and is much lower when positioned in the middle

of the straight sides of the attractor. However, this pattern is not
repeated for higher values of N, when the attractor becomes more
circular, as is also shown in Figure 5. The optimal angle seems
to be always in the first quadrant and has an increasing angle as
N increases.

We conjecture that the optimal angle of the section is related to
baseline wander in the signal and so we consider the effect of linear
baseline drift on the attractor by considering the function

x (t) = x0 (t) + ct (1)

where x0(t) is an approximately periodic function which has linear
drift added to it, where c is a constant.

When N = 3, the v attractor coordinate is given by

v (t) = 1
√6
(x (t) + x (t− τ) − 2x (t− 2τ))

= 1
√6
(x0 (t) + x0 (t− τ) − 2x0 (t− 2τ) + ct

+ c (t− τ) − 2c (t− 2τ))

= v0 (t) +
3
√6

cτ

where v0(t) is the v coordinate generated from the signal x0(t).
Similarly, the w attractor coordinate in this case is given by

w (t) = 1
√2
(x (t) − x (t− τ))

= 1
√2
(x0 (t) − x0 (t− τ) + ct− c (t− τ))

= w0 (t) +
1
√2

cτ

where w0(t) is the w coordinate generated from the signal x0(t).
Thus, the baseline drift added to the signal results in a translation

of the (v0,w0) attractor which is proportional in magnitude to the
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FIGURE 4
The attractors for (A) N = 5, (B) N = 7, (C) N = 9.

slope c of the drift. The direction of movement in the (v,w) plane is
in a direction θ defined by

tan θ =
cτ/√2

3cτ/√6
= 1
√3

which is independent of c. In this case, we have θ = π/6 if c is positive
or θ = −5π/6 if c is negative. The angle θ = π/6 is shown as a red line
on theN = 3 plot in Figure 5 and it can be seen that this is very close
to the optimal angle in this case.

We can generalise this result to any value of N ≥ 3.
Supplementary Theorem S1.
The (N, k) attractor for k = 1 … , ⌊(N − 1)/2⌋ generated from

an approximately periodic signal x0(t) with superimposed linear drift

given by Eq. 1 is related to the (N, k) attractor generated from the signal
x0(t) only by a translation in the direction θN,k where

θN,k =
π
2
− πk

N
(c > 0) , −π

2
− πk

N
(c < 0)

Themagnitude of the shift is proportional to the slope c of the drift
but the direction of the shift is independent of c.

The proof of this result is given in the Supplementary Material.
We note that as N→∞ for fixed k, θN,k→±π/2. Also, for

k = 1 and N = 3,5,7,9, we have θN,k = 30°,54°,450/7 = 64.29°,70°
respectively. These angles are shown as red lines on the respective
plots in Figure 5 and give good agreement with the minimum error
in each case.
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FIGURE 5
The mean absolute error of the inter-beat intervals for varying angle of the Poincaré section (in degrees) applied to the PPG signal shown in Figure 2A
for the attractors with (A) N = 3, (B) N = 5, (C) N = 7, (D) N = 9. The optimal angle of Supplementary Theorem S1 is depicted by the red lines.

We conjecture that the angle given in Supplementary Theorem
S1 is optimal because baseline drift on the signal moves the attractor
in the direction of the section and so has no effect on the time for
each cycle whereas, if the direction of translation is not aligned with
the section, the IBIs will be increased or reduced by the translation
of the attractor.

2.6 Algorithm implementation

The SPAR beat detector was implemented as follows. Signals
were segmented into 20 s windows with a 5 s overlap. For each
window, the time delay parameter τ was found by: i) filtering the

signal using a fourth order Chebyshev II filter to remove baseline
wander, as recommended in Liang et al. (2018) ii) identifying the
average cycle length (i.e., the average IBI); as the cycle length which
produced the maximum autocorrelation value for the filtered signal
(limited to a search between and 0.4 s and 1.5 s, corresponding to a
heart rate range of 40–150 bpm); and iii) calculating τ as 1/N times
this average cycle length.The attractor trajectory was then generated
from the raw PPG signal using this value for τ. Individual beats were
then detected as the times at which the attractor trajectory crossed
the optimal Poincaré section as given in SupplementaryTheorem S1.
Multiple embedding dimensions were investigated.

A further step was included to account for noisy signals. The
autocorrelation function provides values between −1 and 1, with
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FIGURE 6
All plots are for the PPG data shown in Figure 2A and the N = 3 attractor. (A) The beats detected when the delay coordinate x lies on either the green,
black or red sections shown in Figure 3A. (B) The ECG inter-beat intervals together with the PPG inter-beat intervals for each section. (C) A Bland
Altman plot for each section with mean indicated by solid lines and mean plus/minus 1.96 x standard deviation indicated by dashed lines.

1 indicating perfect correlation. Through a manual inspection,
a threshold of the maximum autocorrelation value of 0.4 was
identified to distinguish between clean and noisy signals. Windows
with values of <0.4 were deemed noisy, and so the window was
divided in half and the cycle length corresponding to the highest
maximum of the autocorrelation function from the two-halves of
the window was used as the average cycle length. This worked
well where there was high quality signal at the start or end
of the window.

In the periods of overlap between consecutive 20 s windows,
beats were duplicated but were not necessarily identified at the
exact same times, due to a difference in the time delay τ for
the two windows. The smallest error between the duplicated
beats was found and this beat was the last one used from
the earlier window before swapping over to the beats in
the new window.

Following beat detection, missed or false beat detections
were corrected as follows. Missed beats were detected by
checking for IBIs greater than the median IBI plus a tolerance
of 0.35IBI. The number of missing beats was determined from
the IBI divided by the median IBI and the corresponding
number of evenly spaced beats was inserted. Similarly, if two
beats were closer than the median IBI minus a tolerance
of 0.3IBI then the beat closest to its other neighbour
was removed.

2.7 Performance assessment

The performance of the SPAR beat detector was assessed in
three ways: i) PPG-derived IBIs and reference ECG-derived IBIs
were compared for short time intervals for illustrative purposes;
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TABLE 1 The mean absolute error for the inter-beat intervals of the PPG
signal shown in Figure 2A.

N Section Mean absolute error (s)

3 black 0.0036

3 green 0.0031

3 red 0.0039

4 black 0.0045

4 green 0.0031

4 cyan 0.0045

4 red 0.0041

ii) the accuracy of beat detection was assessed against reference
beats identified in the ECG signal using the F1 score and iii)
PPG IBIs were compared with ECG-derived IBIs for two subjects
during the Meditation 1 phase. These three approaches are
now described.

First, IBIs obtained from PPG signals using the SPAR beat
detector were compared to reference IBIs obtained from ECG
signals. To do so, beats were detected in PPG signals using the SPAR
beat detector, and then IBIs were calculated as the time differences
between consecutive beat detections. R-peaks were detected in the
ECG signals, manually checked, and corrected where necessary (for
the whole dataset). ECG-derived IBIs were then calculated as the
time differences between consecutive R-peaks. Performance was
expressed as the mean absolute error between PPG- and ECG-
derived IBIs.

Second, the performance of the SPAR beat detector was assessed
against reference ECG beats using the F1 score, which is the
harmonic mean of the recall (i.e., sensitivity, the proportion of
ECG beats which were correctly detected in the PPG) and the
precision (i.e., positive predictive value, the proportion of PPG
beat detections which were correct). The F1 score simplifies in
this context to

F1 (%) =
2ncorrect

nPPG + nECG
× 100

where ncorrect is the number of correct beats, nPPG is the number of
PPG beats and nECG is the number of ECG beats. The number of
correct PPG beats was determined as in Charlton et al. (2022) by
finding the nearest PPG beat to each ECG R peak and designating
it as correct if the absolute time difference between the two was
<150 ms. The results were reported as median (lower - upper
quartiles) F1 scores on a per subject basis. The performance of
the present SPAR beat detector algorithm was compared with that
of an earlier version of the algorithm, which was described in
Charlton et al. (2022).

It was important to synchronise the timings of ECG and PPG
signals since they were measured using different devices. To do
so, PPG beats were aligned with ECG R-peaks using the time
delay which resulted in the highest number of correct beats (with
candidate time delays of between −10 s and 10 s in steps of 10 ms
investigated).

Finally, we compared PPG-derived IBIs found using the SPAR
beat detector with the ECG-derived IBIs and did a similar
comparison with the qppg and MSPTD beat detection algorithms,
which were the top two methods for beat detection in Charlton
et al. (2022). The sequences of IBIs derived from the ECG and
PPG signals can only be compared if they have detected the same
number of beats. Also, if the PPG beat detector missed a beat which
has then been estimated, this beat is likely to have a larger error
which will dominate any errors from correctly detected beats, thus
distorting the results. Thus, we chose subjects from the WESAD
data using the Meditation 1 phase for which there were no noisy
intervals in the signal so that all the beats are detected by the
PPG beat detectors. In particular, we chose subjects S9 and S10.
(The exception to this was the qppg beat detector which incorrectly
detected a few beats at the start for subject S9 and so for this
case, we excluded the first 14 s of data, which should have little
influence on the results.) The Meditation 1 phase for both of these
subjects was 400 s long and consisted of 475 beats for subject
S9 and 501 beats for subject S10. The IBIs were found using the
three PPG beat detectors (using N = 3,… ,10 for the SPAR beat
detector) and from the corresponding ECG signals. Each sequence
of PPG-derived IBIs was aligned with the ECG-derived IBIs by
finding the minimum of the mean absolute error with a shift of
±5 IBIs. We then report the mean absolute error of these aligned
sequences of IBIs.

3 Results

3.1 Illustrative examples

Illustrative examples of PPG beat detection using the SPAR
beat detector are now presented. Figure 6A shows the PPG beats
detected using an N = 3 attractor for the signal in Figure 2A,
where the points shown are the position of the leading delay
coordinate, x, when the attractor trajectory crosses each of the
three sections. The corresponding IBIs obtained are shown in
Figure 6B while the Bland Altman plot in Figure 6C shows the
errors when compared to the ECG-derived IBIs. This plot shows
that the mean of the errors is smallest for the red and green
sections, while the standard deviation is the smallest for the
black and green sections, thus suggesting that the results obtained
from the green section are the best. The mean absolute error for
each section is given in Table 1 from which we can see that in
this particular case the best results were also obtained for the
green section.

In the case of N = 4, similar results are shown in Figure 7, and
the corresponding mean absolute errors are shown in Table 1. The
green section again gave the best results with the smallest standard
deviation in the Bland Altman plot and the same error as for the
green section with N = 3.

3.2 The accuracy of the SPAR beat
detection

Results relating to the accuracy of the SPAR beat detector are
now presented, expressed as the F1 score. Accuracy was assessed
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FIGURE 7
All plots are for the PPG data shown in Figure 2A and the N = 4 attractor. (A) The beats detected when the delay coordinate x lies on either the green,
black, red or cyan sections shown in Figure 3A. (B) The ECG inter-beat intervals together with the PPG inter-beat intervals for each section. (C) A Bland
Altman plot for each section with mean indicated by solid lines and mean plus/minus 1.96 x standard deviation indicated by dashed lines.

over each of the five protocol phases, and using a range of
attractor embedding dimensions: N = 3,5,7,9. Box plots were used
to summarise these results for all the subjects, as shown in Figure 8.
There was only a small difference in the median F1 scores for the
different values ofN.The best median score was obtained withN = 3
for three of the five phases (Stress, Amusement and Meditation 2).
N = 3 also provided good performance in the other phases, being
the second best performer in the ‘Meditation 1’ phase, and the
third best performer in the ‘Baseline’ phase (where the median F1
score with N = 3 was 1% lower than that of the best performer,
N = 7).

For comparison, results obtained using the previously reported
SPAR method are shown in Figure 9. It can be seen that the new
SPAR method gives significantly improved results compared with
the previous method.

3.3 The accuracy of the SPAR inter-beat
intervals

Themean absolute error between the ECG-derived IBIs and the
PPG-derived IBIs was found for the SPAR, MSPTD and qppg beat
detectors for subjects S9 and S10 during the Meditation 1 phase.
These errors are shown in Figure 10.

For subject S10, the SPAR errors are much smaller than those
for the other two algorithms. The reason for this is that there
are quite a few double peaks in this PPG signal and the second
peak is sometimes the highest, resulting in inaccurate IBIs. A
sample of the signal with the detected peaks and the IBIs calculated
using the qppg algorithm are shown in Figure 11. The results
for the MSPTD method are similar. We also note that the error
for the SPAR method with N = 4 is much larger than the other
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FIGURE 8
Box plots of the F1 scores for each of the five conditions and for
N = 3,5,7,9.

FIGURE 9
Box plots of the F1 scores for each of the five conditions and for
N = 3,5,7,9 using the earlier SPAR method that was used in
Charlton et al. (2022).

SPAR errors. The reason for this is that this method misses one
beat in approximately the middle of the data, and so the second
half of the IBIs are out of synch with the ECG IBIs. For the
SPAR method, the smallest mean absolute error of 0.0061 was
obtained for N = 3.

There is no problem with double peaks for subject S9, but here
also the SPAR method with N = 3 has the lowest mean absolute
error of 0.0052 as compared to 0.0103 for MSPTD and 0.0089
for qppg.

The simplest variability metric that is derived from the
IBIs is the standard deviation, which is usually referred to
as SDNN. The percentage error between the ECG-derived and
PPG-derived SDNN is shown in Table 2 for both subjects S9
and S10.

TABLE 2 Percentage errors in calculating SDNN compared to the
ECG-derived value for subjects S9 and S10.

S9 (%) S10 (%)

SPAR (N = 3) 2.22 2.16

MSPTD 8.52 42.67

qppg 4.59 45.39

4 Discussion

This study has presented a novel algorithm for detecting beats in
the PPG signal which is not based on peak detection.The algorithm
involves representing the PPG signal as an attractor in phase space
using the SPAR method, and identifying beats as the times at which
the attractor trajectory intersects the optimal Poincaré section. The
algorithm showed good performance on a dataset of PPG signals
acquired from a wrist-worn device across different phases of a
mental stress protocol.

We now compare our results with those reported in
Charlton et al. (2022) for the WESAD dataset and in particular,
with the qppg algorithm from the prior study. For the
‘Baseline’ phase, the median F1 score for qppg was 74.2%,
in comparison to the SPAR beat detector’s performance of
74.2% (N = 7). For ‘Stress’, the SPAR beat detector achieved
62.6% (N = 3), which was a little worse than qppg which
achieved 68.7%. For ‘Amusement’, the SPAR beat detector
achieved 93.6% (N = 3) which was marginally better than the
92.8% achieved by qppg. For ‘Meditation 1’, the SPAR beat
detector achieved 97.7% (N = 9) which is slightly lower than
the 98.3% obtained by qppg. The ‘Meditation 2’ data was not
considered in Charlton et al. (2022) so a comparison is not
possible in this case. In summary, the new SPAR methodology
performed similarly to qppg, which was one of the two best-
performing algorithms identified in Charlton et al. (2022). We
note that there are some differences in the algorithm assessment
methodologies used between these studies, introducing some
uncertainty into the above comparison. Nonetheless, in this study
the SPAR beat detector demonstrated a clear improvement in
performance when compared to an earlier version of the SPAR
beat detector.

The calculation of the IBIs for the SPAR method with N = 3
outperformed both the MSPTD and qppg algorithms, which
were the top two best performing algorithms in Charlton et al.
(2022), for two subjects during the Meditation 1 phase. Poor
results were obtained for the IBIs for subject S10 due to the
regular occurrence of a second peak being the highest, but
the SPAR method also performed best for subject S9 where
there were no such problems. In the calculation of SDNN, the
SPAR method with N = 3 had an error of just 2.2% relative
to the ECG-derived value for both subjects, whereas the other
methods had an error in excess of 40% for subject S10, due
to the double peaks, but also had higher errors (8.5% for
MSPTD and 4.6% for qppg) for subject S9. Thus, we conclude
that the SPAR method is clearly the best performing of the
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FIGURE 10
The mean absolute error between the ECG-derived IBIs and the PPG derived IBIs for (A) subject S9 and (B) subject S10 during the Meditation 1 phase.

FIGURE 11
(A) Some of the detected beats showing alternation between which of the double peaks is the highest and (B) the IBIs calculated by the qppg algorithm
for subject S10.

methods considered for calculating the IBIs that are required for
HRV/PRV analysis.

In conclusion, the novel SPAR PPG beat detection algorithm
presented in this study was found to perform well with wrist
PPG signals. The algorithm methodology differs greatly from
previously proposed PPG beat detection algorithms as it does
not depend on detection of peaks or troughs in the signal but
instead calculates times at which the orbit in reconstructed
phase space intersects a Poincaré section. These intersections
typically occur well away from the peaks and troughs and so
are not dependent on the clarity of the peaks and troughs.
Future work should investigate how the algorithm performs

across different subject groups. Future work may also consider
extending the method to detect beats in other cardiovascular
signals such as the electrocardiogram, and also to detect
events in any approximately periodic data, such as breaths in
respiratory signals.
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